• University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
University of Birmingham Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Bradford Featured Masters Courses
Cardiff University Featured Masters Courses
"industrial" AND "product…×
0 miles

Masters Degrees (Industrial Production)

  • "industrial" AND "production" ×
  • clear all
Showing 1 to 15 of 432
Order by 
The Master’s Programme is coordinated jointly by the Universitat Internacional de Catalunya (UIC) and the Polytechnic University of Turin, and constitutes a key component of the undergraduate and postgraduate study programmes in the Faculty of Business Administration and Industrial Production. Read more
The Master’s Programme is coordinated jointly by the Universitat Internacional de Catalunya (UIC) and the Polytechnic University of Turin, and constitutes a key component of the undergraduate and postgraduate study programmes in the Faculty of Business Administration and Industrial Production. Founded in 1986, these programmes also feature the participation of the École de Management du Pôle Universitaire Léonard de Vinci (PULV) in Paris and the Athlone Institute of Technology (AIT) in Ireland.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation
- Practical guidance and feedback from industrial automation experts from around the world
- Live knowledge from the extensive experience of expert instructors
- Credibility and respect as the local industrial automation expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Next intake is scheduled for June 27, 2016. Applications now open; places are limited.

Now also available on Campus.

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

ENTRANCE REQUIREMENTS

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:
a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.
b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.
c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):
• Industrial Automation
• Industrial Engineering
• Instrumentation, Control and Automation
• Mechanical Engineering
• Mechanical and Material Systems
• Mechatronic Systems
• Manufacturing and Management Systems
• Electrical Engineering
• Electronic and Communication Systems
• Chemical and Process Engineering
• Robotics
• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation
- Practical guidance and feedback from industrial automation experts from around the world
- Live knowledge from the extensive experience of expert instructors
- Credibility and respect as the local industrial automation expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Perth Campus next intake is scheduled for June 27, 2016. Applications now open; places are limited.

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

ENTRANCE REQUIREMENTS

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:
a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.
b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.
c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):
• Industrial Automation
• Industrial Engineering
• Instrumentation, Control and Automation
• Mechanical Engineering
• Mechanical and Material Systems
• Mechatronic Systems
• Manufacturing and Management Systems
• Electrical Engineering
• Electronic and Communication Systems
• Chemical and Process Engineering
• Robotics
• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry. Read more

Why this course?

This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry.

You'll have the opportunity to undertake a three-month research or development project based with one of our industrial partners such as M Squared Lasers.

We have a long tradition of cutting-edge photonics research, which supports our courses. Much of this work has resulted in significant industrial impact through our spin-out companies and academic-industrial collaborations.

You'll also have the opportunity to develop your entrepreneurial skills by taking courses delivered by the Hunter Centre for Entrepreneurship.

You’ll study

The course is made up of two semesters of taught classes, followed by a three-month research project based with one of our industrial partners. The majority of your classes are delivered by the Department of Physics and cover the following:
-research and grant writing skills, which are valuable in both academic and commercial settings
-project training, including entrepreneurial and innovation skills training and a literature survey preparing for the project in the company
-topics in photonics, covering laser physics, laser optics and non-linear optics
-optical design, where you will learn about advanced geometrical optics and apply this knowledge to the design of optical systems, through the use of modern optical design software
-photonic materials and devices, focusing on semiconductor materials physics and micro/nano-structures
-advanced photonic devices and applications, covering quantum well structures, waveguides and photonic crystals

These classes are complemented by two classes delivered by the Department of Electronic & Electrical Engineering, which look at:
-system engineering and electronic control which forms a key part of modern optical systems
-photonic systems, where fibre optic communications systems and principles of photonic networks are discussed

Work placement

You'll be based with one of our industrial partners for a three-month project placement. This is your opportunity to experience how research and development operate within a commercial environment. It'll also give you a chance to form strong links with industry contacts.

The project is put forward by the company and supervised by both industrial and academic staff. Training on relevant skills and background will be received before and during the project.

Facilities:
Scotland has a world-leading position in optics and photonics industry.Your project will be carried out mainly in the excellent facilities of our Scottish industry partners. Projects elsewhere in the UK and with international companies may also be possible.

