• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Coventry University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Loughborough University Featured Masters Courses
"instrumentation"×
0 miles

Masters Degrees (Instrumentation)

  • "instrumentation" ×
  • clear all
Showing 1 to 15 of 284
Order by 
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in E & I oil and gas engineering. Read more
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in E & I oil and gas engineering
- Tremendous boost to your E & I oil and gas career – no matter whether you are a new graduate or a technician
- Decades of real experience distilled into the course presentations and materials
- Guidance from real E & I oil and gas experts in the field
- Hands-on practical knowledge from the extensive experience of instructors, rather than the theoretical information from books and colleges
- Credibility as the local expert in E & I oil and gas
- Networking contacts in the oil and gas industry
- Improved career prospects and income
- An Advanced Diploma in Electrical & Instrumentation Engineering for Oil and Gas

Next intake is scheduled for September 26, 2017. Applications are now open; places are limited.

INTRODUCTION

There is a growing shortage, and hence opportunity, for Electrical and Instrumentation (E & I) technicians, technologists and engineers in the oil and gas industry. This is due to an increasing need for higher technology methods of obtaining and processing oil and gas as it is a finite declining resource. The technical challenges of extracting oil and gas are becoming ever more demanding, with increasing emphasis on more marginal fields and previously inaccessible zones such as deep oceans, Polar regions, Falkland Islands and Greenland. The aim of this 18-month e-learning program is to provide you with core E & I engineering skills so that these opportunities may be accessed, to enhance your career, and to benefit your firm.

This advanced diploma is presented by lecturers who are highly experienced engineers from industry, having 'worked in the trenches' in the various E & I engineering areas. When doing any course today, a mix of both extensive experience and teaching prowess is essential. All our lecturers have been carefully selected and are seasoned professionals.

This advanced diploma course provides a practical treatment of electrical power systems and instrumentation within the oil, gas, petrochemical and offshore industries. Whilst there is some theory this is used in a practical context giving you the necessary tools to ensure that the Electrical and Instrumentation hardware is delivering the results intended. No matter whether you are a new electrical, instrumentation or control technician/technologist/graduate engineer or indeed, even a practicing facilities engineer, you will find this course beneficial in improving your understanding, skills and knowledge of the whole spectrum of activities ranging from basic E & I engineering to advanced practice including hazardous areas, data communications along with a vast array of E & I equipment utilized in an oil and gas environment.

WHO SHOULD COMPLETE THIS PROGRAM?

This program would be ideal for you if you are seeking to get know-how and expertise in the oil and gas business and are an:

- Instrument and process control technician or technologist
- Instrument fitter
- Chemical or mechanical engineer
- Electrical engineer currently working in a different area to oil and gas
- Experienced electrician
- A recent graduate electrical, instrumentation or mechanical engineer

Even if you are highly experienced you will find this a great way to become familiar with the oil and gas technology as quickly as possible.

COURSE CONTENT

The valuable oil and gas program has five main streams:

- Electrical engineering
- Instrumentation and Control engineering
- General Oil and Gas engineering
- Subsea Instrumentation and Control
- Floating Production, Storage and Offloading (FPSO) Facilities

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
The oil and gas industry instrumentation professional must be equipped to understand the principles and implementation of instrumentation, the importance of efficient and reliable measurement and control systems and have a suitably wide perspective of the subject area so that a number of different approaches to a problem can be identified. Read more
The oil and gas industry instrumentation professional must be equipped to understand the principles and implementation of instrumentation, the importance of efficient and reliable measurement and control systems and have a suitably wide perspective of the subject area so that a number of different approaches to a problem can be identified. This programme addresses these requirements.

The MSc Applied Instrumentation and Control (Oil & Gas) is available to study full-time beginning in September and January.

Programme Description

The oil and gas industries are widely affected by a growing range of factors, including shifting global economics, an evolving global energy mix and environmental issues.

There is an increasing demand for those working in the industries to develop an intelligent awareness of this complex business environment and to grasp the ways in which these changes will affect organisations.

Developed in conjunction with industry, the School of Engineering and Built Environment at GCU offers a suite of programmes designed to provide the knowledge required for a range of professional careers within the oil and gas industry.

The oil and gas industry instrumentation professionalmust be equipped to understand the principles andimplementation of instrumentation, the importanceof efficient and reliable measurement and controlsystems and have a suitably wide perspective of thesubject area so that a number of different approachesto a problem can be identified. This programmeaddresses these requirements.

