• University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
University of Nottingham in China Featured Masters Courses
University of Leicester Featured Masters Courses
Birmingham City University Featured Masters Courses
Imperial College London Featured Masters Courses
Ulster University Featured Masters Courses
"industrial" AND "mathema…×
0 miles

Masters Degrees (Industrial Mathematics)

We have 548 Masters Degrees (Industrial Mathematics)

  • "industrial" AND "mathematics" ×
  • clear all
Showing 1 to 15 of 548
Order by 
The M.S. in Applied and Computational Mathematics program is designed to prepare students to join the workforce as a consulting mathematician or to pursue doctoral study in computational and industrial mathematics or other computationally-intensive field of study. Read more
The M.S. in Applied and Computational Mathematics program is designed to prepare students to join the workforce as a consulting mathematician or to pursue doctoral study in computational and industrial mathematics or other computationally-intensive field of study. 

Distinctive features include:

• Project-oriented approach in all courses - real-world industrial problems motivate coursework
• Team problem-solving practica emulate an industrial microcosm in which undergrads, grads, faculty, and industrial partners work together to study real-world problems
• Dual emphasis is placed on computational mathematics in the study of all real-world projects in each course of the curriculum

Students who complete the proposed program will:

• Acquire advanced knowledge of a wide variety of topics that span the realm of applied mathematics, including differential equations, discrete mathematics, probabilistic modelling, optimisation and statistical analysis. 
• Become adept at employing all steps of the mathematical modelling process in the analysis of real-world phenomena.
• Acquire expertise in using various forms of technology and in using, modifying, and creating numerical algorithms used in the analysis of real-world phenomena,
• Develop the valuable intuition of using the right tool for the right job.

Curriculum

Required modules:

MAT 500 Fundamentals of Applied Mathematics
MAT 548 Industrial Mathematics - Continuous Models
MAT 549 Industrial Mathematics - Discrete Models
MAT 552 Operations Research
MAT 553 Stochastic Modelling
MAT 554 Scientific Computing
MAT 555 Industrial Practicum - Continuous Models
STA 505 Mathematical Statistics I
MAT 556 Industrial Practicum - Discrete Models
STA 511 Intro Stat Computing & Data Management

Electives:

One three-credit elective must be chosen from one of the following

MAT 514 Theory Of Numbers
MAT 515 Algebra I
MAT 516 Algebra II
MAT 532 Geometry I
MAT 533 Geometry II
MAT 535 Topology
MAT 545 Real Analysis I
MAT 546 Real Analysis II
MAT 575 Complex Analysis I

An additional three credit elective must be chosen from any 500-level mathematics or statistics course not completed from the above list.

Collaborators and Local Industry

Representatives from the private sector consisting of mathematicians and scientists from large companies such as Vanguard, and PrimePay; employees of up-and-coming software companies such as iPipeline; and representatives of small privately-owned consulting firms and hedge fund companies, such as Wagner Associates and TFS Capital were consulted in the creation of this program.  We are continually expanding our network of collaborators within the private sector, with our newest collaborator being Stroud Preserve in West Chester.

Vastly different types of mathematical problems are studied by the members of this group.  Many have agreed to contribute to this M.S. program by way of delivering colloquium talks about their experiences in industry, and by creating and investigating real-world problems in our practicum courses.

Read less
The Applied Mathematics group in the School of Mathematics at the University of Manchester has a long-standing international reputation for its research. Read more

The Applied Mathematics group in the School of Mathematics at the University of Manchester has a long-standing international reputation for its research. Expertise in the group encompasses a broad range of topics, including Continuum Mechanics, Analysis & Dynamical Systems, Industrial & Applied Mathematics, Inverse Problems, Mathematical Finance, and Numerical Analysis & Scientific Computing. The group has a strongly interdisciplinary research ethos, which it pursues in areas such as Mathematics in the Life Sciences, Uncertainty Quantification & Data Science, and within the Manchester Centre for Nonlinear Dynamics.

The Applied Mathematics group offers the MSc in Applied Mathematics as an entry point to graduate study. The MSc has two pathways, reflecting the existing strengths within the group in numerical analysis and in industrial mathematics. The MSc consists of five core modules (total 75 credits) covering the main areas of mathematical techniques, modelling and computing skills necessary to become a modern applied mathematician. Students then choose three options, chosen from specific pathways in numerical analysis and industrial modelling (total 45 credits). Finally, a dissertation (60 credits) is undertaken with supervision from a member of staff in the applied mathematics group with the possibility of co-supervision with an industrial sponsor. 

Aims

The course aims to develop core skills in applied mathematics and allows students to specialise in industrial modelling or numerical analysis, in preparation for study towards a PhD or a career using mathematics within industry. An important element is the course regarding transferable skills which will link with academics and employers to deliver important skills for a successful transition to a research career or the industrial workplace.

Special features

The course features a transferable skills module, with guest lectures from industrial partners. Some dissertation projects and short internships will also be available with industry.

