• University of Northampton Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
University of Warwick Featured Masters Courses
Imperial College London Featured Masters Courses
University of Leicester Featured Masters Courses
Ulster University Featured Masters Courses
"inorganic"×
0 miles

Masters Degrees (Inorganic)

We have 78 Masters Degrees (Inorganic)

  • "inorganic" ×
  • clear all
Showing 1 to 15 of 78
Order by 
This one-year taught programme offers the opportunity to study Chemistry at an advanced level, covering both the traditional core areas of chemistry, as well as more specialist courses aligned to the research groupings of the department. Read more

This one-year taught programme offers the opportunity to study Chemistry at an advanced level, covering both the traditional core areas of chemistry, as well as more specialist courses aligned to the research groupings of the department. The course provides opportunities for you to develop and demonstrate advanced knowledge, understanding, and practical/research skills.

Introducing your course

Would you like to upgrade your bachelor’s degree to a master’s and gain access to a chemistry career in industry or research? Join the MSc Chemistry and develop your lab and theoretical skills. Specialise in inorganic and materials, organic or physical chemistry, or maintain a broad portfolio, for a more detailed description of the available pathways, click the Pathways tab. Courses are available in synthesis, advanced structural, analytical and spectroscopic techniques, materials chemistry, modelling, biological and medicinal chemistry, and electrochemistry.

Overview

The MSc Chemistry course combines the opportunity for students to take modules from a wide range of cutting-edge fields in chemistry with sessions on practical, technical skills, and scientific writing, communication and presentation and a three month summer project supervised by one of Southampton’s expert academics. The course aims to:

  • Provide you with advanced knowledge the core areas of chemistry and your chosen area of specialisation;
  • Provide you with an opportunity to work in state-of-the-art laboratories dedicated both to education and also to research;
  • Develop your knowledge and research skills applicable to a career in chemistry, particularly in research project driven roles.

Find out more about the course visit the programme specification

Career Opportunities

A Chemistry masters degree will give students valuable insight into postgraduate research skills. Independent project work will support students to develop transferable skills in areas such as time management, communication and presentation skills that are key for career success in a wide range of areas such as industry, analysis, policymaking and scientific communication. Completing an MSc qualification will help individuals tackle the challenges of an advanced research degree at PhD level and prepare them for a career in academia.

Pathways

The following information summarises the typical pathways offered when choosing the MSc Chemistry degree programme:

Organic Chemistry

This area focuses on synthetic organic chemistry, total synthesis, synthetic methodology, reaction mechanism, organocatalysis, organofluorine chemistry, photochemistry and carbohydrate chemistry, both towards the synthesis of bioactive compounds and organic materials, and includes the study of organic reactions under flow conditions. This pathway offers the opportunity to specialise in the following areas

  • organic synthesis
  • medicinal chemistry
  • bio-organic chemistry

This pathway consists of advanced postgraduate courses in synthetic reaction mechanisms and is best suited to students who already have a thorough BSc level grounding in aspects of nomenclature, stereochemistry, reaction mechanisms.

Inorganic chemistry and materials

This area focuses on the synthesis of functional inorganic, solid-state and supramolecular materials and assemblies to address key challenges in energy, sustainability, healthcare and diagnostics and the deposition of nanostructured materials. This pathway will give you the opportunity to specialise in the following areas

  • inorganic synthesis
  • metal organic framework
  • supramolecular chemistry
  • zeolites
  • catalysis
  • materials characterisation

This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of inorganic chemisry.

Physical chemistry

This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of inorganic chemistry. This area covers a wide range of fundamental and applied topics. This pathway will give you the opportunity to specialise in the following areas

  • computational chemistry
  • spectroscopy
  • electrochemistry
  • surface science
  • magnetic resonance

This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of physical chemistry, in particular quantum chemistry, spectroscopy, thermodynamics and kinetics

General chemistry

You can choose to further your knowledge across a blend of advanced courses from organic, inorganic and/or physical chemistry (any combination). This pathway is suited to those wishing to develop an interdisciplinary expertise. If you choose this pathway you should already have a sound BSc-level grounding in the areas of chemistry in which you intend to choose modules (see other boxes).