Advanced research facilities are also available in:
-the Department of Physics here at Strathclyde
-the Institute of Photonics
-the Fraunhofer Centre for Applied Photonics

Our research is strongly supported in equipment and infrastructure. This includes a newly opened 3-storey wing in the John Anderson Building as part of a £13M investment programme in Physics. Furthermore, the IoP and FCAP have recently relocated into the University's Technology & Innovation Centre (TIC) which at £90 million TIC is Strathclyde’s single-biggest investment in research and technology collaboration capacity. This new centre will accelerate the way in which researchers in academia and industry collaborate and innovate together in a new specifically designed state-of-the-art building in the heart of Glasgow.

Guest lectures

You'll attend the seminar series of the Institute of Photonics and Fraunhofer Centre of Applied Photonics with distinguished guest speakers giving a first-hand overview of the rapid development in applied photonics research.

Learning & teaching

In semesters one and two, the course involves:
-lectures
-tutorials
-various assignments including a literature review
-workshops where you'll gain presentation experience

The courses include compulsory and elective classes from the Department of Electronic & Electrical Engineering.
Over the summer, you'll undertake a three-month project based on practical laboratory work in a partner company. You'll be supervised by the industrial partner and supported by an academic supervisor.

Assessment

Assessment methods are different for each class and include:
-written examinations
-marked homework consisting of problems and/or essay assignments
-presentations

Your practical project is assessed on a combination of a written report, an oral presentation, and a viva in which you're questioned on the project.

How can I fund my course?

Financial support for Scottish and EU students may be available on a case-by-case basis which will be supported by the industrial partners. Selection will be based on an excellent academic record and/or industrial experience and the promise of a successful career in Industrial Photonics.

Please indicate that you apply for such a scholarship in the "Funding" section of the application form. You'll also need to provide a CV and a statement explaining your interests and motivation with your application. This will inform the decision on a possible scholarship.

For more information, just get in touch with the Department of Physics.

Available scholarships:
We currently have a scholarship available for this course.

You must be able to demonstrate academic excellence based on your previous study along with the promise of a successful career in Industrial Photonics. Relevant previous industrial experience will be considered.

Deadline:
The first round of applications closes on 20th May 2016, and a second one will close on the 30th June 2016.

How to apply:
Apply for this scholarship via our scholarship search: https://www.strath.ac.uk/studywithus/scholarships/sciencescholarships/physicsscholarships/physicsindustrialphotonicsscholarships/

Careers

A degree in industrial photonics can set you up to work in a range of jobs in physics and positions in other industries.

Typically, it can lead you to photonic technologies in industrial corporate research and development units, production engineering and applied academic laboratories.

Work experience is key:
Employers want to know you can do the job so work experience is key.

This course has a strong focus on the relationship between academia and industry. It's a great opportunity to enhance your skills and provides a direct transition from university to the work place.

We have an excellent record of graduate employment in the Scottish, national and international optics and photonics industries.

Doctorate study:
If you're interested in practical work with impact but are also interested in a further academic qualification, you can move on to study an EngD or a CASE PhD studentship. These can lead to a doctorate within industry or in close collaboration with industry.

Job roles:
Our Physics graduates from photonics related courses have found employment in a number of different roles including:

-Medical Physicist
-Optical engineer
-Laser engineer
-Optical and laser production engineer
-Research and production engineer
-Senior Engineer
-Systems Engineer
-Software Engineer
-Spacecraft Project Manager
-Defence Scientist
-Oscar winner

Read less
The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing. Read more

Aims and Basic Characteristics:

The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing.

The degree course aims at training a professional engineer with a thorough knowledge and understanding of the principles of systems engineering of transportation, logistics and production, in which to realize the acquired ability to conceive, plan, design and manage complex, innovative systems and processes, with particular attention to the related safety aspects.
The degree in Safety Engineering for Transport, Logistics, and Production will support the state exam for a license to practice in all the three areas of Engineering: Civil and Environmental, Industrial, and Information.

