• Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
Teesside University Featured Masters Courses
"industrial" AND "design"…×
0 miles

Masters Degrees (Industrial Design Engineering)

We have 999 Masters Degrees (Industrial Design Engineering)

  • "industrial" AND "design" AND "engineering" ×
  • clear all
Showing 1 to 15 of 999
Order by 
The Specializing Master in Industrial Design Engineering and Innovation, directed by Prof. Matteo O. Ingaramo, was created to mold capable designers who can manage the entire development of a new product from the initial concept to the manufacturing stage. Read more
The Specializing Master in Industrial Design Engineering and Innovation, directed by Prof. Matteo O. Ingaramo, was created to mold capable designers who can manage the entire development of a new product from the initial concept to the manufacturing stage.

This program aims to train professionals to manage the design and production processes for both small- and large-scale manufactured items, with an expert eye on issues of technology, manufacturing, and cost but without sacrificing features of quality of expression.

Please visit: http://www.polidesign.net/en/industrialdesign

Read less
This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design. Read more

About the course

This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design.

You will learn how to design products requiring embedded intelligence and comprehensive engineering analysis and how to use six CAE software packages.

The programme - accredited by the Institution of Mechanical Engineering (IMechE) - has been developed to fulfil the industry’s need for an integrated course that offers:
teaching of advanced theory, human factors and creativity tools essential to successful product development
training in software, research and applications
practical experience of applying your knowledge and skills through an integrating, real life group project.

Aims

Integration of mechanical, electrical, electronic and control knowledge into a single product is challenging – and this course allows you to appreciate the complexity of modern product design and to develop your expertise.

The Brunel programme aims to create the new generation of engineering designers who can combine knowledge from different areas and produce world class design.

Engineering design is the application of engineering principles, the experience of making, and use of mathematical models and analysis. The design and production of complex engineering products often require the use of embedded intelligence and detailed engineering analysis involving mechanical, electronic and control functions. Advanced theoretical knowledge and a wide range of computer driven tools, methods and methodologies are essential for this process – and the course provides graduates with these essentials.

Course Content

Continued design of modern complex products demands advanced knowledge in mechanical, electronic, manufacturing and control engineering disciplines and human factors in design, and an ability to use advanced engineering software packages, integrating application experience and a capacity to carry on learning.

The Advanced Engineering Design MSc has been developed to produce design engineers who can meet these demands. It contains six taught modules where advanced multi-disciplinary theory is taught. As part of the course, six engineering software packages are also taught. In order to give an integrating application experience in an industrial setup, 'Design Experience', a group project module with an industry, has been included as part of the curriculum.

The dissertation is aimed at providing training in carrying out an in-depth engineering task on a self-learning basis. By the end of the course you will become a confident design engineer equipped with high quality and advanced knowledge and skills to work on design tasks in an advanced computer assisted environment.

Compulsory Modules

Sustainable Design and Manufacture
Manufacturing Systems Design and Economics
Computer Aided Engineering 1
Computer Aided Engineering 2
Design Experience
Dissertation Project

Optional Modules (choose two modules)

Advanced Manufacturing Measurement
Human Factors in Design
Robotics and Manufacturing Automation
Design of Mechatronic Systems

Special Features

Special facilities

MSc Engineering Design students work in a well-equipped design studio with various experiential learning facilities, with computers available for your exclusive use of Engineering Design students.Our investment in laboratory facilities and staff ensures that we can provide an excellent experience in a friendly and supportive environment.

Industry-focused programme

The high standard of our research feeds directly into curriculum design and our teaching, ensuring our graduates are equipped with the most up-to-date techniques, methods and knowledge bases. Our teaching has an excellent reputation and is orientated to the expressed needs of modern enterprises and the industry.
The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Engineering Design which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Global reputation

With around 150 postgraduate students from all around the world and substantial research income from the EU, research councils and industry, we are a major player in the field of advanced manufacturing and enterprise engineering.
 
Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Advanced Engineering Design is accredited by both the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Read less
This Master of Design is new for 2017. A professionally focused program of advanced study in contemporary design practice, the Master of Design course includes specialisations in interaction design, multimedia design and collaborative design. Read more
This Master of Design is new for 2017.

A professionally focused program of advanced study in contemporary design practice, the Master of Design course includes specialisations in interaction design, multimedia design and collaborative design.

You can also take a range of units from across these three to construct an advanced studies in design specialisation. This program is ideal for those keen to enter the expanding fields of professional design engagement, or design practitioners aiming to upgrade their expertise. You’ll be trained in advanced design thinking and processes that’ll equip you to create design solutions that engage experiential, communication, object and spatial contexts.

Visit the website http://www.study.monash/courses/find-a-course/2017/design-f6002?domestic=true

Overview

Please select a specialisation for more details:

- Advanced studies in design
This pathway allows you to construct, with approval, an individual program of study from across interaction design, multimedia design and collaborative design. This enables you to tailor your unit choices while addressing the fundamental principles of advanced design practice and thinking. It’ll inspire you to connect research and practice across the design disciplines, and to become a thoughtful design practitioner. You’ll broaden your knowledge of key design constructs, deepen your professional learning in design areas of interest, and advance your capacity as a design professional.