Read less
Thesis-based research on Heavy Metal Complex Formation with Biomolecules, using different spectroscopic techniques, including multinuclear NMR, vibrational spectroscopy and synchrotron-based X-ray absorption spectroscopy. Read more
Thesis-based research on Heavy Metal Complex Formation with Biomolecules, using different spectroscopic techniques, including multinuclear NMR, vibrational spectroscopy and synchrotron-based X-ray absorption spectroscopy. Successful candidates may take the Qualifying Exam within 22 months of their M.Sc. program to be transferred to Ph.D.

Read less
The MChem Analytical Chemistry programme at Plymouth provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels four to seven. Read more
The MChem Analytical Chemistry programme at Plymouth provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels four to seven. Plymouth University is the only university which requires students to work in ISO9001:2015 certified laboratories.

Practical work to the ISO 17025 standard is a requirement at level seven for obtaining the MChem Analytical Chemistry qualification. The programme focuses on producing practical professional chemists through a hands-on approach to learning.

Key features

-The programme provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels 4 to 7 (Masters Level)
-You will develop the theoretical and practical skills necessary for employment as professional chemist in a range of chemical and allied fields, including research, teaching and industry
-The programme will develop the theoretical and practical skills, and provide training necessary for employment as an analytical chemist with experience of working to ISO 17025, the international standard for all testing and calibration laboratories
-You will learn to become a practical professional chemists through a hands-on approach to learning.
-The course places the professional skills of communication, problem solving, information and data retrieval and project management at its heart.

Course details

Year 1
Core modules
-CHM1011 Practice of Chemistry
-CHM1015 Organic and Inorganic Chemistry 2
-CHM1016 Physical and Computational Chemistry 2
-CHM1012 Organic and Inorganic Chemistry 1
-CHM1013 Physical and Computational Chemistry 1

Optional modules
-CHM1014PP Solving Chemical Problems
-MATH1604PP Symmetry and Space
-SPNX100PP Spanish 1
-FREX100PP French 1
-GERX100PP German 1
-MATH1607PP The Quantum Universe

Year 2
Core modules
-CHM2013 Physical Chemistry
-CHM2011 Inorganic Chemistry
-CHM2012 Organic Chemistry
-CHM2015 Analytical Chemistry 2
-CHM2014 Analytical Chemistry 1
-APIE218 Preparation for the Chemical Industry Work Placement
-CHM2016 Research Skills

Year 3
Optional modules
-APIE318 Placement in Chemistry

Year 4
Core modules
-CHM3016 Advanced Physical Chemistry
-CHM3014 Advanced Inorganic Chemistry
-CHM3015 Advanced Organic Chemistry

Optional modules
-CHM3011 Chemistry Project
-CHM3012 Chemistry Project incorporating Work Based Learning
-CHM3013 Advanced Analytical Techniques
-CHM3017 Physical Chemistry

Final year
Core modules
-GEES514 Research Skills for Science
-CHM5001 MChem Analytical Chemistry Project
-CHM5004 Quality Assurance and Accreditation
-CHM5005 Analytical Chemistry Advanced Problems and Practice for MChem

Read less
A comprehensive training in the theory and practice of groundwater science and engineering, providing an excellent basis for careers in scientific, engineering and environmental consultancies, water companies, major industries, research, and government scientific and regulatory services in the UK and abroad. Read more

A comprehensive training in the theory and practice of groundwater science and engineering, providing an excellent basis for careers in scientific, engineering and environmental consultancies, water companies, major industries, research, and government scientific and regulatory services in the UK and abroad.

Modules encompass the full range of groundwater studies and are supported by practical field sessions and computing and hydrogeological modelling based on industry standard software.

Course details

This is a vocational programme relevant to graduates with good Honours degrees in appropriate subjects (for example, Geosciences, Engineering, Physics, Mathematics, Chemistry, Biosciences, and Environmental Sciences). It is important to have a good knowledge of mathematics.

