• St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Worcester Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"inorganic" AND "chemistr…×
0 miles

Masters Degrees (Inorganic Chemistry)

  • "inorganic" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 57
Order by 
The MChem Analytical Chemistry programme at Plymouth provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels four to seven. Read more
The MChem Analytical Chemistry programme at Plymouth provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels four to seven. Plymouth University is the only university which requires students to work in ISO9001:2015 certified laboratories.

Practical work to the ISO 17025 standard is a requirement at level seven for obtaining the MChem Analytical Chemistry qualification. The programme focuses on producing practical professional chemists through a hands-on approach to learning.

Key features

-The programme provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels 4 to 7 (Masters Level)
-You will develop the theoretical and practical skills necessary for employment as professional chemist in a range of chemical and allied fields, including research, teaching and industry
-The programme will develop the theoretical and practical skills, and provide training necessary for employment as an analytical chemist with experience of working to ISO 17025, the international standard for all testing and calibration laboratories
-You will learn to become a practical professional chemists through a hands-on approach to learning.
-The course places the professional skills of communication, problem solving, information and data retrieval and project management at its heart.

Course details

Year 1
Core modules
-CHM1011 Practice of Chemistry
-CHM1015 Organic and Inorganic Chemistry 2
-CHM1016 Physical and Computational Chemistry 2
-CHM1012 Organic and Inorganic Chemistry 1
-CHM1013 Physical and Computational Chemistry 1

Optional modules
-CHM1014PP Solving Chemical Problems
-MATH1604PP Symmetry and Space
-SPNX100PP Spanish 1
-FREX100PP French 1
-GERX100PP German 1
-MATH1607PP The Quantum Universe

Year 2
Core modules
-CHM2013 Physical Chemistry
-CHM2011 Inorganic Chemistry
-CHM2012 Organic Chemistry
-CHM2015 Analytical Chemistry 2
-CHM2014 Analytical Chemistry 1
-APIE218 Preparation for the Chemical Industry Work Placement
-CHM2016 Research Skills

Year 3
Optional modules
-APIE318 Placement in Chemistry

Year 4
Core modules
-CHM3016 Advanced Physical Chemistry
-CHM3014 Advanced Inorganic Chemistry
-CHM3015 Advanced Organic Chemistry

Optional modules
-CHM3011 Chemistry Project
-CHM3012 Chemistry Project incorporating Work Based Learning
-CHM3013 Advanced Analytical Techniques
-CHM3017 Physical Chemistry

Final year
Core modules
-GEES514 Research Skills for Science
-CHM5001 MChem Analytical Chemistry Project
-CHM5004 Quality Assurance and Accreditation
-CHM5005 Analytical Chemistry Advanced Problems and Practice for MChem

Read less
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research. Read more
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research.

Why this programme

-The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
-You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
-All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
-You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
-Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry.
-The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses
-Inorganic, organic and physical chemistry
-Medicinal chemistry
-Frontiers of chemistry
-Chemistry problems.
-Special topics from inorganic, organic, and physical chemistry

Accreditation

MSc Chemistry with Medicinal Chemistry is accredited by the Royal Society of Chemistry (RSC).

Career prospects

Career opportunities in the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to positions such as:
-Researcher at Piramal Healthcare UK Ltd
-Assistant Lecturer and Researcher at a university

Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
The Masters in Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, suitable for a professional chemist capable of conducting research. Read more
The Masters in Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, suitable for a professional chemist capable of conducting research.

Why this programme

◾The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
◾All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
◾You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
◾You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
◾You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
◾Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry
◾The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Chemistry at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses

◾Inorganic, organic and physical chemistry
◾Frontiers of chemistry
◾Chemistry problems.
◾Special topics from inorganic, organic, and physical chemistry.

Accreditation

MSc Chemistry is accredited by the Royal Society of Chemistry (RSC)

Career prospects

Career opportunities include the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to the following positions:
Teacher at a UK Secondary School.

Read less
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis. Read more
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis.

The programme comprises a broad range of modules covering all the major analytical techniques, complemented by studies in transferable and professional skills, with the option to study aspects of medicinal and pharmaceutical chemistry if desired.