Teaching and learning

Students take eight taught modules and write a dissertation. The taught modules feature a variety of teaching methods, including lectures, coursework, and computing and modelling projects (both individually and in groups). The modules on Scientific Computing and Transferable Skills particularly involve significant project work. Modules are examined through both coursework and examinations.

Coursework and assessment

Assessment comprises course work, exams in January and May, followed by a dissertation carried out and written up between June and September. The dissertation counts for 60 credits of the 180 credits and is chosen from a range of available projects, including projects suggested by industrial partners.

Course unit details

Course unit details

 CORE (75 credits)

 * Introduction to Uncertainty Quantification

 * Mathematical Methods

 * Partial Differential Equations

 * Scientific Computing

 * Transferable Skills for Applied Mathematicians

 OPTIONAL (3 modules, 45 credits)

 * Applied Dynamical Systems (IM)

 * Continuum Mechanics (IM)

 * Stability theory (IM)

 * Transport Phenomena and Conservation Laws (IM)

 * Advanced Uncertainty Quantification (IM,NA)

 * Approximation Theory and Finite Element Analysis (NA)

 * Numerical Linear Algebra (NA)

 * Numerical Optimization and Inverse Problems (NA)

Students registered on the Numerical Analysis pathway must select modules marked NA, and those registered on the Industrial Modelling pathway must select modules marked IM.

Syllabuses for the modules Introduction to Uncertainty Quantification and Advanced Uncertainty Quantification are currently being finalized and details will be added here as soon as possible.

Facilities

Modern computing facilities are available to support the course.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The programme will prepare students for a career in research (via entry into a PhD programme) or direct entry into industry. Possible subsequent PhD programmes would be those in mathematics, computer science, or one of the many science and engineering disciplines where applied mathematics is crucial. The programme develops many computational, analytical, and modelling skills, which are valued by a wide range of employers. Specialist skills in scientific computing are valued in the science, engineering, and financial sector.



Read less
The Master of Science in Industrial Ecology (IE) offers talented students from around the world the opportunity to enhance their expertise and work on the grand challenge to achieve global prosperity within the planetary boundaries. Read more

The Master of Science in Industrial Ecology (IE) offers talented students from around the world the opportunity to enhance their expertise and work on the grand challenge to achieve global prosperity within the planetary boundaries.

What does this master’s programme entail?

The master's programme Industrial Ecology is an emerging scientific discipline that takes a systemic approach to environmental problems. An interdisciplinary approach, integrating technical, environmental and social frames of reference, is essential for sustainable development. The Master in Industrial Ecology is a co-operation between Leiden University and Delft University of Technology. Both universities are at the forefront of the field of Industrial Ecology.

Read more about our Industrial Ecology programme.

Why study Industrial Ecology at Leiden University?

  • You will learn concepts such as industrial metabolism, industrial symbiosis, industrial evolution and life cycle thinking, in order to generate innovative solutions as a catalyst for change.
  • We offer an international multidisciplinary environment, where each student brings their own specific bachelor knowledge and cultural background. We believe that this multidisciplinary approach is the best way to move forward.
  • Collaboration with third parties, such as national or international partner universities, NGOs, industrial partners, or government institutes is encouraged and facilitated.
  • You will be inspired by professors from two world-class universities, who are at the forefront of the field of Industrial Ecology.

Find more reasons to study Industrial Ecology at Leiden University.

Industrial Ecology: the right master’s programme for you?

The programme is open to students from a wide range of studies in engineering, natural and social sciences. If you are an idealistic, ambitious and critical thinking student who is looking for the opportunity to enhance expertise and work on the grand challenges facing our world today, this master’s programme is the right choice.

Read more about the entry requirements for Industrial Ecology.



Read less
This course aims to provide you with a sound general knowledge of advanced mathematics through study in several pure and applied areas of the subject, including Statistics and Operational Research. Read more

This course aims to provide you with a sound general knowledge of advanced mathematics through study in several pure and applied areas of the subject, including Statistics and Operational Research.

If you wish to enter employment within the field of Mathematics then this course will enhance your career prospects by promoting a professional attitude to Mathematics. Mathematicians are warmly welcomed in industry, business and commerce for their analytical ability and logical approach to problem solving. The course is particularly suitable if you are planning a career in teaching Mathematics or are already a qualified teacher seeking to enhance your promotion prospects.

What happens on the course?

  • Mathematical Modelling
  • Statistics
  • Introduction to Cybermetrics
  • Discrete Mathematics
  • Advanced topics in Mathematics

Why Wolverhampton?

The Mathematics department includes a team of researchers in the field of Introduction to Cybermetrics, led by a professor who has been recognised as a leading international authority on the subject and who achieved a very high rating in the latest Research Assessment Exercise.

We pride ourselves on the academic support and guidance given by our friendly and approachable staff. Students have shown their appreciation for this by the exceptionally high ratings they have given us in the National Student Survey in recent years.

Career path

Students will have developed advanced technical skills within the field of Mathematics together with an ability to critically analyse and evaluate complex problems. These skills should equip students to enter careers in Mathematics in a variety of roles.