The lecture component of the programme encompasses the full range of hydrogeology. Modules cover drilling, well design, aquifer test analysis, laboratory test analysis, groundwater flow, hydrogeophysics, inorganic chemistry of groundwaters, organic contamination of groundwater, contaminated land and remediation, groundwater modelling, contaminant transport, hydrology, and groundwater resources assessment. 

These lecture modules are supported by practical field sessions, and by computing and hydrogeological modelling based on industry standard software. Integration of concepts developed in the taught programmes is facilitated through student-centred investigations of current issues linked to a diverse range of hydrogeological environments. 

Examinations are held in January and April. From May onwards, you undertake a project, a report on which is submitted in September. 

Projects may be field-, laboratory-, or modelling- based, and are usually of an applied nature, although a few are research-orientated. Our chemical (inorganic and organic), rock testing, computing, geophysical and borehole-logging equipment is available for you to use during this period. 

Career openings include those with consulting engineering and environmental firms, government scientific services and regional water companies, both in this country and abroad. Demand for hydrogeologists is substantial and students from the course are highly regarded by employers.

Learning and teaching

Hydrogeology is the study of groundwater; an essential component of the world’s water supply. More than 2 billion people depend on groundwater for their daily needs (approximately 30% of water supplied in the UK is groundwater). 

The aim of our Hydrogeology MSc Course is to provide students who have a good scientific or engineering background with a comprehensive training in the fundamentals of groundwater science and engineering, together with considerable practical experience.

The School is well supported and you will have the use of all equipment and facilities appropriate to your work: 

Computing

You will have access to the multiple clusters of PCs in the University Learning Centre and Library, and the School-based Earth Imaging Laboratory. The MSc course also has its own dedicated room for teaching and study with six PCs for convenient access to email, web and on-line learning resources.

The University based computers have an extensive range of software installed that covers the needs of students of all disciplines, but in common with the School-based PCs, specialist software packages used routinely by professional hydrogeologists are installed for our MSc students. These include industry standard groundwater flow modelling, contaminant transport modelling, geochemical modelling, geophysical interpretation and field and laboratory hydraulic test analysis packages. You can also register for more specialist software on the University high speed BlueBEAR computing facility if your individual project requires it. Research software developed within the Water Sciences research group is also available.

Laboratories

The School is well equipped for inorganic and organic chemical analysis of field and laboratory samples. Facilities include: Total Organic Carbon analysis, Gas Chromatography, ICP Mass Spectrometry, Ion Chromatography, Stable Isotope Mass Spectrometry and Luminescence and UV/visible spectroscopy. These facilities have been used in a wide range of MSc projects, for both standard geochemical analysis of groundwater samples and for more specific purposes including studies of persistent organic pollutants and toxic heavy metals in the environment, and denitrification in river beds. 

The School also has a dedicated microbiology laboratory equipped with an autoclave for sterilizing media and equipment, a class II safety cabinet for handing microbial samples, and incubators. 

Facilities are also available within the School and elsewhere for geological material analysis, including thin section preparation and microscopy, a wide range of electron microscopy techniques, XRD, pore size distribution determination, and surface area measurement.

Fieldwork

The School has two field sites on campus for use by MSc students and research staff. Both consist of arrays of boreholes drilled into the underlying sandstone aquifer to depths of up to 60m.

The groundwater group is well stocked with field equipment, which is used extensively in research projects, for teaching, and particularly on individual MSc projects. This equipment includes pumping test equipment (submersible pumps, generators, packers, digital pressure transducers, data loggers, divers, dip meters, pipe-work and installation frames); chemical sampling and tracer transport equipment (depth samplers, sampling pumps, tracer test equipment and field fluorimeter, hand held EC, pH and EH probes, portable chemical lab kit); geophysical equipment (resistivity imaging, electromagnetic surveying, ground penetrating radar, and borehole logging); and a secure, towable, mobile laboratory for off-site testing.

Fieldwork and projects transform theory into practice and form a large part of the course. They are supported by extensive field, laboratory and technical facilities.