Core study areas include research methods, separation techniques, mass spectrometry and associated techniques, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include sensors, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis and innovations in analytical science.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries including pharmaceuticals, chemicals, food, environmental management, contract analysis laboratories, public laboratories, regulatory authorities and instrument manufacturers in either technical or marketing functions or preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Read less
Materials Chemistry is one of the modern chemical disciplines underpinning a substantial portion of the chemicals sector. The programme provides a unique general training in the area and includes the chance to specialise in aspects such as Polymer Chemistry, Inorganic Materials, Supramolecular Chemistry or Nanosciences. Read more
Materials Chemistry is one of the modern chemical disciplines underpinning a substantial portion of the chemicals sector.

The programme provides a unique general training in the area and includes the chance to specialise in aspects such as Polymer Chemistry, Inorganic Materials, Supramolecular Chemistry or Nanosciences. Both synthesis and characterisation are core parts of the taught aspects.

The course provides for studies in all aspects of Materials Chemistry. Students can study fundamental aspects of Polymer Chemistry; Nano and Supramolecular Chemistry, Inorganic Materials Chemistry and the programme includes application areas such as Nanomaterials and Semi-conductors.

Professional Accreditation

We will be seeking accreditation from the Royal Society of Chemistry (RSC).

Why Bradford?

Uniquely the programme offers one of the widest ranges of opportunities for carrying out a 12 month research project from a selection that covers all aspects of Materials Chemistry. Projects are supervised by leading researchers in their fields.

Studies can either be conducted over a 12 month period at Bradford or remotely over 24 months with a project being conducted in an area of Materials Chemistry at the student’s workplace.

Rankings

Ranked 18th in the UK for Chemistry in the Guardian University League Tables 2017.

Modules

Core modules:
-Research skills, professional development and commercial awareness
-Research Project - Part 1
-Research Project - Part 2

Option modules:
-Inorganic Materials Chemistry
-Fundamentals of Nano and Supramolecular Materials
-Introduction to Polymer and Colloid Science
-Computational Crystal Engineering
-Materials in Electronics
-Materials Characterisation

Learning activities and assessment

Transferrable skills are at the heart of the programme and these aspects are assessed by submission of a thesis, a draft scientific paper, oral presentation as well as modules on data management.

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Materials Chemists work in a diverse range of areas including: medical devices; electronic devices; sustainable energy generation; nanomaterials; surface coatings; controlled delivery of drugs and agrochemicals and many other areas.

Transferable skills are also a key component and graduating students will be equipped for careers in both academia and industry.

Read less
Penn’s Master of Chemical Sciences is designed for your success. Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. Read more
Penn’s Master of Chemical Sciences is designed for your success
Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. As new discoveries are made, so are new industries — and new opportunities. Whether you’re currently a chemistry professional or seeking to enter the field, Penn’s rigorous Master of Chemical Sciences (MCS) builds on your level of expertise to prepare you to take advantage of the myriad career possibilities available in the chemical sciences. With a faculty of leading academic researchers and experienced industry consultants, we provide the academic and professional opportunities you need to achieve your unique goals.

The Penn Master of Chemical Sciences connects you with the resources of an Ivy League institution and provides you with theoretical and technical expertise in biological chemistry, inorganic chemistry, organic chemistry, physical chemistry, environmental chemistry and materials. In our various seminar series, you will also regularly hear from chemistry professionals who work in a variety of research and applied settings, allowing you to consider new paths and how best to take advantage of the program itself to prepare for your ideal career.

Preparation for professional success
If you’ve recently graduated from college and have a strong background in chemistry, the Master of Chemical Sciences offers you a exceptional preparation to enter a chemistry profession. In our program, you will gain the skills and confidence to become a competitive candidate for potential employers as you discover and pursue your individual interests within the field of chemistry. Our faculty members bring a wealth of research expertise and industry knowledge to help you define your career direction.

For working professionals in the chemical or pharmaceutical industries, the Master of Chemical Sciences accelerates your career by expanding and refreshing your expertise and enhancing your research experiences. We provide full- and part-time options so you can pursue your education without interrupting your career. You can complete the 10-course program in one and a half to four years, depending on course load.

The culminating element of our curriculum, the capstone project, both tests and defines your program mastery. During the capstone exercise, you will propose and defend a complex project of your choice, that allows you to stake out a new professional niche and demonstrate your abilities to current or prospective employers.

Graduates will pursue fulfilling careers in a variety of cutting-edge jobs across government, education and corporate sectors. As part of the Penn Alumni network, you’ll join a group of professionals that spans the globe and expands your professional horizons.

Courses and Curriculum

The Master of Chemical Sciences degree is designed to give you a well-rounded, mechanistic foundation in a blend of chemistry topics. To that end, the curriculum is structured with a combination of core concentration courses and electives, which allow you to focus on topics best suited to your interests and goals.