The typical professional fields for graduates in Safety Engineering for Transport, Logistics, and Production are those of the design and management of safety systems, with particular reference to the transport systems, the development of advanced innovative services, the management of logistics and production, in private and public enterprises, and public administration.

For any information, feel free to write to Prof. Nicola Sacco: safety_at_dime.unige.it

Job opportunities:

• engineering companies and/or large professional firms operating in the field of design, implementation, security management with reference of the transport systems and territorial
• public and private institutions that handle large lines infrastructure (railways, highways, ...)
• government (municipalities, provinces, regions, port authorities, ...)
• freelance
• research structures (universities, research centers, ...)

What Will You Study and Future Prospects:

The main goal is to enable M.Sc. graduates to operate in the various activities related to safety in transport systems, logistics, and production, but also of the territory where they are located.

The course provides notions about:

• the risk assessment of local systems, and in particular the planning, design and management of both safety (protection against accidental events) and security (protection than intentional events);
• the evaluation in terms of cost/benefits of different design alternatives for risk mitigation in transport, logistics, and production systems;
• the planning and management of the mobility of people and goods, through the knowledge of the fundamental elements of transport and logistic systems, as well as the criteria to define the physical characteristics of isolated infrastructures a network of infrastructures, with particular reference to the relevant functions and interdependencies;
• the design and safe management of transport, logistic, and production systems, with reference to either the systems as a whole, and to the relevant single components, such as infrastructures, facilities, vehicles, equipment;
• the development and use of advanced methods to manage and optimize the performance and safety of road, rail, air and sea infrastructure and transport services, as well as their interactions in an intermodal framework, by means of the design and implementation of monitoring, regulation, and control systems via the most advanced technologies related to their specific disciplines;
• the analysis and evaluation of the externalities of transport and logistic systems, with explicit reference to the particular safety aspect and issues characterizing each phase of the mobility of people and goods, even within the production plants connected, and their interaction with surrounding environment.

The course is articulated into two alternative curricula:

1. TRANSPORT AND LOGISTICS: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective mobility of passengers and freights.

2. INDUSTRIAL LOGISTICS AND PRODUCTION: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective production plant internal logistics and management.

Entry Requirements:

Admission to the Master of Science in Safety Engineering for Transport, Logistics and Production is subject to the possession of specific curricular requirements and adequacy of personal preparation.

The access requirements are equivalent to those provided by the general educational objectives of all three-year university degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering. In fact, one of the following curricular requirements must be fulfilled:

• possession of a Bachelor, or a Master degree, or a five-year degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering, awarded by an Italian University, or equivalent qualifications;
• possession of a Bachelor, or a Master degree, or a five-year degree with at least 36 ECTS (“Base Courses”, e.g. Mathematics, Physics, Chemistry, Informatics) and at least 45 ECTS that pertain to the Engineering classes, awarded by an Italian University, or equivalent qualifications;

To access, a knowledge of English is required, at least equivalent at B1 European Level.

Read less
Do you want to develop your technical poultry production practice to postgraduate level?. Harper Adams University has developed a Masters degree in Poultry Production. Read more
Do you want to develop your technical poultry production practice to postgraduate level?

Harper Adams University has developed a Masters degree in Poultry Production.

The course

The poultry meat and egg sectors continue to show a consistent growth across all continents, with greater levels of expansion in developing regions of the world. Poultry meat production exceeded 100 milion tons in 2013 with broiler production accounting for all but 10 per cent of this production. With the anticipated expansion in world human population of 9.3 billion primarily in developing countries the demand four poultry meat is expected to continue into the future with India and China representing particularly large markets. Egg production is also expected to continue its expansion. Poultry is a major consumer of animal feed grain, with 40% of the total being used by poultry. There will be competing demands for this feed, which the poultry sector will need to respond to.

The UK poultry industry is characterised by a small number of large integrated companies a position increasingly mirrored on a global scale. Whilst there is a clear opportunity for growth there are a number of known challenges including feed price volatility in the short to medium term, the increased competition for raw materials in the longer term, poultry health, human health related issues (e.g. Campylobacter), concerns over antibiotic use.