There is a shortage of Mathematics-related skills both nationally and regionally, and in particular there is a recognised severe shortage of qualified Mathematics teachers. Hence the Mathematics qualification that this course offers will make its graduates highly employable.

Excellent career opportunities will also be open in operational research, statistics, information analysis, financial advising, actuarial work and accountancy.

What skills will you gain?

By the end of this course, you should be able to:

  • Demonstrate a full understanding, knowledge and experience of complex and specialised areas of mathematics; Select and apply appropriate techniques to the analysis, design and synthesis of solutions to problems which require mathematics for their resolution.
  • Apply knowledge of mathematics with particular reference to its applications in other subject areas (e.g. mathematical education, analysis and modelling of business and finance, computing and scientific systems).
  • Demonstrate originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in mathematics.
  • Conduct research into current mathematical literature; review, analyse and evaluate findings in a professional manner.
  • Deal with complex issues both systematically and creatively, making sound judgements in the absence of complete data, and communicating conclusions clearly to specialist and non-specialist audiences.

Who accredits this course?

Institute of Mathematics and its Applications approval to be sought.

A student obtaining an approved IMA award can qualify as a Chartered Mathematician once they have completed 5 years employment in a relevant occupation after graduating.



Read less
Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. Read more

Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. This MSc programme focuses on advanced theoretical and practical techniques in program design, and the management of software project risk.

This programme will:

  • Teach you advanced techniques in program design
  • Allow you to study key issues of interactive system design
  • Teach you the mathematical foundations of software and the practical application of these techniques
  • Focus on discovering ways of mitigating risk in large scale software engineering projects
  • Enable you pursue roles in areas such as software design and engineering, web development, project management and IT consulting.

We offer Industrial Experience options on all our full-time taught MSc programmes, which combine academic study with a one-year industrial placement between your taught modules and summer project. Taking the Industrial Experience option as part of your degree gives you a route to develop real-world, practical problem-solving skills gained through your programme of study in a professional context.

This can give you an important edge in the graduate job market. The Industrial Experience programmes are highly competitive and attract the best students given the limited availability of placements.

We have a new MSc Software Engineering and Security pathway to the MSc Software Engineering degree. If you are interested in this pathway you need to apply for the MSc Software Engineering programme and take the pre-requisite modules and then you would be able to graduate with the MSc Software Engineering and Security.

Security, authentication and identity management have grown substantially in importance in recent years, and there is significant demand in both the commercial and national/local government sectors for software engineers with a good grasp of these areas hence introducing a pathway in Security.

NB: Students will need to take and pass the following modules in order to be eligible for the pathway title MSc in Software Engineering with Security.

ECS726P - Security and Authentication (semester 2)

ECS760 - Distributed Systems and Security semester 2)

ECS715P - Program Specifications (semester 1)

ECS737P - Software Analysis and Verification (semester 2)

ECS738 - Bayesian Decision and Risk Analysis (semester 2)

Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

Why study your MSc in Software Engineering at Queen Mary?

Our research-led approach

Your tuition will be delivered by field leading academics engaged in world class research projects in collaboration with industry, external institutions and research councils.

Our strong links with industry

  • We have collaborations, partnerships, industrial placement schemes and public engagement programmes with a variety of organisations, including Vodafone, Google, IBM, BT, NASA, BBC and Microsoft.
  • Full-time MSc with Industrial Experience option available on our taught MSc programmes. You have the option to complete over two years, with a year of work experience in industry.
  • We have collaborations, partnerships, industrial placement schemes and public engagement programmes with a variety of organisations, including Vodafone, Google, IBM, BT, NASA, BBC and Microsoft.
  • Full-time MSc with Industrial Experience option available on our taught MSc programmes. You have the option to complete over two years, with a year of work experience in industry.
  • Industrial projects scheme - To support industrial experience development, you can do your final project in collaboration with an industrial partner.

Structure

You will study four taught modules per semester followed by written examinations and the MSc research project (dissertation).

Full-time

Undertaking a masters programme is a serious commitment, with weekly contact hours being in addition to numerous hours of independent learning and research needed to progress at the required level. When coursework or examination deadlines are approaching independent learning hours may need to increase significantly. Please contact the course convenor for precise information on the number of contact hours per week for this programme.

Part-time

Part-time study options often mean that the number of modules taken is reduced per semester, with the full modules required to complete the programme spread over two academic years. Teaching is generally done during the day and part-time students should contact the course convenor to get an idea of when these teaching hours are likely to take place.

Year 1

Semester 1 (Maximum of 4 modules to be taken in Semester 1)

Select at least one from:

  • Big Data Processing
  • Functional Programming
  • Program Specifications

Further options:

  • Introduction to IOT
  • Introduction to Object-Oriented Programming
  • Machine Learning
  • Semi-Structured Data and Advanced Data Modelling

Semester 2 (Maximum of 4 modules to be taken in Semester 2)

Select at least two from:

  • Bayesian Decision and Risk Analysis
  • Interactive Systems Design
  • Real Time & Critical Systems
  • Software Analysis and Verification

Further options from:

  • Advanced Object Oriented Programming
  • Cloud Computing
  • Data Analytics
  • Distributing Systems
  • Mobile Services
  • Parallel Computing
  • Security and Authentication 
  • The Semantic Web

Semester 3

  •  Project

Year 2

  • Industrial Placement Project


Read less
This programme develops mathematical modelling skills and provides mathematical techniques required by industry. The period October to June is devoted to lectures, tutorials and practical sessions comprising the core modules. Read more
This programme develops mathematical modelling skills and provides mathematical techniques required by industry.