As a new student in the Master of Chemical Sciences program, you will meet with your academic advisor to review your previous experiences and your future goals. Based on this discussion, you will create an individualized academic schedule.

The Master of Chemical Sciences requires the minimum completion of 10 course units (c.u.)* as follows:

Pro-Seminar (1 c.u.)
Core concentration courses (4-6 c.u., depending on concentration and advisor recommendations)
Elective courses in Chemistry, such as computational chemistry, environmental chemistry, medicinal chemistry, catalysis and energy (2-4 c.u., depending on concentration and advisor recommendations)
Optional Independent Studies (1 c.u.)
Capstone project (1 c.u.)
Pro-Seminar course (CHEM 599: 1 c.u.)
The Pro-Seminar will review fundamental concepts regarding research design, the scientific method and professional scientific communication. The course will also familiarize students with techniques for searching scientific databases and with the basis of ethical conduct in science.

Concentration courses
The concentration courses allow you to develop specific expertise and also signify your mastery of a field to potential employers.

The number of elective courses you take will depend upon the requirements for your area of concentration, and upon the curriculum that you plan with your academic advisor. These concentration courses allow you to acquire the skills and the critical perspective necessary to master a chemical sciences subdiscipline, and will help prepare you to pursue the final capstone project (below).

You may choose from the following six chemical sciences concentrations:

Biological Chemistry
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Environmental Chemistry
Materials
Independent Studies
The optional Independent Studies course will be offered each fall and spring semester, giving you an opportunity to participate in one of the research projects being conducted in one of our chemistry laboratories. During the study, you will also learn analytical skills relevant to your capstone research project and career goals. You can participate in the Independent Studies course during your first year in the program as a one-course unit elective course option. (CHEM 910: 1 c.u. maximum)

Capstone project (1 c.u.)

The capstone project is a distinguishing feature of the Master of Chemical Sciences program, blending academic and professional experiences and serving as the culmination of your work in the program. You will develop a project drawing from your learning in and outside of the classroom to demonstrate mastery of an area in the chemical sciences.

The subject of this project is related to your professional concentration and may be selected to complement or further develop a work-related interest. It's an opportunity to showcase your specialization and your unique perspective within the field.

Your capstone component may be a Penn laboratory research project, an off-campus laboratory research project or a literature-based review project. All components will require a completed scientific report. It is expected that the capstone project will take an average of six months to complete. Most students are expected to start at the end of the first academic year in the summer and conclude at the end of fall semester of the second year. Depending on the capstone option selected, students may begin to work on the capstone as early as the spring semester of their first year in the program.

All capstone project proposals must be pre-approved by your concentration advisor, Master of Chemical Sciences Program Director and if applicable, your off-campus project supervisor. If necessary, nondisclosure agreements will be signed by students securing projects with private companies. Additionally, students from private industry may be able to complete a defined capstone project at their current place of employment. All capstone projects culminate in a final written report, to be graded by the student's concentration advisor who is a member of the standing faculty or staff instructor in the Chemistry Department.

*Academic credit is defined by the University of Pennsylvania as a course unit (c.u.). Generally, a 1 c.u. course at Penn is equivalent to a three or four semester hour course elsewhere. In general, the average course offered at Penn is listed as being worth 1 c.u.; courses that include a lecture and a lab are often worth 1.5 c.u.

Read less
The Chemistry Department offers students the opportunity to study in the traditional areas of analytical, inorganic, organic, and physical chemistry as well as in the growing cross-disciplinary areas such as bioanalytical, bioinorganic, bioorganic and biophysical chemistry; electrochemistry; environmental chemistry; and materials chemistry. Read more
The Chemistry Department offers students the opportunity to study in the traditional areas of analytical, inorganic, organic, and physical chemistry as well as in the growing cross-disciplinary areas such as bioanalytical, bioinorganic, bioorganic and biophysical chemistry; electrochemistry; environmental chemistry; and materials chemistry.
Students work closely with their faculty mentor, but have wide opportunities to interact with faculty in other disciplines including geology, physics, materials/mechanical engineering and biology.
The Chemistry Department has several research facilities which include Spectroscopy, Chromatography, LCQ Mass Spec, Laser Spectroscopy, X-Ray, and Thermal. Additionally Binghamton University hosts several research centers, which included the Institute for Materials Research and the Center for Advanced Sensors and Environmental Systems (CASE), where students in the chemistry programs conduct interdisciplinary research.
Recent doctoral graduates have gone on to post doctoral appointments at Cornell University, an associate professorship at at Russell Sage College, and appointments and fellowships at the National Institute of Health, Atotech, Warner Babcock Institute for Green Chemistry, and Masinde Muliro University of Science and Technology.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores: For international applicants: To be competitive, a minimum combined (verbal + quantitative) GRE General Test score of 1200 is recommended (equivalent to a score of 310 on the new system)
- GRE Subject Test in Chemistry requested

