• Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Cardiff University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Birmingham Featured Masters Courses
Swansea University Featured Masters Courses
"innovative" AND "technol…×
0 miles

Masters Degrees (Innovative Technology)

  • "innovative" AND "technology" ×
  • clear all
Showing 1 to 15 of 961
Order by 
The Masters in Innovative Technology Engineering degree aims to produce graduates with strong skills in critical thinking and with a creative attitude necessary to instigate future developments in the field of Engineering Technology. Read more
The Masters in Innovative Technology Engineering degree aims to produce graduates with strong skills in critical thinking and with a creative attitude necessary to instigate future developments in the field of Engineering Technology. The student will attain an academic mastery in their specialisation field while developing a broad knowledge of other related fields and how these converge.

The student will embark on a programme that will assess and analyse a number of emerging technologies and the developing potential for the convergence of these technologies.

The course aims to prepare students for a rewarding career in industry or academic research. In addition, the course will facilitate for them the development of a set of personal and professional attributes that will allow them greater flexibility in the development of their own career options. The programme is designed to develop the student’s knowledge and skills in strategies for innovation management, product design and development and optimum routes to market. The student will also carry out post-graduate level research of industrial relevance in selected topic areas.

The Masters degree requires successful completion of six mandatory modules and four out of eight elective modules. The student must also complete an applied programme consisting of a Research Dissertation and an Industrial Research seminar series.

Career opportunities for graduates of this programme can be found in the
- Medical Devices,
- Pharmaceutical,
- Green Technology,
- Information and Communications Technology,
- New Business Development and Academic Research sectors.

Typical job functions include
- Design Engineer,
- Research Engineer,
- Project Engineer,
- Project Manager,
- Technical Manager,
- New Technologies Manager,
- New Product Development Manager,
- New Business Venture consultant and many others

Read less
The international masters in Law and Technology offers students the chance to develop cutting-edge and interdisciplinary expertise within the burgeoning field of technology regulation. Read more
The international masters in Law and Technology offers students the chance to develop cutting-edge and interdisciplinary expertise within the burgeoning field of technology regulation.

Strongly multidisciplinary and incorporating both European and international law, the masters in Law & Technology offers you the chance to develop both multidisciplinary knowledge and an area of specialised expertise within the field of Law and Technology - giving you more options to pursue the career of your choice.

The program is closely affiliated with the Tilburg Institute for Law, Technology and Society (TILT), an institute consistently ranked amongst the top in Europe for both research and education by the Legal Research and Education Assessment Committees. The masters in Law and Technology is consistently rated one of the best international masters program within Tilburg Law School.

Learning is informal, highly interactive and closely connected to professional practice, with lawyers from international offices systematically involved in the lectures. Students also have the opportunity to take part in internships during their studies.

Program Law and Technology

The masters in Law and Technology offers education in close relation to innovative research in the field of Law & Technology. It gives students the opportunity to develop their own specialized area of expertise within the field of Law & Technology.

Legal+

The masters in Law & Technology equips you with the multidisciplinary knowledge essential for responding to the possibilities and risks presented by new technologies. Content covers regulatory issues in the public and private spheres, as well as subjects such as comparative law, jurisprudence, ethics and public administration, in addition to traditional legal doctrine. Students develop a broad, contextual awareness of additional modalities of regulation such as social morality and economic self-arrangement.

Specialization

The Law and Technology program offers you the opportunity to develop a specialization in a particular subject area thanks to a curriculum that covers everything from intellectual property law to biotechnology or ICT. You can focus on traditional legal areas such as private law or European law, or develop a broader overview that combines, for example, private law, criminal law and human rights law.

International perspective

Technological developments generally cross borders, with the Internet perhaps the most obvious example. While internationalization offers opportunities and possibilities, it also gives rise to a host of issues from a regulatory perspective. The Law and Technology masters ensures you are well-prepared to operate in an international context by continuously applying an international perspective to the issues at hand.

No background in science or technology required

Prospective students do not require background knowledge in technology or science. Of more importance is your affinity with the social aspects of technology. Students with backgrounds in areas other than law can apply if at least 90 ECTS of the courses in their bachelors were similar to those of the bachelors at Tilburg Law School. A premaster program (currently only in Dutch) is available for students who do not meet this criteria.

Interactive and close-knit learning environment

Learning in the Law and Technology masters is interactive, informal and cross-cultural. You join an international student body, within which students regularly work in international teams, participate in discussions and present their ideas on legal concepts and issues. Students are strongly encouraged to interact with their TILT lecturers, made possible by numerous extracurricular events such as seminars and workshops.

Good practical training opportunities

TILT has excellent contacts with government and semi-government agencies, companies, and law firms. TILT is frequently approached by these professional bodies about practical training opportunities and internships and, together with students, actively endeavors to find appropriate trainee projects for students. You will be taught how to write web policies, position papers, and policy documents as preparation for your future career.