The period October to June is devoted to lectures, tutorials and practical sessions comprising the core modules.

This is followed by a period of about 14 weeks devoted to an individual project either in an industrial or engineering company or at the University.

Core study areas include mathematical modelling, regular and chaotic dynamics, programming and numerical methods, advanced reliability, availability and maintainability, elements of partial differential equations, static and dynamic optimisation and fluid mechanics.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mathematics/industrial-maths-modelling/

Programme modules

Compulsory Modules:
Semester 1
- Mathematical Modelling I
- Regular and Chaotic Dynamics
- Programming and Numerical Methods
- Advanced Reliability, Availability and Maintainability

Semester 2
- Mathematical Modelling II
- Elements of Partial Differential Equations
- Static and Dynamic Optimisation
- Fluid Mechanics

Assessment

A combination of written examinations, reports, individual and group projects, and verbal presentations.

Careers and further Study

Graduate employment over a wide range of industries encompassing aerospace, automotive electronics, and computer interests as well as software houses, insurance companies, and research establishments and institutions.

Scholarships and sponsorships

A limited number of scholarships are available for this programme as well as the loyalty bonus scheme which reduces fees for Loughborough graduates.

Why choose mathematics at Loughborough?

Mathematics at Loughborough has a long history of innovation in teaching, and we have a firm research base with strengths in both pure and applied mathematics as well as mathematics education.

The Department comprises more than 34 academic staff, whose work is complemented and underpinned by senior visiting academics, research associates and a large support team.

The programmes on offer reflect our acknowledged strengths in pure and applied research in mathematics, and in some cases represent established collaborative training ventures with industrial partners.

- Mathematics Education Centre (MEC)
The Mathematics Education Centre (MEC) at Loughborough University is an internationally renowned centre of research, teaching, learning and support. It is a key player in many high-profile national initiatives.
With a growing number of academic staff and research students, the MEC provides a vibrant, supportive community with a wealth of experience upon which to draw.
We encourage inquiries from students who are interested in engaging in research into aspects of learning and teaching mathematics at Masters, PhD and Post Doc levels. Career prospects With 100% of our graduates in employment and/or further study six months after graduating, career prospects are excellent. Graduates go on to work with companies such as BAE Systems, Citigroup, Experian, GE Aviation, Mercedes Benz, Nuclear Labs USA and PwC.

- Career prospects
With 100% of our graduates in employment and/or further study six months after graduating, career prospects are excellent. Graduates
go on to work with companies such as BAE Systems, Citigroup, Experian, GE Aviation, Mercedes Benz, Nuclear Labs USA and PwC.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mathematics/industrial-maths-modelling/

Read less
BECOME A DESIRED MATHEMATICIAN. This research oriented Master’s will provide you with a rich toolkit of creative problem solving skills that will turn you into a desired scientist, both in and outside academia. Read more

BECOME A DESIRED MATHEMATICIAN

This research oriented Master’s will provide you with a rich toolkit of creative problem solving skills that will turn you into a desired scientist, both in and outside academia. You will dive deep into mathematics, develope genuine research skills in pure, applied and industrial areas and learn to think out of the box. 

CHOOSE FROM AN EXCEPTIONAL LIST OF COURSES

This Master's is part of the national Mastermath Programme, a collaboration of Dutch Mathematics Departments who joined efforts to enhance their Master's programmes. Due to this collaboration you can benefit from an exceptional list of mathematical courses, offered either by Utrecht University or another Dutch University. Check the courses page for more information and a full overview of the courses you can choose from.

WHY UTRECHT?

We combine our course offerings with personal and small-scale teaching, including:

  • a lively colloquium with distinguished international speakers;
  • research training in small group projects in pure-, applied- and industrial mathematics;
  • a unique special training in using historical sources;
  • student seminars in which you practice your own scientific presentation skills; 
  • collective learning of very advanced topics in pure or applied mathematics.

PERSONALIZE YOUR MASTER'S: CHOOSE YOUR TRACK

Within this Master's you can choose from 8 different tracks, allowing you to tailor the programme to your own personal interest. Depending on the track you choose, you can pursue your degree either in the direction of Fundamental Mathematics or in Mathematical Modeling. 

Fundamental Mathematics tracks:

Mathematical Modeling tracks:

You can also choose to do a Research project in History of Mathematics

DOUBLE MASTER DEGREE

If you are up for it, you can also combine the Mathematical Sciences programme with another Master's programmes of the Graduate School of Natural Sciences (e.g. Theoretical Physics, Climate Physics or Computing Science). This will result in a double Master's degree.