A weeklong course of practical work and site visits is held in Week 7 of the Autumn Term. The content varies from year to year, but typically includes pumping tests, small-scale field tests, chemical sampling, and geophysics using the research boreholes on campus. Visits to landfill sites, water resources schemes, wetlands, and drilling sites are also arranged in collaboration with the Environment Agency, consultants and landfill operators. During the Spring Term, field demonstrations are provided by chemical sampling equipment distributors and manufacturers. You will gain further field experience either during your own 4.5 month project or when helping your colleagues on other projects.



Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills. Read more
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills.

The programme comprises a broad range of modules covering the major aspects of analytical and pharmaceutical chemistry, complemented by studies in transferable and professional skills.

Core study areas include research methods, separation techniques, pharmacokinetics and drug metabolism, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include mass spectrometry and associated techniques, drug targets, drug design and drug synthesis, sensors, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

The programme is for those who wish to extend their knowledge in a particular area or broaden their field in order to increase their career prospects.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Read less
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis. Read more
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis.

The programme comprises a broad range of modules covering all the major analytical techniques, complemented by studies in transferable and professional skills, with the option to study aspects of medicinal and pharmaceutical chemistry if desired.

Core study areas include research methods, separation techniques, mass spectrometry and associated techniques, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include sensors, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis and innovations in analytical science.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries including pharmaceuticals, chemicals, food, environmental management, contract analysis laboratories, public laboratories, regulatory authorities and instrument manufacturers in either technical or marketing functions or preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Read less
Materials Chemistry has emerged as an important sub-discipline within Chemistry. It cross-cuts the traditional Organic/Inorganic/Physical boundaries of Chemistry and overlaps many disciplines from Engineering to the Biosciences. Read more

Materials Chemistry has emerged as an important sub-discipline within Chemistry. It cross-cuts the traditional Organic/Inorganic/Physical boundaries of Chemistry and overlaps many disciplines from Engineering to the Biosciences.

Materials chemists now have a leading role in areas such as microelectronics, polymer science, catalysis and nanotechnology. They also make an important contribution to areas of more traditional chemistry such as the pharmaceutical sector where understanding the 'physical properties' of intermediates and products is now recognised as essential in optimising the synthesis and properties of pharmaceutically active ingredients in medicines.

The degree consists of advanced lecture courses such as:

  • Properties & Reactions of Matter
  • Chemistry of Functional Materials
  • Physical Techniques in Action
  • Techniques and Concepts in Inorganic Chemistry

These are studied concurrently with a predominantly practical based course offering an introduction to research methods.

Students then proceed to a period of full-time research project work leading to the submission of their Master's dissertation.

Programme structure

Lectures are given by leading researchers in the area of materials chemistry. The lecture courses are supported by tutorial sessions and assessed by examination in April/May.

The Introduction to Research Methods course includes an exciting problem solving exercise where you learn important skills such as Communicating Science, Innovation, Dealing with Intellectual Property and Grant Application Writing, together with a literature survey and written report, defining the scope of the subsequent individual research project work.

Learning outcomes

On completion of the course, you should have developed a depth of comprehension and critique in the core elements of your subject area, including:

  • Critical analysis and management of data.
  • Judging the relationship between theory and methodology.
  • Assessment of the appropriate methods of data collection/analysis to address the research question.
  • Assessment of relevance of previous studies.
  • Critical thinking.

Additionally you will have enhanced your professional/practical skills through:

  • Experience of research design and management.
  • Advanced instrumentation or techniques.
  • Production of scientific reports.

You will also have had the opportunity to develop transferable skills such as:

  • Written, visual and oral delivery and dissemination of research findings.
  • Interpersonal and communication skills.
  • Computing proficiency.
  • Organisation skills.


Read less
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. Read more

The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. The programme is particularly suitable for those wishing to embark on an academic career, with a strong track record of students moving into graduate research at UCL and elsewhere.