Education coupled with pioneering research

Students learn from scholars from the Tilburg Institute for Law, Technology and Society (TILT) - scientists engaged in innovative research recognized at a national as well as international level. These scholars come together from diverse disciplines including private law, public law, criminal law, international law and human rights, ICT law, social and political studies amongst others. Education is interlaced with academic insights from these new research lines. When possible, TILT actively involves students in its research projects.

Challenging and creative

We encourage Law and Technology students to develop and substantiate their own opinions and ideas on the content presented. Within the program, teaching methods encourage critical debate and active participation.

Career Perspective Law and Technology

Legal experts in the field of law and technology are in high demand within many industries and sectors. Your area of specialization can also prepare you for more specific roles within the field.

A wide variety of future career paths are available to graduates of the masters in Law & Technology. You will be qualified to pursue a leading position as a consultant, researcher, policy-maker, or lawyer specialized in law and technology in various types of centers, including large international law firms, in-house legal departments of large firms, the civil service (including the EC civil service), and transnational organizations (both for-profit and non-profit).

Read less
Gain qualified teacher status (QTS) as a teacher of food technology with experience teaching Key Stages 3 to 5. Through study and teaching placements, you develop the skills, knowledge and enthusiasm needed to teach pupils with a range of abilities in both secondary school and college settings. Read more
Gain qualified teacher status (QTS) as a teacher of food technology with experience teaching Key Stages 3 to 5. Through study and teaching placements, you develop the skills, knowledge and enthusiasm needed to teach pupils with a range of abilities in both secondary school and college settings.

This secondary teacher training course leads to qualified teacher status (QTS). It equips you to teach food technology.
On the course you
-Enhance your subject knowledge, understanding and skills.
-Learn how to teach food technology.
-Learn about the wider role of teachers in school.
-Gain knowledge about schools and the education system.
-Apply your skills and knowledge on school placements.

We help you develop the skills you need to be a successful teacher of pupils of all abilities. By studying with us you build your enthusiasm, confidence, knowledge and ability to teach food technology. You complete a lot of practical work in our well-equipped facilities to help you learn creative and innovative teaching methods, which you can then transfer to the classroom.

You also gain self-evaluation skills by completing a career preparation profile. This provides evidence that you meet the QTS standards for self-evaluation and personal development. School placements are central to the course. You complete teaching placements in two 11–16 or 11–18 schools, or in a post-16 college. This allows you to experience the progression from Key Stage 3 to 5. A University-trained mentor supports you when on placement. Your course tutor also visits you to discuss your progress.

We have strong partnerships with secondary schools and colleges in the area and many of our students are offered teaching jobs in their placement schools. Your placements are complemented by University and Academy based study that includes teaching sessions, seminars, group study, tutorials and assessment.

During the course you can choose to complete either the PGCE or the professional graduate certificate in education (ProfGCE). Both qualifications achieve QTS but the PGCE also gives you 60 masters level credits, which you can use towards a masters degree.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/pgce-secondary-design-and-technology-food-technology

School Direct

Apply for a place through the School Direct scheme for a dedicated route into a job after graduation. During School Direct, the school or partnership of schools that you've applied to will be much more involved in your selection, recruitment and professional development as there is the expectation that you will be employed by them once qualified.
For more information visit http://www.shu.ac.uk/schooldirect

Course structure

Full time – 1 year
Starts September.

Modules
-Developing and reflecting on professional practice in secondary design and technology education – (food technology)
-Learning and teaching in context in design and technology
-Block placement 1
-Block placement 2

Assessment
-Research projects.
-Individual and group work.
-Presentations and reports.
-Preparing teaching materials and plans.
-Teaching practice.
-Practical work.

Other admission requirements

We may also consider applicants with an unrelated degree who have a sound food background in employment and have a GCSE or A level in food technology. You are encouraged to gain experience of schools through direct observation of teaching and learning and/or by working with young people in food or design and technology-related or other educational activities. If you are shortlisted, we will invite you to a selection event, and you should bring a passport or photo driving license with you. You can bring other forms of photo ID for the selection event, but if you do, you will still need to present valid identity documents required by the Disclosure and Barring Service (DBS) at your pre-course day. View our selection event guidance to ensure you understand the selection process.
We welcome applications from people seeking a career change, and we actively encourage applications from those groups under-represented in teacher education, in order to ensure that the teaching profession represents the diverse nature of contemporary UK society.

If English is not your first language you must have an IELTS score of 7.0 with a minimum of 6.5 in all skills or equivalent. For equivalents see our English language entry requirements web page.
*GCSE mathematics and English equivalents are:
-12 Level 2 credits from an Access course.
-Equivalency test from http://www.equivalencytesting.co.uk

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Building on its international reputation for training in the arts and craft of film and television, The National Film and Television School proposes to introduce an MA designed for students who wish to attain the skills required to support all aspects of production technology in live and recorded environments. Read more
Building on its international reputation for training in the arts and craft of film and television, The National Film and Television School proposes to introduce an MA designed for students who wish to attain the skills required to support all aspects of production technology in live and recorded environments.