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores
----Chemistry applicant minimum TOEFL scores:
*80 on the Internet-based exam
*To be competitive, a score of 90 is recommended
*550 on the paper exam
*To be competitive, a score of 577 is recommended
----Chemistry applicant minimum IELTS score:
*6.5, with no band below 5.0
----Chemistry applicant minimum PTE Academic score:
*53
*To be competitive, a score of 61 is recommended

Read less
Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life. Read more

Research profile

Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life.

In addition to gaining research skills, making friends, meeting eminent researchers and being part of the research community, a research degree will help you to develop invaluable transferable skills which you can apply to academic life or a variety of professions outside of academia.

The Chemistry/Biology Interface

This is a broad area, with particular strengths in the areas of protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of high throughput and combinatorial approaches. We also focus on biophysical chemistry, the development and application of physicochemical techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.

Experimental & Theoretical Chemical Physics

This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectoscropy to molecular systems and the EaStCHEM surface science group, who study complex molecules on surfaces, probing the structure property-relationships employed in heterogeneous catalysis. A major feature is in Silico Scotland, a world-class research computing facility.

Synthesis

This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.

Materials Chemistry

The EaStCHEM Materials group is one of the largest in the UK. Areas of strength include the design, synthesis and characterisation of functional (for example magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices, porous solids, fundamental and applied electrochemistry polymer microarray technologies and technique development for materials and nanomaterials analysis.

Training and support

Students attend regular research talks, visiting speaker symposia, an annual residential meeting in the Scottish Highlands, and lecture courses on specialised techniques and safety. Students are encouraged to participate in transferable skills and computing courses, public awareness of science activities, undergraduate teaching and to represent the School at national and international conferences.

Facilities

Our facilities are among the best in the world, offering an outstanding range of capabilities. You’ll be working in recently refurbished laboratories that meet the highest possible standards, packed with state-of-the-art equipment for both analysis and synthesis.

For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200-800 MHz; mass spectrometry utilises EI, ESI, APCI, MALDI and FAB instrumentation, including LC and GC interfaces. New combinatorial chemistry laboratories, equipped with a modern fermentation unit, are available. We have excellent facilities for the synthesis and characterisation of bio-molecules, including advanced mass spectrometry and NMR stopped-flow spectrometers, EPR, HPLC, FPLC, AA.

World-class facilities are available for small molecule and macromolecular X-ray diffraction, utilising both single crystal and powder methods. Application of diffraction methods at high pressures is a particular strength, and we enjoy strong links to central facilities for neutron, muon and synchrotron science in the UK and further afield. We are one of the world's leading centres for gas-phase electron diffraction.

Also available are instruments for magnetic and electronic characterisation of materials (SQUID), electron microscopy (SEM, TEM), force-probe microscopy, high-resolution FTRaman and FT-IR, XPS and thermal analysis. We have also recently installed a new 1,000- tonne pressure chamber, to be used for the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within the COSMIC Centre. Dedicated computational infrastructure is available, and we benefit from close links with the Edinburgh Parallel Computing Centre.

Read less
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Read more
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Extensive collaborations with science-based industries and leading international academic centres ensure that research in Bristol remains at the frontier of science.

The School of Chemistry is housed in spacious, modern laboratories, which are well equipped with state-of-the-art facilities. There is a comprehensive graduate programme to ensure you have the opportunity to build a wide range of skills, both in chemistry and other transferable skills.

The School of Chemistry hosts or participates in a number of Centres for Doctoral Training (CDTs) and Doctoral Training Partnerships (DTPs). Training opportunities in these national flagship centres are available in the following disciplines:
-Chemical synthesis
-Functional nanomaterials
-Catalysis
-Theory and modelling in chemical sciences
-Science and technology of diamond
-Synthetic biology
-Advanced composites
-Earth and environmental sciences
-Quantum engineering
-Future autonomous and robotic systems
-Bioscience
-Condensed matter physics

Research groups

The School of Chemistry maintains a traditional managerial structure with three sections, namely Inorganic and Materials, Organic and Biological, and Physical and Theoretical. However, the school’s research profile is defined according to nine themes, each with a critical mass of researchers. Further information on the school's research profile can be found at Explore Bristol Research (http://research-information.bristol.ac.uk/).