About this degree

Students develop a systematic approach to devising experiments and/or computations and gain familiarity with a broad range of synthetic, analytical and spectroscopic techniques, acquiring skills for the critical analysis of their experimental and computational observations. They also broaden their knowledge of chemistry through a selection of taught courses and are able to tailor the programme to meet their personal interests.

You will undertake Chemistry modules to the value of 180 credits.

The programme consists of core literature (30 credits) and research projects (90 credits), and a research and professional skills development module (15 credits) and optional taught modules (45 credits in total). Optional modules are chosen in consultation with your research advisor.

Core Modules

All students undertake a literature project (30 credits) and a research dissertation (90 credits), which are linked. In addition students take a module (15 credits) to develop their research and professional skills.

  • Literature Project
  • Research Project
  • Transferable Skills for Scientists

Optional Modules

Students choose three optional modules from the following:

  • Advanced Topics in Energy and Environmental Science
  • Advanced Topics in Physical Chemistry
  • Biological Chemistry
  • Concepts in Computational Chemistry
  • Frontiers in Experimental Physical Chemistry
  • Inorganic Rings, Chains and Clusters
  • Intense Radiation Sources in Modern Chemistry
  • Topics in Quantum Mechanics
  • Numerical Methods in Chemistry
  • Pathways, Intermediates and Function in Organic Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Simulation Methods in Materials Chemistry
  • Stereochemical Control in Asymmetric Total Synthesis
  • Structural Methods in Modern Chemistry
  • Synthesis and Biosynthesis of Natural Products
  • New Directions in Materials Chemistry

Dissertation/Report

All students undertake an independent research project which features an oral examination and culminates in submission of an extended dissertation (90 credits).

Teaching and Learning

The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through the dissertation, unseen written examinations, research papers, a written literature survey, and an oral examination. All students will be expected to attend research seminars relevant to their broad research interest.

Further information on modules and degree structure is available on the department website: Chemical Research MSc

Careers

This MSc is designed to provide first-hand experience of research at the cutting-edge of chemistry and is particularly suitable for those wishing to embark on an academic career (i.e. doctoral research) in this area, although the research and critical thinking skills developed will be equally valuable in a commercial environment.

Recent career destinations for this degree

  • Project Manager, Jiang Clinic
  • Secondary School Teacher (Chemistry), Loyang Secondary School
  • PhD in Engineering, Imperial College London

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

With departmental research interests and activities spanning the whole spectrum of chemistry, including development of new organic molecules, fundamental theoretical investigations and prediction and synthesis of new materials, students are able to undertake a project that aligns with their existing interests.

Students develop crucial first-hand experience in scientific methods, techniques for reporting science and using leading-edge research tools, as well as further essential skills for a research career.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.

Application and next steps

Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

Who Can Apply?

The programme is suitable for students wishing to progress to a research degree in chemistry or those seeking to acquire research skills which are valued in a commercial environment.

Application Deadlines

All applicants

27 July 2018

Applicants can select the research projects in Computational, Inorganic, Organic or Physical Chemistry. In the application cover letter students are asked to indicate which area(s) of chemistry they are interested in studying, clearly indicating why they chose this particular area, and indicating (at least) three academic members of staff they are interested in working with.

For more information see our Applications page.



Read less
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules. Read more

The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules.

About this degree

The programme provides specific training in molecular modelling methods and structure determination and characterisation techniques applicable to the materials sciences, together with tuition in research methods and the use of literature sources. The taught modules cover both specialist scientific topics and general project management and professional skills training relevant to the industrial environment.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), two optional modules (30 credits) and a research project (105 credits).

Core modules

Students take both modules listed below (45 credits) and submit a research dissertation (105 credits).

  • Simulation Methods in Materials Chemistry
  • The Scientific Literature

Optional modules

Students take 2 modules drawn from the following or take one from following and one from UCL postgraduate course worth 15 credits.