PROGRAMME OBJECTIVE

The Mathematical Sciences programme will prepare you for a challenging career, either in or outside academia. Mathematicians are desired employees in today's job market since they can easily deal with complex problems and large data sets in an abstract way. About 40% of our students continue with a PhD in mathematics or related research areas such as imaging or physics (in recent years at Harvard, London, Oxford, Stanford, etc). Many find employment in a research oriented environment at governments or in industry. Work fields include risk analysis, security, forensics, consultancy, data analytics, IT, logistics and more.



Read less
A minimum GPA of 3.0 in all undergraduate coursework in mathematics. A letter of intent written by the applicant expressing professional goals as applied to the program. Read more
• A minimum GPA of 3.0 in all undergraduate coursework in mathematics.
• A letter of intent written by the applicant expressing professional goals as applied to the program.
• Submission of three letters of recommendation, using the required recommendation form. Two letters must be from mathematics faculty with whom the applicant has taken courses.
• Resume or curriculum vitae.

E-mail:
Phone: 315-267-2165

Visit http://www.potsdam.edu/graduate to view the full application checklist and online application

The Master of Arts program in Mathematics is designed to develop the student’s ability to work independently and to obtain basic knowledge in algebra, real and complex variables, and topology so that mathematics literature can be read with understanding and enjoyment. The successful completion of this program should prepare a student to enter a second-year doctoral program in mathematics, to begin a career as an industrial mathematician or as a faculty member at a junior or community college. Program start dates: Fall or Spring (in certain cases).

Required Program Courses
Minimum of 30 credit hours
MATH 661, Topology I ...................................................3 credits
MATH 671, Abstract Algebra I ..........................................3 credits
MATH 672, Abstract Algebra II .........................................3 credits
MATH 681, Complex Variables I .......................................3 credits
MATH 691, Real Variables I .............................................3 credits
MATH 698, Seminar .....................................................3 credits

One of the following:

MATH 662, Topology II ...............................................3 credits
MATH 682, Complex Variables II ...................................3 credits
MATH 692, Real Variables II ........................................3 credits
Mathematics Electives ..................................................9 credits

Success Stories

SUNY Potsdam Mathematics graduates are employed by com-panies such as Aetna, AT&T, IBM, General Electric, Kodak, the National Security Agency and Hewlett Packard. Others have received assistantships and fellowships at reputable universities, and many have earned Ph.D. degrees in mathematics or statistics.

Uniqueness of the Program

The MA Mathematics program develops rigorous mathematical thinking and offers a spectrum of well-taught courses in pure and theoretical mathematics.

Testimonials

"I was accepted to all but three Ph.D. programs I applied to. I feel very fortunate to be in this position, [with] so many great offers from excellent schools. I would recommend a stats program to any BA/MA student interested in furthering their education through a degree that’s not math as they’ll be highly qualified and prepared. That stance has only been further confirmed as I talk to faculty in different statistics departments." — Justin J. Raimondi, Class of 2014

"As a somewhat sheltered student through high school, I found that the mathematics faculty at SUNY Potsdam nurtured me carefully, providing the support I needed to develop confidence in the content area, and to deepen my love of mathematics. After graduating from the BA/MA program, I have taught successfully at the high school and college levels for nearly 30 years." —Donald C. Straight, Class of 1988

Read less
Learn the language of the universe. Become a leading contributor to this pivotal discipline. Find out more about the . Master of Science . Read more

Learn the language of the universe

Become a leading contributor to this pivotal discipline.

Find out more about the Master of Science parent structure.

Massey University’s Master of Science with a major in mathematics is a prestigious qualification for those that are interested in progressing to further, in-depth research. This postgraduate qualification will also give you a career advantage.

Join some of New Zealand’s leading mathematicians to develop your mathematics expertise to a higher level.

Gain a deeper understanding

The Master of Science (Mathematics) will extend your studies of mathematics from your undergraduate degree. You'll gain a deeper understanding of the mathematics you encountered there, as well as learn about new and exciting areas of mathematics. You'll work closely with your lecturers and fellow students in small classes, and undertake a 30 credit year-long project. The project will be your chance to delve even deeper into a topic of your choosing, and perhaps even make your own original contribution to this body of knowledge. It'll be a challenge - but it'll be worth it.

Globally-renowned expertise

Let our experts help you develop your own expertise.

Massey’s mathematics lecturers have an extensive range of experience and expertise across the field of mathematics.

Our groups have a particular strength in the theory and application of differential equations, with many staff at both the Auckland and Manawatu campuses working in the areas of dynamical systems, numerical solution of ordinary and partial differential equations, and modelling of physical systems. Our mathematical modellers are actively contributing to the study of epidemiology, celestial mechanics, hydrothermal eruptions, and biological and industrial processes.

Other areas of strength include modern analysis, geometry and number theory at Auckland and topology and combinatorics at Manawatu.

Mathematics. It's what makes everything work.

From securing sensitive communications using cryptography, to calculating the orbit of a satellite, mathematics is the most fundamental of the tools we use to comprehend and shape the world around us. Some have even called it the "language of the universe". Be that as it may, at heart it's still a product of human creativity and ingenuity - the creation of people like you and me. And there's still plenty left to be discovered and invented.