-Atmospheric and Global Change Chemistry
-Biological and Archaeological Chemistry
-Catalysis
-Computational and Theoretical Chemistry
-Materials for Energy
-Soft Matter, Colloids and Materials
-Spectroscopy and Dynamics
-Supramolecular and Mechanistic Chemistry
-Synthesis

Researchers in the School of Chemistry are engaged in a number of collaborative centres and research institutes, with broader engagement from researchers across the Faculty of Science, the University and beyond.

Careers

Many of our PhD graduates are successful in securing postdoctoral positions at universities in the UK and abroad. A PhD in chemistry is valued in many employment sectors worldwide, including pharmaceutical sciences, polymers, coatings, agrochemicals, instrumentation manufacturers and management consultancy. Your skills will be in high demand from the chemical and allied industries, as well as the public sector.

Read less
The aim of the course is to provide experience in a wide range of laboratory techniques and enhance specialist knowledge in chemistry. Read more
The aim of the course is to provide experience in a wide range of laboratory techniques and enhance specialist knowledge in chemistry. Research projects may be chosen from any area of computational, physical, inorganic or organic chemistry.

Course components include:
• An advanced chemistry practical unit
• Two research projects in areas of choice
• Taught units in advanced chemistry
• Optional taught units in chemistry, biological sciences and management
• Modules in transferable skills, including scientific presentations and report writing.

Why study Chemistry with us?

- Outstanding facilities: X-ray powder diffraction, single crystal X-ray diffraction, Mass spectrometry, NMR (250/300/400/500 MHz, multinuclear facility)
- Programmes accredited by the Royal Society of Chemistry
- Outstanding publications, substantial grant income from research councils and industrial partners has resulted in a strong demand for our postgraduates and postdoctoral workers

What will I learn?

The MRes is a self-contained qualification, and graduates will be well-suited for posts in all sectors of the chemical industry, including the pharmaceutical industry and government institutions.

Students who complete a MRes degree will be well qualified to proceed to a three-year PhD programme or the MRes can be studied as the first year of our Integrated PhD programme. They should have a competitive edge in relation to undergraduate students applying for doctoral studies.

Career Opportunities

Career opportunities
Recent Bath graduates have gone on to employment or postdoctoral research in the UK, USA (Princeton, Harvard and Yale), the Netherlands, France, Luxembourg, Norway, Brunei and New Zealand.

Employers include the NIST Center for Neutron Research, Tocris, EPSRC and the Royal Society of Chemistry.

Find out more about the department here - http://www.bath.ac.uk/chemistry/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
The Department of Chemistry is committed to providing excellence in teaching, research and in the training of PhD students. Read more

Overview

The Department of Chemistry is committed to providing excellence in teaching, research and in the training of PhD students. Our aim is to provide graduate students with every opportunity to enhance and develop their career, by providing good supervision, training in research methodology and associated professional skills; all of which will prepare them for their subsequent career.

The main objective of this programme is to provide graduate students with an integrated broad-based training in the discipline of chemistry including the most advanced research methodology in physical, organic, inorganic and analytical chemistry.

Course Structure

Students must take a minimum of 10 credits in taught modules (at least 5 in generic/transferable modules and at least 5 in subject specific/advanced specialist modules) from the structured PhD programme.

Career Options

The knowledge gained through the study of chemistry opens many career pathways, including, but not limited to, chemistry, medicine, law, business, chemical physics, environmental science, and teaching. The American Chemical Society (http://www.acs.org) and Royal Society of Chemistry (http://www.rsc.org/gateway/subject/careers) maintain career services web pages which have information about careers in chemistry.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHE04 Full-time
MHE05 Part-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
The School of Chemistry is a vibrant centre of research in chemistry. We have an international reputation in a wide range of fields from catalysis to anticancer drug design and molecular photonics to nanotechnology. Read more
The School of Chemistry is a vibrant centre of research in chemistry. We have an international reputation in a wide range of fields from catalysis to anticancer drug design and molecular photonics to nanotechnology.