  • Researcher Professional Development
  • Mastering Entrepreneurship
  • Transferable Skills for Scientists
  • Numerical Methods
  • Concepts in Computational and Experimental Chemistry
  • Advanced Topics in Inorganic Chemistry
  • Inorganic Rings, Chains and Clusters
  • Biological Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Pathways, Intermediates and Function in Organic Chemistry
  • Advanced Topics in Physical Chemistry
  • New Directions in Materials Chemistry

Dissertation/report

All students undertake an independent research project which culminates in a substantial dissertation of approximately 12,000 to 15,000 words, and an oral presentation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, practical classes and seminars. Assessment is through unseen examination, presentation, coursework and the research project.

Further information on modules and degree structure is available on the department website: Molecular Modelling and Materials Science MRes

Careers

This MRes provides the ideal foundation for employment in a range of industries or further doctoral research, with increasing career opportunities in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals.

Recent career destinations for this degree

  • Pharmaceutical Conference Producer, SMi
  • EngD Chemistry,UCL
  • PhD Chemistry, Technische Universität Berlin (Technical Universit
  • PhD Computional Chemistry, UCL
  • Laboratory Demonstrator and Marker,UCL and studying Chemistry, UCL

Employability

The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Chemistry's interests and research activities span the whole spectrum of chemistry from the development of new drugs to the prediction of the structure of new catalytic materials.

This programme was established by the Engineering and Physical Sciences Research Council in response to the needs of industry for highly qualified research leaders with industrial experience and it provides for significant collaboration between academic institutions and industry.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Masters in Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, suitable for a professional chemist capable of conducting research. Read more

The Masters in Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, suitable for a professional chemist capable of conducting research.

Why this programme

  • The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
  • All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
  • You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
  • You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
  • You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
  • Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry
  • The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.
  • Ranked 4th in Scotland in the Guardian Rankings for 2018, Chemistry at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses

  • Inorganic, organic and physical chemistry
  • Frontiers of chemistry
  • Chemistry problems.
  • Special topics from inorganic, organic, and physical chemistry.

Career prospects

Career opportunities include the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to the following positions:

Teacher at a UK Secondary School.



Read less
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research. Read more

The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research.

Why this programme

  • The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
  • You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
  • All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
  • You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
  • You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
  • Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry
  • The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.
  • With 92% overall student satisfaction in the National Student Survey 2017, Chemistry at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses

  • Inorganic, organic and physical chemistry
  • Medicinal chemistry
  • Frontiers of chemistry
  • Chemistry problems.
  • Special topics from inorganic, organic, and physical chemistry.

Career prospects

Career opportunities in the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to positions such as:

  • Researcher at Piramal Healthcare UK Ltd
  • University Researchers and Lecturers


Read less
There is a growing need by industry for staff trained in computational molecular sciences. Read more

There is a growing need by industry for staff trained in computational molecular sciences. This new multidisciplinary MSc will teach simulation tools used in a wide range of applications, including catalysis and energy materials, nanotechnology and drug design, and will provide transferable skills to other fields, thereby broadening employment prospects.

About this degree

Students will gain detailed knowledge and skills in molecular modelling, focusing on the state-of-the art simulation techniques employed to research the molecular level properties that determine the macroscopic behaviour of matter. They will also gain key research skills and will learn the basic concepts in business and entrepreneurship as applied to high-tech industries.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), three optional module (45 credits) and a research project (90 credits).

Core modules

  • Simulation Methods in Materials Chemistry
  • The Scientific Literature

Optional modules

Students take 45 credits (3 modules) drawn from the following:

  • Mastering Entrepreneurship
  • Numerical Methods in Chemistry
  • Researcher Professional Development
  • Transferable Skills for Scientists
  • Choice of one postgraduate lecture module at UCL
  • Concepts in Computational and Experimental Chemistry
  • Advanced Topics in Inorganic Chemistry
  • Inorganic Rings, Chains and Clusters
  • Biological Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Pathways, Intermediates and Function in Organic Chemistry
  • Advanced Topics in Physical Chemistry
  • New Directions in Materials Chemistry

Dissertation/report

All students undertake a computational research project which culminates in a substantial dissertation of approximately 10,000 to 12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars and laboratory classes. Assessment is through unseen examination, coursework, individual and group projects, poster creation, presentation and the research project.