Friendly environment - passionate scientists

There is a well-established community of scientists and postgraduate science students at Massey. We work together to share discoveries and research and provide peer support.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science (Mathematics) will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.



Read less
The financial services industry place great emphasis on raising the level of mathematics used in banks in applications to pricing, hedging and risk management. Read more

The financial services industry place great emphasis on raising the level of mathematics used in banks in applications to pricing, hedging and risk management. This MSc provides students with the skills necessary in mathematics, statistics and computation for a career in this fast-developing field.

About this degree

Students will develop a detailed understanding of the application of mathematics, statistics and computation to problems in finance, and will gain the necessary practical tools for the pricing, hedging and risk management of a diverse range of financial products in several asset classes.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and the research dissertation (60 credits).

A Postgraduate Diploma will be offered to the students that have completed 8 taught modules (120 UCL credits).

A Postgraduate Certificate will be offered to the students that have completed 4 taught modules (60 UCL credits).

Core modules

  • Asset Pricing in Continuous Time
  • Forecasting
  • Interest Rates and Credit Modelling
  • Quantitative and Computational Finance

Optional modules

Four modules must be chosen from the following list.

  • Applied Computational Finance
  • Equities, Foreign Exchange and Commodities Modelling
  • Market Risk, Measures and Portfolio Theory
  • Mathematics and Statistics of Algorithmic Trading
  • Numerical Analysis for Finance
  • Probability
  • Statistical Inference
  • Stochastic Processes
  • Quantitative Modelling of Operational Risk and Insurance Analytics

Dissertation/report

All MSc students undertake an independent research project, which culminates in a research report of approximately 10,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, practical classes, tutorials and problem-solving exercises. Assessment is through written papers, coursework, examinations and the research report and presentation.

Further information on modules and degree structure is available on the department website: Financial Mathematics MSc

Careers

Many students have progressed to careers in financial services in the City of London or in their home country; a number of graduates have proceeded to a PhD.

Recent career destinations for this degree

  • Structurer, BNP Paribas
  • PhD in Mathematics, University College London (UCL)
  • University Teacher, Chechen State University
  • CFA (Chartered Financial Analyst), Quartic Training
  • MSc Financial Mathematics, UCL

Employability

The financial services industry requires quantitative finance professionals who are able to analyse data, to program, and who are expert in mathematics and computational statistics. Career prospects for graduates of this programme are excellent.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Mathematics is an internationally renowned department which carries out excellent individual and group research applying modelling techniques to problems in financial, industrial, biological and environmental areas.

The department hosts a stream of distinguished international visitors. In recent years four staff members have been elected fellows of the Royal Society, and the department publishes the highly regarded research journal Mathematika.

A notable aspect of this applied Master's programme is that students will be educated to an advanced level in statistics and computing.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mathematics

82% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The demand for better products and commercial services drives the search for creative solutions using computing-based systems, and has established a critical dependence between computing and practically every industry and sector. Read more

The demand for better products and commercial services drives the search for creative solutions using computing-based systems, and has established a critical dependence between computing and practically every industry and sector. This flexible programme offers a broad range of advanced study options, reflecting the emerging technologies in industry.

This is a multidisciplinary programme and, in addition to pure computer science modules, you may choose options where computer science intersects with other fields and builds on your first degree.

  • Allow you to personalise your programme through a wide range of employment-relevant module choices.
  • Build your links with industry and potential employers - we have excellent links with industry, working together on commercial and research projects.

Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement. 

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Why study your MSc in Computer Science at Queen Mary?

Our research-led approach

Your tuition will be delivered by field leading academics engaged in world class research projects in collaboration with industry, external institutions and research councils.

Our strong links with industry

  • We have collaborations, partnerships, industrial placement schemes and public engagement programmes with a variety of organisations, including Vodafone, Google, IBM, BT, NASA, BBC and Microsoft.
  • Full-time MSc with Industrial Experience option available on our taught MSc programmes. You have the option to complete over two years, with a year of work experience in industry.
  • Industrial projects scheme - To support industrial experience development, you can do your final project in collaboration with an industrial partner.

Structure

The modules listed below provide some general guidance on what you may be expected to learn during each semester and year of this degree. The exact modules available may vary depending on staff availability, research interests, new topics of study, timetabling and student demand.

MSc Computer Science is currently available for one year full-time study, two years full-time study with industrial experience and two years part-time study.

Full-time

You will take four taught modules per semester followed by final examinations and the MSc research project (dissertation).

Undertaking a masters programme is a serious commitment, with weekly contact hours in addition to numerous hours of independent learning and research needed to progress at the required level. When coursework or examination deadlines are approaching independent learning hours may need to increase significantly. Please contact the course convenor for precise information on the number of contact hours per week for this programme.

Part-time

Part-time study options often mean that the number of modules taken is reduced per semester, with the full modules required to complete the programme spread over two academic years. Teaching is generally done during the day and part-time students should contact the course convenor to get an idea of when these teaching hours are likely to take place. Timetables are likely to be finalised in September but you may be able to gain an expectation of what will be required.