Quick Facts

- 2 Year Course
- Full-time
- Course runs Jan-Dec each year
- Next intake: January 2017
- NFTS Scholarships available for UK Students

- Establish an in-depth knowledge of technologies in the industry combined with practical work experience and intensive training.
- Learn the skills to become an innovator in production technology.
- Develop the skills for a career in a wide range of areas within television production.
- Opportunity to become a specialist in your chosen field.
- Access to BFIs Passport to Cinema and NFTS Masterclasses lead by major creative figures from film, television and games.

APPLICATION DEADLINE: 13 OCT 2016

Visit the website https://nfts.co.uk/our-courses/masters/production-technology

COURSE OVERVIEW

The course will give students a fundamental understanding of the underlying technologies and workflows in use in the industry, with the opportunity to specialise in one chosen area. It offers a rigorous curriculum that combines theoretical training in a number of production technology disciplines with industry work experience placements and intensive training, enabling students to develop their own skills and understanding to provide a strong basis for a career in a wide range of relevant areas within television production.

Across the TV and film industries emerging technologies are enabling new creative opportunities both directly through production equipment and techniques and indirectly through new distribution platforms. The need for production technologists skilled in the latest developments is increasing, with numerous skills gaps apparent in the employment market. Moreover, some 60% of Broadcast engineers across Europe are within 10 years of retirement, according to the BBC Academy website. Specialists in a number of areas of Production Technology are in great demand from broadcasters, facilities companies, equipment manufacturers and systems integrators.

Production Technology is a very wide field covering traditional live studio and transmission support through to outside broadcasts, workflow design, media asset management and distribution systems across multiple delivery platforms – thus the potential career paths of graduates are numerous and varied.

Technology, both traditional and new, forms an essential part of the creative process and NFTS students are engaged in more productions as part of the curriculum than any of our competitors.

The course will provide:

- an in depth understanding of traditional and new technology and workflows enabling and supporting creation of content and delivery to broadcast and online services
- cutting-edge technological expertise in all stages of media production
- optional units and a professional placement with an industry partner allowing a specialised focus on an aspect of production technology

* Subject to Validation

CURRICULUM

Year 1:

The first year will involve a combination of theory and practical work in which students will gain a detailed grounding in the basics of production technology from content generation to delivery. Emphasis will be placed on innovative thinking and designing solutions to support the creative ambitions of production teams and content platform providers. The School’s TV Studio, Single camera units, Post Production and Outside Broadcast facilities will be utilised. The main topics include:

- Media Technology Fundamentals
- Production, Post Production and distribution (Broadcast, IP) workflows
- TV Studio technology, workflows and support
- TV Outside Broadcast technology, workflows and support
- Single camera shooting technology, workflows and support
- Post Production technologies, workflow design and support
- Media Asset Management across production and delivery workflows
- Broadcast and non-linear distribution technologies, workflows and support

Year 2:

Specialisation in two of the following areas:
- Content Creation - Single camera, TV Studio, Outside Broadcasts
- Media management - MAM systems, workflows, systems design
- Post Production - Workflows, Media management, NLE offline, online, grading, audio mixing
- Delivery - Media management, transcoding workflows, delivery and distribution technologies

Placements will be arranged with partners in relevant areas and will form at least 20% of the second year.

A graduation piece in the form of a solution to a particular production or delivery issue including workflow and system design.

Students will be required to complete a dissertation.

APPLY WITH

- On two sides of A4 please tell us about the Production Technology requirements of a television show you have worked on or admire. Tell us briefly how you might approach improving the show with the support of technology.

No more than two pages (A4 paper)

HOW TO APPLY

You can apply directly to us at the NFTS by clicking on the link below:

APPLY FOR PRODUCTION TECHNOLOGY COURSE - https://nfts.co.uk/sign-me-up/apply-now/?nid=2028

You can apply online, or download a word document of the application form to submit via email
When selecting your course, please ensure that you have read the entry requirements and details of the supporting materials that should accompany your application.

TIMING YOUR APPLICATION

We are happy to receive applications 24/7 and 365 days a year up until the deadline. That said, there is no particular advantage to submitting your application very early. The important thing is that your application shows us your latest work and tell us about your most recent filmmaking experiences.

Read less
Wageningen University is one of the leading centres in Food Science and Technology in Europe and the world. The history of the Food Technology programme at Wageningen University goes back more than 50 years; it is considered to be one of the best and most innovative programmes in its field in Europe. Read more

MSc Food Technology

Wageningen University is one of the leading centres in Food Science and Technology in Europe and the world. The history of the Food Technology programme at Wageningen University goes back more than 50 years; it is considered to be one of the best and most innovative programmes in its field in Europe. The programme focuses on aspects of production, composition and design of food products.