Further information on modules and degree structure is available on the department website: Molecular Modelling MSc

Careers

There are increasing career opportunities in the field of molecular modelling in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. This MSc will train students in the skills necessary for future employment in the industrial and public sector communities, together with specific training in career development and transferable skills.

The majority of students on the programme have moved on to PhD study.

Recent career destinations for this degree

  • PhD Chemistry, UCL

Employability

The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Chemistry has a world-leading position in molecular modelling research.

Molecular modelling techniques are having increasing impact in the industrial sector, as evidenced by the partnership between UCL's Industrial Doctorate Centre in Molecular Modelling and Materials Science and a range of national and international industrial sponsors.

This multidisciplinary programme offers a wide range of options, thereby enabling each student to tailor the programme to their own needs and interests.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
With an increase in the number of undergraduate degrees offering the MChem qualification, our Chemistry MRes allows BSc graduates to become equally competitive by studying for an enhanced qualification that will set them apart throughout their career. Read more

With an increase in the number of undergraduate degrees offering the MChem qualification, our Chemistry MRes allows BSc graduates to become equally competitive by studying for an enhanced qualification that will set them apart throughout their career.

Our MRes qualification is also a convenient entry point into the UK academic system for overseas students, and many of our MRes graduates go on to successfully complete a PhD.

Our academics are at the forefront of their field, having recently discovered a method for the rapid detection of drugs from a fingerprint; and a naturally sourced, environmentally safe chemical for the treatment of an important agricultural pathogen.

Programme structure

This programme is studied full-time over one academic year. It consists of three taught modules and a research project, which contributes 75 per cent of the final credits to the degree and includes the laboratory based research, library work, COSHH, record keeping and writing the dissertation.

We would normally expect the laboratory based part of the project to be, on average, two to three full days per week during the teaching semesters and five days per week during non-teaching times (for example, over the Christmas, Easter and summer breaks).

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

  • The aim of the MRes is training in the more laboratory-based aspects of chemical research
  • The objectives and learning outcomes/skills are that the student will be able to: assess, plan, carry out, analyse, interpret and disseminate (all with appropriate training and supervision) a significant piece of chemistry research to an extent that results in a satisfactory assessment of a dissertation and viva
  • In addition, competence in related (non-laboratory based) aspects of research training will be assessed via examination (formal exam and/or coursework) of lecture/workshop-based modules
  • A knowledge of discipline-related aspects of professional training including data analysis, literature searching and reporting and presentation techniques

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • Knowledge and understanding of the scientific method
  • Knowledge and understanding of research ethos and strategy
  • Knowledge and understanding of advanced communication skills
  • Knowledge and understanding of reporting of technical concepts
  • Knowledge and understanding of critical analysis
  • Knowledge and understanding of advanced aspects of chemistry including subjects at the frontiers of the discipline
  • Knowledge and understanding of advanced principles in a research led area of chemistry
  • Knowledge and understanding of Health and Safety legislation
  • Knowledge and understanding of statistics for data analysis
  • Knowledge and understanding of the principles of experimental design

Intellectual / cognitive skills

  • The ability to plan and carry out an advance research project
  • The ability to analyse and solve problems of technical nature under consideration of various constraints
  • The ability to make effective and efficient decisions in an environment of conflicting interests
  • The ability to think strategically
  • The ability to synthesise and critically evaluate the work of others
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • The ability to self-reflect to improve behaviour

Professional practical skills

  • Assessment of the research literature
  • Risk assess experiments / procedures
  • Design and set up experiments using the most appropriate methods
  • Carry out laboratory work safely
  • Deal safely with unexpected events / results
  • Apply prior knowledge to new situations

Key / transferable skills

  • Planning
  • Organisation
  • Independent working
  • Apply prior knowledge to unfamiliar problem
  • Using initiative
  • Time-management
  • Personal development planning
  • Use of word processor, spreadsheet, presentation, graphical software packages
  • Management of data
  • Effective literature / patent searching

Research

The Chemistry programme is run within the Faculty of Engineering and Physical Sciences and the cross-faculty Surrey Materials Institute (SMI). Staff in the Department of Chemistry have expertise which includes all aspects of chemistry:

  • Inorganic
  • Medicinal
  • Physical
  • Physical organic
  • Materials
  • Polymers
  • Nanotechnology
  • Analytical

You will receive a thorough education in advanced aspects of chemistry, but also undertake independent research via a project, guided by a dedicated and experienced supervisor.