Research in the School of Chemistry is organised into the following groups:

Medicinal Chemistry and Chemical Biology

Our strength in medicinal chemistry is evident through our track record of successful research. This has included the discovery of drugs that have progressed to clinic. We have core capacity in:
-Anti-cancer drug discovery
-Biomolecular imaging
-Computational chemistry
-Chemical biology

Nanoscience and Materials

Our research develops new methods to synthesise, characterise and improve our understanding of materials. We focus on materials with useful nanoscale properties.

Photonic Materials

Photonic materials refer to systems that respond to stimulation by light. These can range from single molecules to intricate architectures and molecular devices. Many systems focus on:
-Converting sunlight into chemical potential
-The concentration of excitonic energy.

We focus on understanding fundamental principles by using spectroscopic examination.

Structure and Dynamics

Structure underpins the majority of research in chemistry, biology and materials science. The trouble is, the world is dynamic and not static. This means that understanding how structures evolve during a chemical reaction is critical. Our research relates to fundamental and applied research fields over broad time ranges.

Synthesis, Reactivity and Catalysis

This research group combines the expertise of organic and inorganic chemists. Our research aims to advance fundamental knowledge and capabilities in synthesis and reactivity. We focus on the elements s, p, d and f blocks across the periodic table. Through this study we can develop new and improved materials and catalytic processes.

Read less
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills. Read more
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills.

The programme comprises a broad range of modules covering the major aspects of analytical and pharmaceutical chemistry, complemented by studies in transferable and professional skills.

Core study areas include research methods, separation techniques, pharmacokinetics and drug metabolism, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include mass spectrometry and associated techniques, drug targets, drug design and drug synthesis, sensors, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

The programme is for those who wish to extend their knowledge in a particular area or broaden their field in order to increase their career prospects.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Read less
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. Read more
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. The programme is particularly suitable for those wishing to embark on an academic career, with a strong track record of students moving into graduate research at UCL and elsewhere.

Degree information

Students develop a systematic approach to devising experiments and/or computations and gain familiarity with a broad range of synthetic, analytical and spectroscopic techniques, acquiring skills for the critical analysis of their experimental and computational observations. They also broaden their knowledge of chemistry through a selection of taught courses and are able to tailor the programme to meet their personal interests.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (30 credits), four optional modules (15 credits each) and a research project (90 credits).

Core modules - all students undertake a literature project (30 credits) and a research dissertation (90 credits), which are linked.
-Literature Project

Optional modules - students choose four optional modules from the following:
-Advanced Topics in Energy Science and Materials
-Advanced Topics in Physical Chemistry
-Biological Chemistry
-Concepts in Computational and Experimental Chemistry
-Frontiers in Experimental Physical Chemistry
-Inorganic Rings, Chains and Clusters
-Intense Radiation Sources in Modern Chemistry
-Microstructural Control in Materials Science
-Numerical Methods in Chemistry
-Pathways, Intermediates and Function in Organic Chemistry
-Principles of Drug Design
-Principles and Methods of Organic Synthesis
-Simulation Methods in Materials Chemistry
-Stereochemical Control in Asymmetric Total Synthesis
-Structural Methods in Modern Chemistry
-Synthesis and Biosynthesis of Natural Products
-Topics in Quantum Mechanics
-Transferable Skills for Scientists

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 words and a viva voce examination (90 credits).

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through the dissertation, unseen written examinations, research papers, a written literature survey, and an oral examination. All students will be expected to attend research seminars relevant to their broad research interest.

Careers

This MSc is designed to provide first-hand experience of research at the cutting-edge of chemistry and is particularly suitable for those wishing to embark on an academic career (i.e. doctoral research) in this area, although the research and critical thinking skills developed will be equally valuable in a commercial environment.

Top career destinations for this degree:
-Analyst and Adviser, Silver Peak
-Sales Associate, Sino Chen
-Phd in Nanoparticle Synthesis, UCL
-Secondary School Teacher (GCSE), Ministry of Education
-PhD in High Performance Organic Coating for Aerospace, University of Surrey

Why study this degree at UCL?

With departmental research interests and activities spanning the whole spectrum of chemistry, including development of new organic molecules, fundamental theoretical investigations and prediction and synthesis of new materials, students are able to undertake a project that aligns with their existing interests.

Students develop crucial first-hand experience in scientific methods, techniques for reporting science and using leading-edge research tools, as well as further essential skills for a research career.

Read less

Show 10 15 30 per page



Cookie Policy    X