Programme summary

The Food Technology programme at Wageningen University has been in place for more than 50 years and is considered one of the best and most innovative programmes in its field in Europe. Wageningen University offers high-level courses and research in all areas of food science; ranging from advanced technical fields, such as Process Engineering or Chemistry, to fields with a more economic or sociological focus, such as Marketing and Gastronomy.

The Wageningen Food Science faculty is larger than that of any other European university. It includes professors and lecturers from a wide range of departments: Food Chemistry, Food Physics, Food Microbiology, Food Quality and Design, and Food Process Engineering. Food Technology covers nearly all aspects of food science and technology. As a result of being a very broad field, students are required to choose one of the specialisations offered.

Specialisations

Within the programme Food Technology you can choose your own specialisation that meets your personal interests.

Ingredient Functionality
This specialisation focuses on the composition of food, especially, on the role of various components, ingredients or structures in the quality and functionality of the final product. It deals with sensory, nutritive and textural aspects of foods in relation to their components. You major in Food Chemistry or Food Physics.

Product Design
While many new products are launched, not all succeed. This specialisation deals with the design and development of new or improved products. The focus is on the processes used in Food Technology, the design of new products from a consumer perspective and on modelling new product concepts/processes and predictive quality control. You major in Food Process Engineering or Food Quality and Design.

Food Innovation and Management
This specialisation combines courses in Food Technology with courses in Management Studies. It is intended for students who wish to work on product development in small businesses or who plan to start their own business. You will do a thesis in Management Studies and an internship in one of the Food Technology groups.

Food Biotechnology and Biorefining
This specialisation focuses on using micro-organisms or enzymes in food production. During this specialisation, you will learn about processes that can be used for biorefinery or agricultural raw materials. The focus is on biotechnological food production. You major in Food Microbiology, Food Chemistry, Food Process Engineering.

Dairy Science and Technology
This specialisation focuses on the dairy production chain. Its core programme consists of dairy-related courses and several additional courses, such as Food Components and Health, Advanced Fermentation Science and Predicting Food Quality. During the second year, you complete a dairy-related thesis research project and internship.

Sustainable Food Process Engineering
This specialisation focuses on the development of processes that are more efficient in their use of resources. Thesis can be carried out under the supervision of one of the following groups: Food Process Engineering; Operations Research and Logistics; Biobased Chemistry and Technology; or Food Quality and Design.

European Masters Degree in Food Studies
This international specialisation is developed in cooperation with the universities of Cork (Ireland), Lund (Sweden) and Agro-Paris Tech (Paris, France) as well as with ten large industrial partners. For more information see: http://www.eurmscfood.nl.

Gastronomy
This specialisation focuses on the molecular science behind products and dishes used in small scale settings. Scientific insights are used to develop improved food preparation techniques. The cultural aspects of food will also receive attention. You major in Food Chemistry, Food Physics or Rural Sociology.

Sensory Science
This specialisation combines Food Technology with Nutrition and Health. You will work with products and humans in different contexts and study how sensory systems function, how this relates to products and how to analyse these aspects.

Your future career

Graduates find jobs with relative ease, especially in the Netherlands and Western Europe. Recent graduates found positions in the private sector (from small- and medium-sized companies to large multinationals), at Wageningen University or other universities as PhD students, and at research institutes domestically and abroad. Graduates also work in the field of process technology at innovation centres, innovative food companies or government agencies. Most achieve management positions.

Student Harmke Klunder
“It is rich in proteins, unsaturated fats, vitamins and is available in large quantities all over the world. You may conclude, ‘The ideal food ingredient.’ However, would you still think it was ideal if you knew it was made from insects? With three other students, we added insects to a third world food product, thereby winning an international competition from the IFT (Institute of Food Technologists). Malnutrition in Africa could be fought by enriching their daily porridge, sorghumpap, with protein-enhanced termites. As food ingredients technologist, it is possible to look beyond the products found on the shelves of the local supermarkets.”

Related programmes:
MSc Food Quality Management
MSc Food Safety
MSc Biotechnology
MSc Nutrition and Health

Read less
Information technology (IT) is all around us, forming the very destiny of our lives…our world. IT advances a wide array of disciplines, such as engineering, business and medicine, and even art and archaeology. Read more
Information technology (IT) is all around us, forming the very destiny of our lives…our world. IT advances a wide array of disciplines, such as engineering, business and medicine, and even art and archaeology.

The Master of Information Technology (MIT) provides the knowledge, understanding and skills to solve real-world problems with cutting-edge technology. You learn to create innovative IT solutions in your chosen area, in order to work in the industry at the highest levels.

As an MIT graduate, you could become a software engineer, an enterprise data architect, a mobile systems analyst, or even a chief technology officer.