The global poultry sector is particularly well placed to address the needs for increasing quantities of animal derived protein, this programme will provide the platform for students to address these and other emerging issues through focused and tailored assignments allowing students to plot their own pathway of learning.

The programme will serve to offer a portfolio of multidisciplinary topics within a selection of specialised integrative modules to advance students’ understanding of the relevant biosciences underpinning poultry farming. This will be presented within a theme of mono-gastric animal production where there are many similarities of principle and scientific approaches.

In summary the course:

Supports students to develop a level of understanding and knowledge that allows them to work as subject specialists and lead developments within poultry production systems.
Supports students to evaluate the wider consequences of animal production systems, mitigating any detrimental effects on animal welfare, food quality and the natural environment.
Supports students in their development of an advanced understanding of the biological factors that limit animal production and the scientific, technological, economic and social factors that influence animal production systems.

How will it benefit me?

The course will:

Prepare students for a career in Poultry Production.
Offer vocational training in the area of applied Poultry Production.
Prepare students for PhD studies.

Modules are usually delivered as an intensive short course, taught over a one week block, with a maximum of 5 days per 15 credit module providing in the region of 35 hours of contact time.
Teaching may consist of formal lectures, seminars, tutorials, practical exercises, laboratory sessions, study visits or the use of guest speakers.
The PgC, PgD and MSc are offered full-time and part-time to allow those in work to study towards an award at a pace that suits their needs and time available.
The PgC is particularly well suited to those currently working in the sector as a means of initial training or CPD.

Read less
The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. Read more

Mission and goals

The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. The level of cultural education is raised during the first year by broadening the knowledge of advanced analysis methods, which in the second year are applied in specialisation subjects and a thesis. The first year is offered in the Milano Bovisa and Lecco campuses with the same study plan (the first year is not available in the Piacenza campus, which offers only the second year). Students can choose different previously approved study plans (PSPA) in the second year. Some are offered in the Milano Bovisa campus (“Impianti e Produzione” [Production Plants and Production], “Meccatronica e Robotica” [Mechatronics and Robotics], “Metodi e Tecniche di Prototipazione Virtuale” [Methods and Techniques for Virtual Prototyping], “Motori e Turbomacchine” [Engines and Turbomachinery], “Progettazione” [Design], “Materiali e Tecnologie Innovative” [Materials and Innovative Technologies] and “Veicoli Terrestri” [Ground Vehicles]). Others are offered in the Lecco campus (“Mechanical Systems Design” and “Industrial Production”) and one in the Piacenza campus (“Macchine Utensili e Sistemi di Produzione” [Machine Tools and Production Systems]).

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Career opportunities

Graduates with a Laurea Magistrale (equivalent to a Master of Science) in Mechanical Engineering are technicians who can independently develop the functional, construction and energy-related aspects of innovative products, processes and systems in industry and in the advanced tertiary sector. On passing the State Professional Examination, Mechanical Engineering Graduates with a Laurea Magistrale (equivalent to a Master of Science) can ask to be included in the Register of Engineers (section A).

Presentation

See http://www.polinternational.polimi.it/uploads/media/Mechanical_Engineering_04.pdf
The MSc Programme in Mechanical Engineering – Ingegneria Meccanica provides an academically challenging exposure to modern issues in advanced Mechanical Engineering.
The educational goal of the MSc Programme is to train highly qualified engineers, capable of playing different roles in the job market, by providing them with sound scientific, economic and technical competences, together with broad practical and professional skills needed for a successful career in a technologically advanced and rapidly evolving society.
The specialist in Mechanical Engineering, being involved in the design, production process and operation of products and systems, needs to develop a strong interdisciplinary background in machine design, with respect to functional requirements, dynamic and structural analysis, propulsion and engine systems, fluid mechanics, material properties and selection, manufacturing processes and production systems, operation and management of industrial plants, experimental techniques, mechatronics and industrial automation. The programme is taught in English. http://www.ccsmecc.polimi.it/en

Subjects

The 1st year is organised in the following compulsory modules: Control and Actuating Devices for Mechanical Systems, Applied Metallurgy, Energy Systems, Nonconventional Machining Processes, Machine Design, Mechanical System Dynamics, Mechanical Measurements, Configuration and Management of Production Systems.