Career Opportunities

The programme caters for an extremely wide range of industries and services for which the measurement of processes and environmental factors are vital to their business performance. It will also be of interest to companies that manufacture and supply such measurement systems. The range of industrial sectors includes: petrochemical, agrochemical, the food industry, pharmaceutical, environmental, optics and optoelectronics, medical instrumentation, power generation and the water industry. The employment areas within these sectors include: computer controlled instrumentation systems, process instrumentation, technical management and sales, process control and automation, sensor development and manufacture, instrument working and test and measurement systems.

Assessment

The taught modules are assessed by coursework only or a combination of coursework and examination. The MSc project is assessed by project reports, practical operation and an electronic presentation.

Read less
Designed in consultation with industry, the MSc Applied Instrumentation and Control gives you a structured approach to the implementation of recent developments whilst embedding the knowledge we have acquired through many years of experience. Read more
Designed in consultation with industry, the MSc Applied Instrumentation and Control gives you a structured approach to the implementation of recent developments whilst embedding the knowledge we have acquired through many years of experience.

Using case studies throughout, you build up knowledge that is instantly applicable to industry, ensuring an efficient and relevant knowledge transfer into the work place.

Accredited by the Institute of Measurement and Control.

This course has several available start dates and modes of study - please view the relevant web-page for more information:
JANUARY 2017 (Distance Learning) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00725-1DLAB-1617/Applied_Instrumentation_&_Control_(January)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00927-1FTAB-1718/Applied_Instrumentation_and_Control?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

SEPTEMBER 2017 (Distance Learning) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00725-1DLA-1718/Applied_Instrumentation_and_Control_(Distance_Learning)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Distance Learning) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00725-1DLAB-1718/Applied_Instrumentation_and_Control_(Distance_Learning)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

Accredited by the Institute of Measurement and Control, the MSc Applied Instrumentation and Control provides a solid foundation in measurement science and control theory, practical experience of data acquisition and instrument networking, analysis of systems for condition monitoring, fault detection and control system design.

Designed in consultation with industry, the programme provides a structured approach to the implementation of recent developments whilst maintaining a secure underpinning identified through many years of experience.

Using case studies throughout, the programme provides you with knowledge that is instantly applicable to industry, thus ensuring efficient and relevant knowledge transfer. The programme will include a project which may be industrially based.

Accreditation

The programme is accredited by the Institute of Measurement and Control (InstMC) as meeting the Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Career Opportunities

The programme caters for an extremely wide range of industries and services for which the measurement of process variables and environmental factors are vital to their business performance. It will also be of interest to companies that manufacture and supply such measurement systems.

The range of sectors includes: petrochemicals, agrochemicals, pharmaceuticals, optics and optoelectronics, medical instrumentation, power generation and the food, environmental and water industries. The employment areas within these sectors include: computer controlled instrumentation systems; process instrumentation; technical management and sales; process control and automation; sensor development and manufacture; instrument networking; instrument development; and test and measurement systems.

Read less
The oil and gas industries are widely affected by a growing range of factors, including shifting global economics, an evolving global energy mix and environmental issues. Read more
The oil and gas industries are widely affected by a growing range of factors, including shifting global economics, an evolving global energy mix and environmental issues.

There is an increasing demand for those working in the industries to develop an intelligent awareness of this complex business environment and to grasp the ways in which these changes will affect organisations.

Developed in conjunction with industry, the School of Engineering and Built Environment at GCU offers a suite of programmes designed to provide the knowledge required for a range of professional careers within the oil and gas industry.

The oil and gas industry instrumentation professional must be equipped to understand the principles and implementation of instrumentation, the importance of efficient and reliable measurement and control systems and have a suitably wide perspective of the subject area so that a number of different approaches to a problem can be identified. This programme addresses these requirements.

This course can also be taken in January 2018 - see the web-page for more details: http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02555-1FTAB-1718/Applied_Instrumentation_and_Control_(Oil_&_Gas)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Career Opportunities

The programme caters for an extremely wide range of industries and services for which the measurement of processes and environmental factors are vital to their business performance. It will also be of interest to companies that manufacture and supply such measurement systems. The range of industrial sectors includes: petrochemical, agrochemical, the food industry, pharmaceutical, environmental, optics and optoelectronics, medical instrumentation, power generation and the water industry. The employment areas within these sectors include: computer controlled instrumentation systems, process instrumentation, technical management and sales, process control and automation, sensor development and manufacture, instrument working and test and measurement systems.

Assessment

The taught modules are assessed by coursework only or a combination of coursework and examination. The MSc project is assessed by project reports, practical operation and an electronic presentation.