The MIT caters to students from a variety of backgrounds. If you do not have previous training in IT, the course includes preparatory units that will give you the IT knowledge needed for the remainder of the course. However, if you already have a degree in IT, you can accelerate your study with an exemption from these preparatory units, or perhaps study further elective units in areas of your choice.

The course offers you the opportunity to explore a wide range of areas, such as software engineering, mobile and distributed systems, project management and machine learning.

In your final semester, you may take part in an Industry Experience program, working in a small team with industry mentors to develop entrepreneurial IT solutions. Or you may undertake a minor-thesis research project, investigating cutting-edge problems in IT under the supervision of internationally recognised researchers.

High-achieving students who complete the research component may progress to further research study.

The MIT is accredited with the Australian Computer Society (ACS).

Visit the website http://www.study.monash/courses/find-a-course/2016/information-technology-c6001?domestic=true

Overview

This course prepares students for work in the information technology industry at the highest levels. It provides students with a previous tertiary qualification in another discipline area with the knowledge, understanding and skills to enable them to deal effectively with advanced issues involving the application of information technology.

Students with previous studies in a technical IT area can complete in three semesters (full-time) by applying for credit for foundation units.

Career opportunities

Graduates of the MIT will have the knowledge and skills to solve complex social, economic and technical problems within the context of information technology. Students will develop deep theoretical and practical knowledge in specific areas so that they will have the intellectual and conceptual foundation to play leading roles in the development of the information technology industry.

Course Structure

PART A. Foundations for advanced information technology studies
These studies will provide an orientation to the field of information technology at graduate level. They are intended for students whose previous qualification is not in a cognate field.

PART B. Core Master's study
These studies draw on best practices within the broad realm of IT application, theory and practice. You will gain an understanding of information technology real world IT problems and gain problem solving skills. Your study will focus on IT project management, software, network and systems areas.

PART C. Advanced practice
The focus of these studies is professional or scholarly work that can contribute to a portfolio of professional development. You have two options.

The first option is a research pathway including a thesis. Students wishing to use this Masters course as a pathway to a higher degree by research should take this first option. For students to be able to progress to HDR, this course must have a minimum 12 points of research.

The second option is a program of coursework involving advanced study and an Industry experience studio project.

Students admitted to the course, who have a recognised honours degree in a discipline cognate to information technology, will receive credit for PART C, however, should they wish to complete a 24 point research project as part of the course they should consult with the course coordinator.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/information-technology

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/information-technology-c6001?domestic=true#making-the-application

Read less
The Technology Management Group of UCL’s Mullard Space Science Laboratory (MSSL) and UCL Centre for Systems Engineering (UCLse) have pooled expertise to develop this exciting new programme, which aims to equip students with the knowledge and skills necessary to develop a career in technology management or engineering management. Read more
The Technology Management Group of UCL’s Mullard Space Science Laboratory (MSSL) and UCL Centre for Systems Engineering (UCLse) have pooled expertise to develop this exciting new programme, which aims to equip students with the knowledge and skills necessary to develop a career in technology management or engineering management.

Degree information

Students learn about the challenges and opportunities of working with new and legacy technology, and are introduced to key concepts such as technology maturity, lifecycles, risk, reliability and resilience. Systems and strategic thinking is promoted throughout, and the importance of the enterprise context. The research elements aim to instil a deep knowledge of at least one area of technology management with industrial relevance.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits), two optional taught modules (30 credits) and three research modules (90 credits).

Core modules
-Business Environment
-Lifecycle Management
-Risk, Reliability, Resilience
-Technology Strategy

Optional modules - students choose two from the following:
-Defence Systems
-Environmental Systems*
-Project Management*
-Rail Systems
-Responsible Science and Innovation*
-Spacecraft Systems
-Systems Design
-Systems, Society and Sustainability*

*These modules are delivered by other UCL departments (subject to availability)

Research modules - students undertake a structured research programme comprising:
-Emerging Technology Review (group project, 15 credits)
-Technology Management Project Concept (15 credits)
-Technology Management Research Project (60 credits, including a 12,000-word dissertation)

Teaching and learning
Teaching methods incorporate a mix of lectures and case study-based teaching, and groupwork, in which students will be challenged to come up with novel ideas, lead groups to innovative solutions and manage complex tasks under tight time pressure. Assessment is through coursework, examinations, written reports and presentations, and the dissertation.

Careers

UCLse has strong links with companies in the aerospace, communications, construction, energy, transport and defence sectors and our Industrial Advisory Board ensures relevance to industry.

Typical career destinations might include:
-Graduate Systems Engineer (Airbus, BAE Systems, Boeing, GE, GDUK, SELEX, THALES, Ultra Electronics)
-Technology/Business Consultant (Accenture, Capgemini, Deloitte, Ernst & Young, KPMG, PwC).