In the 2nd year students will have the possibility to specialize the training, by choosing among the following tracks:
Milano Bovisa Campus: Production Systems, Mechatronics and robotics, Virtual prototyping, Internal Combustion Engines and Turbomachinery, Advanced Mechanical Design, Advanced Materials and Technology, Ground Vehicles.
Lecco Campus: Mechanical Systems Design, Industrial Production.
Piacenza Campus: Machine Tools and Manufacturing Systems.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique Masters in Industrial Biotechnology. IBioIC has committed to creating the next generation of skilled industrial biotechnologists. Read more

Why this course?

The Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique Masters in Industrial Biotechnology. IBioIC has committed to creating the next generation of skilled industrial biotechnologists.

The course meets industrial needs and is at the forefront of developments in science and engineering. It combines the expertise of staff from 13 academic institutions across Scotland. Our industrial partners also provide input to the course.

This is an exciting opportunity for science and engineering graduates who are looking for a career in an emerging industry that is sustainable, green and essential to the global economy.

The course will provide you with a strong foundation in basic industrial biotechnology. You’ll also cover advanced state-of-the-art topics in a wide range of industrial biotechnology-related areas. A three-month placement is offered, giving students the opportunity to gain valuable experience working with one of IBioIC’s industrial partners.

See the website

You’ll study

The taught classes are designed to give you a thorough understanding of the current developments in industrial biotechnology.
Two semesters of formal teaching are followed by an intensive research project. You'll carry this out with an industrial partner.
The taught classes cover the following areas and are taught by the following partners:

Core classes include:
- Industrial Biotechnology, Governance and Importance to the Bioeconomy (The Innogen Institute, Edinburgh University)
- Bioprocessing (Strathclyde University)
- Synthetic Biology (Glasgow University)
- Practical Systems Biology (Edinburgh University)
- Downstream Processing (Heriot Watt University)
- Applied Biocatalysis (Strathclyde University)

Elective classes include:
- Blue Biotechnology (SAMS, University of Highlands & Islands)
- Renewable Energy Technologies (Abertay University)
- Advanced Project Management (Strathclyde University)
- Supply Chain Management (Strathclyde University)
- Production Management (Heriot Watt University)
- Resource Efficient Formulation (University of the West of Scotland)

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) offers an excellent environment for research and teaching. It is located in a new building with several laboratories. All are fitted with modern equipment.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333+44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Two semesters of formal teaching are followed by an intensive research project, carried out with an industrial partner.

Assessment

The final assessment will be based on performance in exams, coursework and the research project. If necessary there may be a formal oral exam.

Careers

The course provides an exciting opportunity for science and engineering graduates who are looking for a career in an emerging industry that is sustainable, green and essential to the global economy.

Our students enjoyed successful placements with the following companies:
- Qnostics
- GSK
- Xanthella
- SeaBioTech
- Marine Biopolymers
- AMT
- Ingenza
- Unilever
- Innogen
- CRODA
- CelluComp
- NCIMB

A total of 70% of our 2014 cohort have found full-time jobs or have undertaken further study as a result of the experience gained throughout their placement.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The University Master's Degree in Industrial Engineering (MEI) qualifies graduates to work as industrial engineers. The programme is divided into 120 ECTS credits. Read more
The University Master's Degree in Industrial Engineering (MEI) qualifies graduates to work as industrial engineers. The programme is divided into 120 ECTS credits. Industrial engineering is a profession with a long tradition and considerable prestige in Spain. The ability of graduates to integrate technology and to design, maintain and manage industrial processes means that they are in high demand on the labour market.

Student Profile

This master's degree is a continuation of the degrees in the field of industrial engineering, specifically the bachelor's degrees in industrial technology engineering, electrical engineering, industrial electronics and automatic control, mechanical engineering, chemical engineering and textile engineering.

It is also designed for holders of diplomas in industrial engineering and other engineering qualifications.