Read less
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. Read more
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. The course will provide ample opportunity to develop practical skill sets. The student will also develop an in-depth understanding of the scientific principles and use of the underlying components such as medical transducers, biosensors and state-of-the-art tools and algorithms used to implement and test diagnostic devices, therapeutic devices, medical imaging equipment and medical instrumentation devices.

The course broadens the discussion of medical equipment and its design by investigating a range of issues including medical equipment regulation, user requirements, impacts of risk, regulatory practice, legislation, quality insurance mechanisms, certification, ethics and ‘health and safety’ assessment. The course will enable a student with an interest in medical electronics to re-focus existing knowledge gained in software engineering, embedded systems engineering and/or electronic systems engineering and will deliver a set specialist practical skills and a deeper understanding of the underlying principles of medical physics. A graduate from this course will be able to immediately participate in this multi-disciplined engineering sector of biomedical and medical instrumentation systems design.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

Read less
Designed in consultation with industry, MSc Applied Instrumentation and Control provides a structured approach to the implementation of recent developments whilst maintaining a secure underpinning identified through many years of experience. Read more
Designed in consultation with industry, MSc Applied Instrumentation and Control provides a structured approach to the implementation of recent developments whilst maintaining a secure underpinning identified through many years of experience. Using case studies throughout, the programme provides you with knowledge that is instantly applicable to industry, thus ensuring efficient and relevant knowledge transfer.

Accredited by the Institute of Measurement and Control.

Programme Description

Accredited by the Institute of Measurement and Control, the MSc Applied Instrumentation and Control provides a solid foundation in measurement science and control theory, practical experience of data acquisition and instrument networking, analysis of systems for condition monitoring, fault detection and control system design.

Designed in consultation with industry, the programme provides a structured approach to the implementation of recent developments whilst maintaining a secure underpinning identified through many years of experience.

Using case studies throughout, the programme provides you with knowledge that is instantly applicable to industry, thus ensuring efficient and relevant knowledge transfer. The programme will include a project which may be industrially based.

Accreditation

The programme is accredited by the Institute of Measurement and Control (InstMC) as meeting the Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Career Opportunities

The programme caters for an extremely wide range of industries and services for which the measurement of process variables and environmental factors are vital to their business performance. It will also be of interest to companies that manufacture and supply such measurement systems.

The range of sectors includes: petrochemicals, agrochemicals, pharmaceuticals, optics and optoelectronics, medical instrumentation, power generation and the food, environmental and water industries. The employment areas within these sectors include: computer controlled instrumentation systems; process instrumentation; technical management and sales; process control and automation; sensor development and manufacture; instrument networking; instrument development; and test and measurement systems.

Read less
Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more
Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

This programme will help you develop your knowledge and skills in instrumentation, electronics and control engineering, and it will help you develop the ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects:
-Effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
-An investigation of self-turning and predictive control with MATLAB
-Modelling and control of hot air blow rig PT326
-Wireless controlled car with data acquisition
-BCD to 6-3-1-1 code converter design using VHDL
-Comparative evaluation of turning techniques for MPC
-Digital traffic signal controller design
-Proteus control board test site
-Design of temperature measurement system
-Control system design for stepping motor.

Core modules
-Digital Control and Implementation
-Hydrocarbon Production Engineering
-Identification and Model Predictive Control
-Project Management and Enterprise
-Research and Study Skills
-Robust Control Systems
-Signal Conditioning and Data Processing

MSc only
-Major Project

Modules offered may vary.

Teaching

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. Graduates can expect to be employed in a wide range of sectors, including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Read less
This course is accredited by the Institute of Measurement and Control. You’ll specialise in control and instrumentation, and develop the skills and knowledge you’ll need to apply for registration as a Chartered Engineer (CEng) when you graduate. Read more

About this course

This course is accredited by the Institute of Measurement and Control. You’ll specialise in control and instrumentation, and develop the skills and knowledge you’ll need to apply for registration as a Chartered Engineer (CEng) when you graduate.

The course is flexible, so you’ll have lots of choice in the specialist subject modules you take and the ways you learn. You’ll be taught by experienced and supportive tutors, who will help you reach your full potential and you’ll develop the skills and knowledge employers are looking for in areas such as automotive, aerospace, petrochemical, scientific or manufacturing applications.

You'll focus on advanced aspects of control and instrumentation, alongside broader engineering topics. You'll deepen your knowledge of control and instrumentation while addressing current engineering issues and technological advanced across a broad spectrum of subjects.