Employability
Drawing on our experience of providing short training courses for industry (such as the Project Manager training courses we run for the European Space Agency) we will integrate a large amount of skills development into our teaching, including skills in communication, negotiation, leadership and motivation, decision-making, and managing complex, time-constrained tasks, all of which will be beneficial for future careers.

Why study this degree at UCL?

The programme blends general principles of management with technology-focused teaching and integrates aspects of systems engineering and project management; the UCL Mullard Space Science Laboratory has nearly fifty years’ experience of developing cutting-edge spacecraft technology, and the programme content builds on research conducted by the Technology Management Group at MSSL in these areas.

The programme contains two compulsory modules relevant to leadership and entrepreneurship (Technology Strategy, and Business Environment). These modules will give students the knowledge and skills necessary to lead new technology-driven enterprises.

The curriculum has an international focus, with case studies from major technology companies around the world including Apple, Samsung and Lenovo. A number of industrial visits are anticipated and this ‘real world’ exposure to organisations will help contextualise the theory and techniques learnt.

Read less
Music Technology is a rapidly evolving field of study with a diverse and expanding range of possibilities. Read more

Aims

Music Technology is a rapidly evolving field of study with a diverse and expanding range of possibilities.

The MSc in Audio Technology is designed to go beyond the simple provision of training, and to instead enable you to engage with current debates and actively participate in some of the most vibrant areas of contemporary research.

Throughout the course you will be encouraged to demonstrate self-direction and autonomy as you critically explore and define your position within the wider field. One overarching aim is that you should leave the course as not only an adept user of various hardware and software technologies, but as someone able to actively shape and develop their own, responding as necessary to future developments.

Thus, in addition to developing your theoretical and methodological understanding, the MSc in Audio Technology features a strong emphasis on practical work in a number of different (but related) areas. For example, you will study modules in Advanced Studio Practice, Sound on Screen, Music Computing and Musical Human-Computer Interaction. These are supported by a technology-orientated Research and Development module that provides robust foundation for the final Audio Technology Project.

Acting as summary of all that you have learned and a portfolio going forward, the Audio Technology Project provides an opportunity to plan and execute a substantial project in an area of personal specialism or interest. Innovative projects are encouraged, and there exists the potential for interdisciplinary and/or collaboration with practitioners in other fields.

Fees and finance

2015/6 Home/EU International
Full time £5,750 £11,960
Part time £2,875

These fees are applicable for new entrants in 2015/6. Fees are for the academic year only, any subsequent years may be subject to an annual increase, usually in line with inflation.

The University also offers a postgraduate loyalty discount: If you have completed an undergraduate degree at the University of Wolverhampton, you may be eligible for a 20% discount on the first year of a taught postgraduate programme.

Employability

The course will actively equip both graduates and those already in industry with a diverse range of skills to enhance their career prospects. It will also develop a range of opportunities for experience and employment in areas such as studio recording, media production and content creation, video game and software development, education (FE/HE), research assistantships/studentships, and employment in HE institutions.

In addition to subject-specific practical skills, you will also acquire a range of transferable skills relevant for pursuing a research degree. These include critical, analytical, project management and research skills from the study of a broad spectrum of literature, research, and external projects.

Outcomes

- Demonstrate knowledge and critical understanding of a variety of issues in the expanded field of contemporary music technology, taking an independent and rounded perspective.
- Apply theoretical discourse relating to aspects such as technologised production and performance, reactive/interactive/non-linear media, and computational creativity (etc.) to practice through a systematic understanding of historical, contextual, philosophical, technical and scientific theory.
- Select, interpret, develop and apply a variety of research methodologies appropriate for their work.
- Critically evaluate and use a wide variety of hardware and software technologies, and, where appropriate, develop their own.
- Exercise personal autonomy in learning through effective self-organisation and management of workload in both individual and group scenarios.
- Understand the possibilities afforded by the contemporary, expanded field of music technology (including its gaps and trends), and be able to position their own work, interests and aspirations within this wider context.

Why Wolverhampton?

The course offers an explicit and concerted move away from the notion of “training” in how to use specific software and/or other music technologies in favour of a more balanced synthesis of theory and practice.

The proposal for the Audio Technology Project is developed in the Research and Development module, providing time and opportunity to consider the project’s direction thoroughly, and to explore possibilities for collaborative/interdisciplinary working.

Course staff specialise in both traditional/well-established areas of music technology (studio production, film sound, audio synthesis and processing) and flourishing areas of contemporary research (musical interaction, generative music).

A wide range of career routes are open to graduates of the course. These are largely dependent upon the nature of the work the student chooses to produce, but may include: studio production, sound for games and film/video/animation, interactive media, interaction design, creative software development, design for music technology, post-compulsory and higher education.

The University of Wolverhampton continues to develop state of the art facilities to greatly enhance your learning experience. The Performance Hub, opened in 2011, has a diverse range of fully equipped music teaching, performance and practice rooms (accommodating single person to large band / ensemble), two high-end professional recording studios, and two bespoke technology suites boasting sixty Apple iMacs running industry standard software including Pro Tools, Logic Pro, Max, Pure Data and SuperCollider.