Projects are available across a range of topics in chemistry, and may extend into areas of biology, forensics or materials science. Past MRes students have continued to further (PhD) education and to posts in research in industry.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Research in the Faculty of Engineering and Science has received worldwide praise and recognition. You will get the opportunity to work alongside the faculty's researchers who are recognized internationally in many field of science. Read more

Research in the Faculty of Engineering and Science has received worldwide praise and recognition. You will get the opportunity to work alongside the faculty's researchers who are recognized internationally in many field of science.

We are continually investing into our excellent research facilities, giving students exposure to specialised equipment including modern scanning electron microscopes and confocal microscopes, organic and inorganic mass spectrometers and numerous items of specialist bench-top analytical equipment.

This programme offers the opportunity to gain a qualification by following a structured route in scientific research. Students can select from a wide range of theory courses appropriate to their individual research topic across the disciplines of chemical and life sciences. It is suitable for students who want to gain a postgraduate research qualification and strengthen their insight into the mechanics of research from both the literature and experimental perspectives.

International students

The university has an extensive network of overseas contacts, with staff based in, or regularly visiting, some 40 to 50 countries. Overseas students are able to obtain an MSc by Research by attending classes for three to four months in the UK at our Medway Campus, with a project based and supervised in their own country, subject to approval by the Faculty of Engineering and Science. Take just a year to complete the programme and enhance your employability - our postgraduate students frequently secure top positions.

Programme structure

The programme comprises taught courses (60 credits) and a research project (120 credits) that may be partially assessed by the publication of an original paper rather than a traditional thesis. Students must also take 60 credits of Master's level courses in order to obtain the award.

Recent topics include:

  • Analytical informatics and chemometrics
  • Biomarker profiling
  • Biomaterials
  • Cell biology and intracellular gene delivery
  • Medicinal chemistry and drug-delivery systems
  • Nanotechnology
  • Mass Spectrometry
  • Pharmaceutical materials science
  • Biotechnology
  • Chemostratigraphy and inorganic forensic fingerprinting
  • Geography - sustainable development
  • Landscape ecology
  • Palaeoenvironmental analysis
  • Solar energy conversion and hydrogen production.

Department of Pharmaceutical, Chemical and Environmental Sciences

Teaching in this department is underpinned by exciting, world-class research activities in all areas. The department has strong research and enterprise interests in medicinal chemistry, analytical chemistry, metabonomics, formulation science, bioactive materials, chemometrics, forensic science, contaminated land remediation, and environmental conservation.

Location

The Medway campus is only an hour from central London, based on the Kent coast in a county known as the Garden of England. It's two stops away from Europe by train, and less than an hour from the local and global pharmaceutical companies Pfizer and Aesica. There are several hospitals locally for NHS-based placements and a wide range of private and research laboratories such as those found in Kent Science Park. We create opportunities for students to engage with these organisations.

You can also explore the areas of outstanding natural beauty such as Darland Banks, preserved by the Kent Wildlife Trust, and Cliffe Pools, protected by the Royal Society for the Protection of Birds (RSPB). Medway is an excellent place to study environmental science.

Outcomes

The aims of the programme are to:

  • Provide a critical understanding of the knowledge base required for a proposed research project
  • Provide and build upon analytical, conceptual and research skills
  • Achieve an understanding of the research methods appropriate to the chosen field
  • Undertake a critical investigation of an approved topic.

Assessment

Students are assessed through coursework and a dissertation or a published original research paper.

Careers

This programme offers opportunities in the public and private sectors.



Read less

Show 10 15 30 per page



Cookie Policy    X