You’ll study modules such as:

Research Methods: Application and Evaluation
Intelligent Instrumentation Systems
Embedded Systems Design
CPD and Strategic Management
Modern Control System Design
Industrial Electronics
Negotiated Technical Module
Independent Engineering Scholarship

Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programme covers the following topics:
• Fundamentals of human physiology;
• Ethics and regulatory affairs in the biomedical field;
• Medical imaging modalities and digital signal processing, their uses and challenges;
• Analysis and design of instrumentation electronics present in a wide range of medical devices;
• Instrumentation and technologies used for clinical measurements;
• Design, analysis and evaluation of critical systems in the context of clinical monitoring, including safety;
• Origin of biological electricity, measurement of bioelectric signals, principles of bioelectric stimulation, and their applications. Applications are welcome from students with a background in Engineering or Physics.

The programme is a joint effort of the School of Engineering and Materials Science and the School of Electronic Engineering and Computer Science. It has strong roots within the well-recognised expertise of academics from the two Schools that deliver the lectures, who have international standing in cutting-edge research on Imaging and Instrumentation. This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation while undertaking their research projects.The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research.

Read less
This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. Read more
This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. This course offers an opportunity not only to specialise in nuclear engineering control, instrumentation and standards for operation and maintenance but also provides sufficient scope for students wishing to develop advanced skills in modern automation and in working with large industrial networks.

You may build valuable skills through a selection of option units and a project to gain advanced knowledge in sustainable energy systems and smart technologies for power system applications or in specialising in embedded systems as well as in applied digital signal processing for industrial applications. The course will also offer opportunities for those interested in combining engineering skills with management practice.

You will learn advanced concepts in the principles and operation of instrumentation for control, including control system architectures, communications, open systems security, hazard analysis, system reliability, safety and protection.

The course enables the appreciation of the practical aspects of control design and maintenance and offers hands-on experience in designing and developing solutions for control problem-solving using the IEC61131-3 standard. The course covers specialist and intelligent sensor systems, PLC-based control, Profibus and Profinet.

Features and benefits of the course

-Research in the School of Engineering was rated 'internationally excellent' in the Research Excellence Framework (REF).
-The main student intake is in September but it is also possible to begin studying in January.
-Many of our academic staff who teach worked in their industry sector and have well-established links and contacts, ensuring that our curriculum is relevant for future employment.
-Engineering facilities are excellent with a dedicated £4m heavy engineering workshop for research and teaching in surface engineering, materials and dynamics, and state-of-the-art kit including rapid prototyping machines and water jet cutters

About the Course

Our engineering Masters programmes are designed to meet the needs of an industry which looks to employ postgraduates who can learn independently and apply critical thinking to real-world problems. Many of the staff who teach in the School also have experience of working in industry and have well-established links and contacts in their industry sector, ensuring your education and training is relevant to future employment.

Assessment details

Assessment is though a combination of written reports, oral presentations, practical assignments and written examinations.

Read less
If you are a graduate in engineering or a related science subject who wishes to progress to a technical project management position, then this is the course for you. Read more
If you are a graduate in engineering or a related science subject who wishes to progress to a technical project management position, then this is the course for you. It has been developed in consultation with industry and is supported by our internationally renowned expert staff and the state of the art facilities based in our Centre for Precision Technologies.

Our modern facilities include an impressive range of professionally equipped laboratories for control, electrical, electronic and communications projects. There are also a computer numerical control (CNC) machine tool facility and metrology laboratory for aspiring engineers wishing to undertake projects related to manufacturing control. In addition, our computing laboratories are equipped with industry standard software for measurement and control and for computer aided engineering applications - all with high speed internet access.

With our support you will develop the practical skills and expert knowledge required to succeed in roles in technical design, development and project management in the areas of controls systems and instrumentation; improving your technical effectiveness and preparing you for roles in management.

Read less
This one-year full-time taught MSc programme (or up to six years part-time) will equip you for a career in any industry involving radiation and radiation detectors. Read more
This one-year full-time taught MSc programme (or up to six years part-time) will equip you for a career in any industry involving radiation and radiation detectors.

We cover basic radiation principles, the use of detection systems and associated instrumentation applications, and modelling. There’s a strong focus on practicals and laboratory-based techniques.

You’ll be able to carry out a project, often in industry, making you even more employable in sectors such as nuclear power, medicine, environmental protection, oil and mining, and health and safety.

The programme consists of a number of one-week modules which you can select to best meet your needs. These modules are organised into four groups:-

Foundation
Basic
Applied
Project and Dissertation.

For your MSc you must complete your chosen modules and one major project to a value of 180 credits. Diploma (120 credits) and Certificate (60 credits) may also be available if you don’t want to submit a dissertation.

Key Facts

REF 2014
We're 15th in UK for 4* and 3*research (world leading and internationally excellent), and we achieved 100% excellence in a research environment.