Year 1

Semester 1 - (Maximum of 4 modules to be taken in Semester 1)

Select at least one from:

  • Functional Programming
  • Introduction to Object-Oriented Programming
  • Semi-Structured Data and Advanced Data Modelling

Further options:

  • Big Data Processing
  • Design for Human Interaction
  • Introduction to Computer Vision
  • Introduction to Law for Science and Engineering
  • Machine Learning
  • Program Specifications

Semester 2 - (Maximum of 4 modules to be taken in Semester 2)

Select at least one from:

  • Bayesian Decision and Risk Analysis 
  • Interactive Systems Design
  • Security and Authentication 

Further options from:

  • Advanced Object Oriented Programming
  • Business Technology Strategy
  • Cloud Computing
  • Data Analytics
  • Foundations of Intellectual Property Law and Management
  • Information Retrieval
  • Machine Learning for Visual Data Analytics
  • Mobile Services
  • Natural Language Processing
  • Parallel Computing
  • Real Time & Critical Systems
  • Software Analysis and Verification
  • The Semantic Web

Semester 3

  • Project

Year 2

  • Industrial Placement Project (max 12 months)

Please note that elective modules are subject to availability, timetabling constraints and may be subject to change



Read less
Why this course?. Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Read more

Why this course?

Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Solving problems of air, land and water pollution and protecting society against natural disasters are also important aspects of civil engineering.

Engineering graduates are in high demand from recruiting companies worldwide.

This 18-month MSc course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments, with practical experience provided by the industrial placement.

The course has a significant design element based on the most up-to-date specialist design guidelines. This includes a major design project that integrates acquired knowledge and acts as a platform for structured self-learning.

This MSc in Civil Engineering with Industrial Placement is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, mathematics, physics and mechanical engineering may also be considered.

The MSc in Civil Engineering with Industrial Placement has four optional specialist streams:

  • Structural Engineering & Project Management
  • Geotechnical Engineering & Project Management
  • Geoenvironmental Engineering & Project Management
  • Water Engineering & Project Management

Industrial placement or industry-linked project

You'll complete an industry-linked project or industrial placement in the period from June to August. The Department will support you in making applications for industry internships, and will provide project topics with industry partners, for industry-linked projects. Industry-linked projects generally involve a short secondment to industry as part of the project.

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. Students currently undertake a renewable energy project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

In additional to the industrial placement you'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

New class

Starting in session 2017-18, a new class on Building Information Modelling (BIM) will be available as an option for students who register for this MSc. Knowledge of BIM, a process for creating and managing information on a construction project across the project lifecycle, is sought after by employers.

Facilities

Our £6 million state-of-the-art laboratory facilities are well-equipped with high-technological instrumentation and available space to investigate:

  • environmental & molecular microbiology
  • environmental chemistry
  • analytical chemistry
  • geomechanics & soil quality
  • structural design & material science

Accreditation

The MSc Civil Engineering programme (including the specialist streams except for the water engineering stream) has been fully accredited by Joint Board of Moderators (JBM) as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

The accreditation of MSc in Civil Engineering with Water Engineering & Project Management will be applied three years after initial launch in 2016.

Course structure

You'll take 210 credits made up of 120 credit taught modules, 30 credits industrial placement and 60 credits dissertation. The 18 months full-time MSc course spans three semesters as follows:

  • Semester 1 – Year 1, January to May - 60 credits of taught classes
  • Industrial placement – Year 1, June to September - 30 credits
  • Semester 2 – Year 1, October to December - Research methods and design project classes and 30 credits of taught classes
  • Semester 3 – Year 2, January to June - 60 credits dissertation

Learning & teaching

Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:

  • engineering consultancies, where the work normally involves planning and designing projects
  • contractors, where you’ll be managing and overseeing works on-site
  • working for utilities or local authorities
  • working for large companies such as those within oil & gas production, mining, power generation, renewable energy & sustainable infrastructure

For lab work, you’ll need a lab coat.



Read less
Mathematics in Nijmegen. From Applied Stochastics to Infinity-Categories. The Master's programme in Mathematics at Radboud University offers you a thorough theoretical training, while maintaining a clear perspective on concrete applications whenever appropriate. Read more

Mathematics in Nijmegen: From Applied Stochastics to Infinity-Categories

The Master's programme in Mathematics at Radboud University offers you a thorough theoretical training, while maintaining a clear perspective on concrete applications whenever appropriate. Its wide scope, which ranges from medical statistics to the mathematical foundations of computer science, physics and even mathematics itself, reflects the diversity of research at the Institute for Mathematics, Astrophysics and Particle Physics (IMAPP).

Mathematical research of course stands on its own, as is notably the case with the large group in algebraic topology led by Spinoza laureate Ieke Moerdijk. In addition, within IMAPP, researchers link with high-energy physics, including Higgs physics and quantum gravity. Outside IMAPP but within the Faculty of Science, there are close ties with the Institute for Computing and Information Sciences (ICIS) (think of logic and category theory) and outside the Faculty of Science (but within Radboud University) researchers at both the Donders Institute for Neurosciences and the University Medical Center collaborate with the applied stochastics group.