Our two recording studios offer the perfect blend of digital and analogue technologies giving students the opportunity to combine classic analogue recording technique with the flexibility and reliability digital technology provides. As well as a dedicated live room each for recording, for increased flexibility and choice of room acoustic, any of the music rehearsal rooms surrounding each studio can also be patched into the studio's control room.

Read less
The MA in Digital Media is unique in its combination of practical and theoretical approaches to contemporary media and technology- http://www.gold.ac.uk/pg/ma-digital-media-technology-cultural-form/. Read more
The MA in Digital Media is unique in its combination of practical and theoretical approaches to contemporary media and technology- http://www.gold.ac.uk/pg/ma-digital-media-technology-cultural-form/

The established and exciting degree is designed to help you understand digital transformations in media, culture and society and apply this understanding in practice, in the media and creative industries and in further research. You will be equipped with skills that can be applied to current and future developments in digital media, social media, computing and other aspects of technology.

The MA in Digital Media educates aspiring media practitioners and academics as well as early and mid-career professionals who seek to reflect on their roles in a structured and stimulating learning environment designed to give all students up-to-the-minute knowledge of digital media and the skills to apply that knowledge to future developments.

The MA offers two pathways:

-Pathway 1 is a theory programme where you learn about developments in digital media and technology from a wide range of perspectives

-Pathway 2 is a theory and practice programme where you improve your skills, understanding and experience in one of the following areas:

Documentary
Image making
Journalism
Writing

Acclaimed academics and practitioners

Benefit from the experience and expertise of one of the world’s leading media and communications departments. You'll be taught by theorists and practitioners of international standing: Sarah Kember, Joanna Zylinska, Graham Young, Tony Dowmunt, Angela Phillips, Julian Henriques and David Morley.

Work placements and internships

The MA in Digital Media regularly attracts offers of work placements and internships. Recently these have come from Google, The Science Museum and N1creative.com.

Facilities

Our students have access to state-of-the-art facilities including well-equipped lecture and seminar rooms, exhibition spaces, computer facilities and digital media suites.

The department is also currently host to the renowned philosopher of media and technology, Bernard Stiegler and students will have access to his modulein Media Philosophy as well as priority access to the innovative and popular option After New Media. Designed to complement the MA in Digital Media, this course provides a framework for thinking about the current media environment as well as future forms of human and computer interaction.

An established record

The MA in Digital Media has been redefining media theory and practice since 2004. Our students become proficient in:

the history, sociology and philosophy of digital media
the application of critical conceptual skills to specialist areas and future forms of media
multimedia skills in image making (photography, video, animation, graphic art) script writing, journalism and documentary
MA Digital Media students have access the pioneering option ‘After New Media’, a non-assessed online module which explores the themes of self mediation, ethical mediation and intelligent mediation, and develops a framework for thinking about 'life' after new media. As befits a course of this kind we will be combining media, and exploring their pedagogic potential – uniting digital-online technologies with more traditional teaching formats, such as reading groups, seminars and an end of year symposium.

Contact the department

If you have specific questions about the degree, contact Dr Sarah Kember.

Modules & Structure

The programme consists of:

Two compulsory core modules
Pathway 1 - between two and four option modules (worth 60 credits) OR
Pathway 2 - a two-term practice block (worth 30 credits) and either one or two option modules (worth 30 credits)
The dissertation or the practice/theory project

Assessment

Seen take-home paper; essays; dissertation or practice/theory project and other production work in the area of documentary, image-making, journalism or fiction.

Programme overview

This is an exciting programme which offers a critical, contextual and practical approach to digital media and technology. It problematises approaches to the 'new' media in academic and professional debate, especially those which overemphasise the potential for radical social change led by a homogenised technology itself.

The programme is defined by its resistance to technological determinism and its insistence on the importance of addressing the social and historical contexts within which a range of media technologies are employed. In order to provide a contextual framework and facilitate the conceptualisation of digital media and technologies as fully cultural forms and processes, the programme will draw on a range of disciplines including: media and cultural studies, sociology, anthropology and philosophy. However, the programme will remain focused on key contemporary concerns about the potential role of digital media in society and on refiguring the contours of the 'new' media debate.

The programme offers two pathways. Pathway 1 addresses central theoretical and conceptual concerns relating to digital media. Pathway 2 combines theoretical analysis and practical work, offering students the opportunity to explore new media theories and concepts in practice. Pathway 2 is primarily aimed at students who already have some experience in one of the areas on offer: documentary; digital photography and image making; journalism; writing. It is meant to appeal to media industry professionals who are keen to reflect critically on their practice within a structured learning environment, graduates of practice-based courses but also those who have gained their practical experience in documentary; digital photography and image making; journalism or writing in informal settings.