The personal and academic characteristics that are considered appropriate for students who want to take this master's degree are the following:
-A technical education and a desire for a career in the field of industry.
-Knowledge of basic materials and industrial technologies.
-The ability to analyse and assess the social and environmental impact of technical solutions.

Career Opportunities

The University Master's Degree in Industrial Engineering enables for professional practice in Spain. Graduates can find work in the following areas:
-Self-employment
-Management of production plants
-Industrial organisation
-Maintenance management
-Resource management
-Research and development
-Teaching

Read less
Do you want to develop your technical pig production practice to postgraduate level?. Harper Adams University has developed a Masters degree in Pig Production. Read more
Do you want to develop your technical pig production practice to postgraduate level?

Harper Adams University has developed a Masters degree in Pig Production.
The course

Recognise the global context within which food production now operates.
Explore the sciences underpinning food animal husbandry and animal production systems
Support students to identify, analyse and solve biological, technological and economic problems encountered in pig production systems,
Support students to evaluate the wider global, environmental, economic, social, ethical and political issues associated with pig production systems.

How will it benefit me?
The course will:
Prepare students for a career in Pig Production.
Offer vocational training in the area of applied Pig Production.
Prepare students for PhD studies.

Example modules:
Pig Production Systems
Mono-gastric Nutrition and Ration Formulation
Pig Breeding
Genetics and Product Quality
Pig and Poultry Environment, Health and Welfare
Emerging Issues in Mono-gastric Production Systems
Major Research Project (MSc)

Elective Modules:
Elective modules from the list below can be studied in addition to the core modules identified above.

Food chain related
Food Product Development
Meat Science and Public Health
Animal Production, Meat Processing & Quality
Food Policy and Ethics

Farm Business Management
Farm Business Management
Farm Business Analysis
Farm Business Strategy

Agri-Business Management
Leadership & People Management
Principles of Finance
Strategic Management & International Agribusiness
Food Business Operations Management
Agri-Food Marketing

Systems Related
Precision Farming Technology
Animal Welfare and Bioethics

Modules are usually delivered as an intensive short course, taught over a one week block, with a maximum of 5 days per 15 credit module providing in the region of 35 hours of contact time.

Teaching may consist of formal lectures, seminars, tutorials, practical exercises, laboratory sessions, study visits or the use of guest speakers.

The PgC, PgD and MSc are offered full-time and part-time to allow those in work to study towards an award at a pace that suits their needs and time available.

Read less
How can you design an electronic toll collection system? How can a production plant minimize production costs without compromising on quality and safety? How can you design a complex consumer product?. Read more
How can you design an electronic toll collection system? How can a production plant minimize production costs without compromising on quality and safety? How can you design a complex consumer product?

These are typical questions that a graduate of the Master's programme Industrial Engineering and Management (IEM) can address. In a progressively technological society, IEM engineers will increasingly become leaders of technological innovation and design.

A Student of the Master's degree programme Industrial Engineering and Management (IEM) learns how to deal with practical problems in businesses. A focus lies on how to find solutions to problems while taking on a technical and scientific design perspective. The general aim of the IEM Master's programme is to train engineers to acquire a thorough overview of all primary and secondary business processes, especially with respect to the design of a technological product or process.

More than its nearest competitors, the IEM Master's degree programme of the University of Groningen focuses on technology. About 65% of the curriculum is dedicated to engineering and technology, and about 35% focuses on management and business. You can choose between two specialisations:

* PTL: Production Technology and Logistics

* PPT: Product and Process Technology

Why in Groningen?

- Integration of technology and management
- Strongly embedded in a specific technology of your choice

Job perspectives

Career opportunities are abundant for Industrial Engineering and Management(IEM)engineers. Career-market analyses consistently show that there is a strong need for professionals with a combined technical and managerial background.

- IEM engineers with a Production Technology and Logistics (PTL) specialization
IEM engineers with a PTL specialization can start a career as a product manager, involved in the development of new innovative products within the tight boundaries of technical, market and product-related constraints.

-Product and Process Technology (PPT) specialized IEM engineers
PPT-specialized IEM engineers can become members of product and process design teams or for example begin a career as a production manager in industrial companies.