See the website http://www.ru.nl/masters/mathematics

Specialisations within the Master's Programme in Mathematics

- Algebra & Topology

- Applied Stochastics

- Mathematical Physics

- Mathematical Foundations of Computer Science

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.

Possible careers for mathematicians include:

- Researcher (at research centres or within corporations)

- Teacher (at all levels from middle school to university)

- Risk model validator

- Consultant

- ICT developer / software developer

- Policy maker

- Analyst

- PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

See the website http://www.ru.nl/masters/mathematics



Read less
Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. Read more
Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. This MSc programme focuses on advanced theoretical and practical techniques in program design, and the management of software project risk.

This programme will:

-Teach you advanced techniques in program design
-Allow you to study key issues of interactive system design
-Teach you the mathematical foundations of software and the practical application of these techniques
-Focus on discovering ways of mitigating risk in large scale software engineering projects
-Enable you pursue roles in areas such as software design and engineering, web development, project management and IT consulting.
-We offer Industrial Experience options on all our full-time taught MSc programmes, which combine academic study with a one-year industrial placement between your taught modules and summer project. Taking the Industrial Experience option as part of your degree gives you a route to develop real-world, practical problem-solving skills gained through your programme of study in a professional context.

This can give you an important edge in the graduate job market. As a leading research School, we have excellent links with industry. We also employ dedicated staff to help you arrange your year in industry. The Industrial Experience programmes are highly competitive and attract the best students given the limited availability of placements. We are unable to guarantee all students secure an industrial placement, as our industrial partners conduct their own employment application and interview processes.

We have a new MSc Software Engineering and Security pathway to the MSc Software Engineering degree. If you are interested in this pathway you need to apply for the MSc Software Engineering programme and take the pre-requisite modules and then you would be able to graduate with the MSc Software Engineering and Security.

Security, authentication and identity management have grown substantially in importance in recent years, and there is significant demand in both the commercial and national/local government sectors for software engineers with a good grasp of these areas hence introducing a pathway in Security.

NB: Students will need to take and pass the following modules in order to be eligible for the pathway title MSc in Software Engineering with Security.

ECS726P - Security and Authentication (semester 2)

ECS760 - Distributed Systems and Security semester 2)

ECS715P - Program Specifications (semester 1)

ECS737P - Software Analysis and Verification (semester 2)

ECS738 - Bayesian Decision and Risk Analysis (semester 2)

Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Read less
Why does one car have more air resistance than another? How can a satellite be kept in an orbit around the earth? Applied mathematicians provide the necessary theoretical background to such questions. Read more
Why does one car have more air resistance than another? How can a satellite be kept in an orbit around the earth? Applied mathematicians provide the necessary theoretical background to such questions.

Applied Mathematics is concerned with the development and exploitation of mathematical tools for the analysis and control of technological problems. Mathematical modelling of the problem at hand plays a basic role, followed by (numerical) analysis and (computer) simulation. Interaction with other disciplines and with specialists in the fields of application is essential.

Two specialisations

- Systems and control
This specialisation deals with the mathematics behind designing stable controllers for satellites, purification plants or more general technical processes. Questions that arise include: is it possible to suppress perturbations in a system? Or, how can one stabilize and control a system without causing shocks?

- Computational science and numerical mathematics
This specialisation emphasizes modelling, analysis and the simulation of fluid flow problems. Although the applications can be quite diverse, the basic mathematical methods are much the same. If you are capable of computing the flow of air, you are able to predict the weather, and to design cars and aeroplanes. People who can simulate the flow of water can compute the optimal shape of ships, harbours and dikes.

Why in Groningen?

- Typical for Applied Mathematic in Groningen: the connection between mathematical theory and real-life problems
- You can combine courses from both Mathematics and Applied Mathematics
- Courses include related fields, e.g. Econometrics and Physics
- Internship and research opportunities

Job perspectives

A Master's degree in Applied Mathematics opens up many job opportunities. During the Master's programme you will learn to think in a logical, systematic, and problem-oriented way in a multidisciplinary environment. After having finished the programme you will be able to apply mathematics to a technical problem, and hence to work at the interface between theory and practice. These qualities are highly appreciated by employers.

Job opportunities are available in industrial companies, research institutes, as well as in universities. Examples of companies looking for applied mathematicians include Gasunie, Philips, Stork, Shell, Corus, KPN and small engineering bureaus. Examples of research institutes are the National Aerospace Laboratory (NLR, the picture on these pages comes from the NLR), WL/Delft Hydraulics, KNMI and TNO.You can start a university career by working as a PhD student, which means working for four years on a research project and writing a thesis. After having successfully defended this thesis, you will be awarded a PhD degree. Afterwards you can continue an academic career or start a career in industry.

Job examples

- Research institutes
- Engineering bureaus
- Industrial companies
- Universities

Read less

Show 10 15 30 per page



Cookie Policy    X