Programme structure

The first compulsory core course is Digital Media - critical perspectives and this is taught in a small workshop format in the Autumn term. This course functions as a foundation for the second core course and offers students a map of the key debates in digital media. The course is taught in ten two hour workshop sessions and is supported by the provision of one-to-one tutorials.

The second compulsory core course is Technology and Cultural Form - debates, models, dialogues and this develops questions of technology, power, politics and subjectivity which were introduced in the first core course. The first part of this course highlights the key conceptual concerns of a contextualised approach to digital media plus the relevant debates and models formulated by key figures in the field. The second part of this course aims to generate a dialogue between theoreticians and practitioners around some of the most intellectually stimulating, contentious and contemporary ideas in the field without necessarily seeking a resolution. This course is taught in ten two hour workshop sessions during the Spring term and is supported by the weekly provision of one-to-one tutorials.

Students are required to take options from the lists provided by the Media and Communications, Anthropology, Comparative Literature and Sociology Departments as well as the Centre for Cultural Studies. Examples might include: After New Media, Nature and Culture, Cultural Theory, Globalisation, Risk and Control, Embodiment and Experience, Political Communications. Options are taught primarily through lectures and seminars and take place in the Autumn or Spring terms.

Each student's option profile is discussed with the programme convenor in order to ensure that the balance of subject-specific topics is appropriate for the individual concerned. Option courses are taught primarily through lectures, seminars and tutorials and take place in the Autumn or Spring terms.

All students are required to produce either a 12,000 word dissertation on a topic agreed by the student and supervisor or a practice/theory project in the area of documentary, photography and image making, journalism or fiction. The length of the practical element is dependent on the media and the form used and will be agreed in advance with the supervisor. It will, however, be comparable with practical projects undertaken in practice MA programmes in the relevant field. Students undertaking the practice/theory project will also be expected to submit a 3-4000 word analysis of their practice which locates it within the theoretical debates explored in the MA as a whole. This essay may be presented as a separate document or as an integral part of the project depending on the nature of the project and by a agreement with both theory and practice supervisors.

Programme outcomes

The programme's subject specific learning outcomes require students to analyse and contextualise developments in digital media and technology with reference to key debates in the history, sociology, anthropology and philosophy of the media. Students who opt for the practice/theory pathway will also be required to produce material of publishable or broadcast standard and to evaluate the ways in which theoretical and practical insights intersect. All students will develop a wide range of transferable qualities and skills necessary for employment in related or unrelated areas. These are described by the Quality Assurance Agency as: 'the exercise of initiative and personal responsibility, decision-making in complex and unpredictable situations, and the independent learning ability required for continuing professional development'.

By the end of the programme students will be able to:

-Map and critically evaluate key debates in the field of new media
-Analyse and contextualise current and future developments in digital media and technology
-Evaluate and articulate key historical, sociological, anthropological and philosophical approaches to the study of digital media and technology
-Demonstrate in-depth knowledge of at least four differing areas of inquiry
-Demonstrate an advanced level of conceptual knowledge and (where relevant) practical skill appropriate for a sustained piece of work in the field
-Prepare and deliver clearly argued and informed work
-Locate, retrieve and present relevant information for a specific project
-Manage a complex array of competing demands and work effectively to a deadline
-Work resourcefully and independently
-Think critically and/or work practically within a given context

Skills

We provide graduates with skills that are cutting edge: in the critical analysis and/or creative production of digital media; in the disciplinary knowledge and conceptual frameworks necessary for current and future forms of media and technology; in the awareness of how digital media and technologies are re-shaping society from the ways we communicate (through social media and web 2.0) to the increasingly ‘smart’ environments in which we live.

Careers

Our programme provides a theory and practice pathway and prepares students for work in the following areas:

-media and creative industries; advertising, marketing and PR (graduates of the MA Digital Media have found work with Virgin Media, Google, the BBC and other leading organisations worldwide)
-research and academia (graduates from this programme have gone on to study for PhD degrees in higher education institutions around the world and also here with us)
-media production and new media art (graduates have exhibited, published and produced work in photography, journalism, TV, documentary, film and multimedia)

Graduate Ekaterina discusses her career:

"I work for a company, called Visual DNA, which already sounds like life happening After New Media. The company is the largest data provider in Europe and is totally multinational. We actually try to analyse human visual DNA, you memories, feelings, thoughts about the future, anticipations, etc by creating personality quizzes where instead of verbal answers we tend to use images.

My role is as Creative Developer. It involves working with images from concept to finding/shooting and post-production. My qualifications perfectly matched what they’ve been looking for, Digital Media rocks!

My tip for the new-to-be-graduates is this: physically go to places and companies and talk to people. It really opens up loads of possibilities, and when I tell someone where I’ve graduated from they look impressed, and there is some sort of respect coming from them."

Funding

Please visit http://www.gold.ac.uk/pg/fees-funding/ for details.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X