Why Department of Physics?

Excellent facilities

We're a major centre for research and recieve around £35m of funding per year from the research councils, the University and other sources.

Exciting, rigorous research environment

Study for a Physics PhD, MPhil, MRes or pursue one of our taught MSc programmes.

Read less
IN THIS 18-MONTH INTENSIVE PART-TIME PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in instrumentation, process control and industrial automation. Read more
IN THIS 18-MONTH INTENSIVE PART-TIME PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in instrumentation, process control and industrial automation
- Guidance from industrial automation experts in the field
- Knowledge from the extensive experience of instructors, rather than from the clinical information gained from books and college
- Credibility as the local industrial automation expert in your firm
- Networking contacts in the industry
- Improved career prospects and income
- An Advanced Diploma of Industrial Automation

Next intake starts October 09, 2017. Applications now open; places are limited.

Contact us now to secure your place!

Payment is not required until around 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of of Industrial Automation is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Gain strong underpinning knowledge and expertise in Industrial Automation covering a wide range of skills ranging from instrumentation, automation and process control, industrial data communications, process plant layout, project and financial management and chemical engineering with a strong practical focus. Industrial Automation is an extremely fast moving area especially compared to the more traditional areas such as electrical and mechanical engineering. The field is diverse and dynamic and offers the opportunity for a well paid and enjoyable career. The aim of the course is to empower you with practical knowledge that will improve your productivity in the area and make you stand out as a leader in industrial automation amongst your peers.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Industrial Automation. Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

PROGRAM STRUCTURE

The program is composed of 72 topics within 21 modules. These cover the following seven engineering threads to provide you with maximum practical coverage in the field of industrial automation:

- Instrumentation, Automation and Process Control
- Electrical Engineering
- Electronics
- Industrial Data Communications and Networking
- Mechanical Engineering
- Project Management
- Chemical Engineering

The modules will be completed in the following order:
1. Practical Instrumentation for Automation and Process Control
2. Practical Fundamentals of Chemical Engineering (for Non- Chemical Engineers)
3. Control Valve Sizing, Selection and Maintenance
4. Fundamentals of Process Plant Layout and Piping Design
5. Practical Process Control for Engineers and Technicians
6. Practical Tuning of Industrial Control Loops for Engineers and Technicians
7. Practical Distributed Control Systems (DCS)
8. Practical Programmable Logic Controllers (PLCs) for Automation and Process Control
9. Best Practice in Industrial Data Communications
10. Practical Advanced Process Control for Engineers and Technicians
11. Practical Boiler Control and Instrumentation for Engineers and Technicians
12. Practical Hazardous Areas for Engineers and Technicians
13. Practical Safety Instrumentation and Emergency Shutdown Systems for Process Industries Using IEC 6155 and IEC 61508
14. Practical HAZOPS (Hazard and Operability Studies) for Engineers and Technicians
15. Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout of Electronic Systems
16. Practical Wireless Ethernet and TCP/ IP Networking
17. Practical Radio Telemetry Systems for Industry
18. Practical SCADA Systems for Industry
19. Motor Protection, Control and Maintenance Technologies
20. Practical Power Distribution for Engineers and Technicians
21. Practical Project Management for Electrical, Instrumentation and Mechanical Engineers and Technicians

COURSE FEES

EIT provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.

Read less
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. Read more
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)
Human Gross Anatomy (5 ECTS)
The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)
Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)
Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)
Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.
Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)
Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)
Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.
X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.
Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.
Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.
Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)
Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)
The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals
Hospital & Radiation Safety [11 ECTS]
Workshop in Risk and Safety.
Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.
- NUIG Radiation Safety Course.
Course for Radiation Safety Officer.
- Advanced Radiation Safety
Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.
- Medical Imaging Workshop
Operation of imaging systems. Calibration and Quality Assurance of General
radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]
A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation
- Practical guidance and feedback from industrial automation experts from around the world
- Live knowledge from the extensive experience of expert instructors
- Credibility and respect as the local industrial automation expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Next intake is scheduled for June 27, 2016. Applications now open; places are limited.

Now also available on Campus.

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

ENTRANCE REQUIREMENTS

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:
a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.
b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.
c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):
• Industrial Automation
• Industrial Engineering
• Instrumentation, Control and Automation
• Mechanical Engineering
• Mechanical and Material Systems
• Mechatronic Systems
• Manufacturing and Management Systems
• Electrical Engineering
• Electronic and Communication Systems
• Chemical and Process Engineering
• Robotics
• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less

Show 10 15 30 per page



Cookie Policy    X