Job examples

- Product manager
- Product developer
- Production manager
- Process designer

Read less
Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Read more

Why this course?

Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Solving problems of air, land and water pollution and protecting society against natural disasters are also important aspects of civil engineering.

Engineering graduates are in high demand from recruiting companies worldwide.

This 18-month MSc course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments, with practical experience provided by the industrial placement.

The course has a significant design element based on the most up-to-date specialist design guidelines. This includes a major design project that integrates acquired knowledge and acts as a platform for structured self-learning.

This MSc in Civil Engineering with Industrial Placement is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, mathematics, physics and mechanical engineering may also be considered.

The MSc in Civil Engineering with Industrial Placement has three optional specialist streams:
- Structural Engineering & Project Management
- Geotechnical Engineering & Project Management
- Geoenvironmental Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineeringwithindustrialplacement/

Industrial placement

A wide range of companies, such as AECOM, ATKINS, CAPITA, CH2M HILL and ClimateXChange (Scotland’s Centre of Expertise on Climate Change), are offering placements exclusively for this MSc. A full list of companies can be provided upon request. The 8 to 12 weeks industrial placement will take place in the period from June to September.

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

In additional to the industrial placement you'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:
- geomechanics
- microbiology
- analytical chemistry
- structural design

- Field investigation
We’re equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software and numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).
For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:
- engineering consultancies, where the work normally involves planning and designing projects
- contractors, where you’ll be managing and overseeing works on-site
- working for utilities or local authorities
- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523*.

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Read more

Course Description

This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Our strategic links with industry ensures that all the materials taught on the course are relevant, timely and meets the needs of organisations competing within the sector. This industry-led education makes our graduates some of the most desirable the world for energy companies to recruit.

In the foreseeable future, hydrocarbon (oil and gas) will still be the major energy source irrespective of the developments in renewable and nuclear energy. The term ‘flow assurance’ was coined by Petrobras in the early 1990s meaning literally “guarantee of flow.” It covers all methods to ensure the safe and efficient delivery of hydrocarbons from the well to the collection facilities. It is a multi-disciplinary activity involving a number of engineering disciplines including mechanical, chemical, process, control, instrumentation and software engineering.

Previously uneconomical fields are now being exploited - oil and gas are produced in hostile environments from deep water to the Arctic. As conventional oil reserves decline, companies are developing unconventional oil fields with complex fluid properties. All of these factors mean that flow assurance plays an increasingly important role in the oil and gas industry.

Course overview

The MSc in Flow Assurance for Oil and Gas Production is made up of nine compulsory taught modules (eight compulsory and one optional from a selection of three), a group project and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Develop a professional ability to undertake a critical appraisal of technical and/or commercial literature.
- Demonstrate an ability to manage research studies, and plan and execute projects in the area of oil and gas production technology and flow assurance.
- Use of the techniques appropriate for the management of a oil and gas production and transport systems.
- Gain an in-depth understanding of the technical, economic and environmental issues involved in the design and operation of oil and gas production and transport systems.

Group project

The group project runs between February and April and is designed to give students invaluable experience of delivering a project within an industry structured team. The project is sponsored by industrial partners who provide particular problems linked to their plant operations. Projects generally require the group to provide a solution to the operational problem. This group project is shared across the Process Systems Engineering MSc, Flow Assurance MSc and Carbon Capture and Transport MSc, giving the added benefit of gaining new insights, ways of thinking, experience and skills from students with other backgrounds.

During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. All groups submit a written report and deliver a presentation to the industry partner. Part-time students will take an additional elective module instead of the group project.

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Recent Group Projects include:

- Waste water treatment process design
- A new operation mode design for a gas processing plant.

Individual Project

The individual research project allows students to delve deeper into a specific area of interest. Our industrial partners often put forward practical problems or areas of development as potential research topics. For part-time students, their research project is usually undertaken in collaboration with their place of work. The individual project takes place from April/May to August.

Recent Individual Research Projects include:

- Separation – from Subsea to Topside
- Evaluation of Multiphase Flow Metering
- Multiphase Jet Pumps
- Sand Transport in Undulating Terrains.

Modules

The taught programme for the Flow Assurance masters is generally delivered from October to March and is comprised of eight compulsory modules, and one optional module to select from a choice of four. The modules are delivered over one to two weeks of intensive delivery with the later part of the module being free from structured teaching to allow time for more independent learning and reflection. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Core -

Management for Technology
Risk Management and Reliability Engineering
Pumps and Pumping Systems
Process Plant Operations
Advanced Control Systems
Introduction to Flow Assurance
Multiphase Flows
Multiphase Flows
Production Technology and Chemistry

Optional -

Process Measurement Systems
Process Design and Simulation
Computational Fluid Dynamics
Structural Integrity

Assessment

Taught modules: 40%; Group project: 20% (dissertation for part-time students); Individual Research Project: 40%.
The taught modules are assessed by an examination and/or assignment. The Group Project is assessed by a written technical report and oral presentations. The Individual Research Project is assessed by a written thesis and oral presentation.

Funding

Bursaries are available; please contact the Course Director for more information.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

There is considerable global demand in the oil and gas industry for flow assurance specialists with in-depth technical knowledge and practical skills. The industry led education makes our graduates some of the most desirable for recruitment in this sector. The depth and breadth of the course equips graduates with knowledge and skills to tackle one of the most demanding challenges to secure our energy resource. Graduates of the course can also be recruited in other upstream and downstream positions. Their knowledge can additionally be applied to the petrochemical, process and power industries.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/flow-assurance-for-oil-and-gas-production.html

Read less
This MSc in Petroleum Production Engineering is aimed at practising oilfield engineers and managers who already have at least two years oil and gas industry experience. Read more
This MSc in Petroleum Production Engineering is aimed at practising oilfield engineers and managers who already have at least two years oil and gas industry experience.

The course has been developed and is supported by experienced industry professionals, using authentic industry applications software, technical standards and engineering practices.

This full-time or distance learning degree in Petroleum Production Engineering covers wells and related production facilities, whether on land, offshore or subsea.

Each study comprises up to 52 hours of lectures and tutorials. Significant additional private study is expected during each module.

Visit the website https://www.rgu.ac.uk/engineering/study-options/postgraduate-taught-full-time/petroleum-production-engineering

Stage 1

•Subsurface
•Wells
•Facilities
•Business Essentials

Exit Award: PgCert Oil and Gas Engineering

Stage 2

•Production System Modelling
•Production Operations
•Completions and Subsea Systems
•Petroleum Economics & Asset Management

Exit Award: PgDip Petroleum Production Engineering

Stage 3

•Individual Project Report

Award: MSc Petroleum Production Engineering

Accreditation

This course is accredited by the Energy Institute for Further Learning at Masters Level.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
This programme aims at conveying the knowledge, judgment and skills required to design and improve manufacturing processes and high-performing sustainable production systems. Read more

Programme aim

This programme aims at conveying the knowledge, judgment and skills required to design and improve manufacturing processes and high-performing sustainable production systems. This includes leading development projects as well as managing such systems in full operation. Chalmers University of Technology is a leading Swedish university in the production engineering area, in terms of research as well as education. Within the programme, there is a close cooperation with industry providing an attractive environment both for national and international students as several of the collaborating companies operate on the global market.

Who should apply

Are you passionate about developing the next generation of production plants in global manufacturing companies? Then you should apply for the Master’s programme in Production Engineering and learn about the latest advances on digital production and train your knowledge and skills in fundamental production principles and engineering tools.

The Master's programme in Production Engineering is aimed at students with a bachelor's degree in Mechanical Engineering, Automation and Mechatronics, Industrial Engineering, or similar degrees.

Why apply

Manufacturing is of fundamental importance for the welfare in society and is closely related to the capability of fulfilling the demands for economic, ecologic and social sustainability. Around one third of the jobs in the European Union are related to the manufacturing sector and there are many global manufacturing companies located in Gothenburg, e.g. Volvo Cars, Volvo Trucks, and SKF. The Production Engineering programme is continuously interacting with these companies and many more through real-world project courses, master thesis projects, field-trips, guest lectures etc.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X