- Collaborative design
Collaborative design places you conceptually and practically at the intersection of interior, graphic and industrial design practice. The program will set you design challenges involving image, text, products, narratives, systems, ervices, public and private space, materiality and virtuality. You’ll develop independent conceptual and practical design skills alongside an ability to be part of collaborative design processes. You’ll expand your awareness across design disciplines; develop multidisciplinary design expertise; and build broader skills in leadership, professional adaptability and complex project planning.

- Interaction design
The interaction design specialisation develops your skills in the design of contemporary artefacts, products and services that engage with interactive, user-focused technologies and processes. These can include, but aren’t limited to, health and medical equipment, ‘smart’ furniture, educational toys, wearable technologies, information kiosks and transport systems. You’ll use a diverse range of interactive processes, including the application of advanced technologies; electronics and programming; physical and virtual interface manipulation; engineering and material fabrication; and rapid prototyping. The specialisation gives you an understanding of the relationship between interactive activities, products and human behaviour.

- Multimedia design
Multimedia design develops your skills in digital communication environments. This includes: designing for the web; motion and animation; and interactive touchscreen devices and surfaces. Emphasising an advanced knowledge of existing and emerging digital design processes and systems, this specialisation embraces projects of varied scale, from hand-held smart devices to large public interactive screens. It develops your ability to build a communication narrative; use multimedia processes to fill community and business needs; and understand the end-user’s engagement with projects or products such as websites, apps and other screen-based media.

Course Structure

The course comprises 96 points structured into 3 parts:

Part A. Preparatory Studies for Advanced Design (24 points), Part B. Advanced Design Studies (24 points), and Part C. Advanced Design Applications (48 points).

- Students admitted at Entry level 1 complete 96 points, comprising Part A, B & C
- Students admitted at Entry level 2 complete 72 points, comprising Part B & C
- Students admitted at Entry level 3 complete 48 points, comprising Part C

Note: Students eligible for credit for prior studies may elect not to receive the credit and complete one of the higher credit-point options. A zero credit point unit in Art, Design and Architecture Occupational Health and Safety will also be undertaken. This unit is required of all students in the Master of Design and must be undertaken even if credit is obtained for Parts A or B.

Part A: Preparatory studies for advanced design
These studies provide you with the conceptual thinking and technical skill set required for advanced postgraduate study in this area. The studio unit brings together conceptual and technical abilities developed in the other two units.

Part B: Advanced design studies
In these studies you will focus on the application of conceptual thinking and technical skills to advanced design problem solving. You will analyse and create a project outcome based on research, critique, and the application of design processes appropriate to your specialisation. You will also choose a selective unit that will further build capacity in your chosen specialisation.

Part C: Advanced design applications
In these studies you will focus on the application of advanced design problem solving skills at a professional level. You will consolidate skills and practice of design research methodologies and may extend your research trajectory to further study. Part C is also supported by a selective unit to allow you to build capabilities in your chosen specialisation.

In the final semester you will pursue a major design project or participate in a leading industry project. The exegesis unit formalises the research component of Part C. The final semester brings together advanced technical ability, conceptual thinking, entrepreneurial studies and design management in practice.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/design-and-architecture

Find out how to apply here - http://www.study.monash/courses/find-a-course/2017/design-f6002?domestic=true

Read less
The programme created by the cooperation in the educational project of the disciplinary areas of Design (School of Design), Mechanical Engineering (School of Industrial Engineering) and Materials Engineering (School of Industrial Process Engineering), has the objective of specialist training in three fundamental areas. Read more

Mission and goals

The programme created by the cooperation in the educational project of the disciplinary areas of Design (School of Design), Mechanical Engineering (School of Industrial Engineering) and Materials Engineering (School of Industrial Process Engineering), has the objective of specialist training in three fundamental areas: Design, Process and Industrial Production; Design Materials; Representation and Prototyping.
This programme has the objective of preparing a design figure who integrates the Design and “engineering” cultures, a professional able to provide a complete project dossier comprising product concept, via final and working design, and preparation of the documents necessary to go into production; who has particular skills in the choice of materials, in design methodologies in a virtual environment and in the impact of the technological aspects of production systems on the project.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/design-engineering/

Career opportunities

The Master of Science graduate in Design & Engineering is able to link design culture with the most advanced technological and manufacturing potential and thus is able to contribute to the growth and consolidation of the value of Italian and foreign companies.

This study programme accepts applications to the 2nd semester only from candidates who have completed the following single courses during the 1st semester: Product Development Studio; I.C. Materials for Design

Applicants with a background in Engineering are not required to provide a portfolio. Applicants with a design background must upload a portfolio on their profile.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Design_Engineering_01.pdf
This programme results from the cooperation of three Schools: Design, Mechanical Engineering and Materials Engineering. It trains professionals who are able to provide a complete project: from the concept phase, through the development process up to the final product, including the making of the production drawings and documents. It trains designers who have particular skills in materials selection, design methodologies and assessment of the technological impact on item production. Graduates in Design & Engineering
will have all the means to link design culture with the most advanced technological and manufacturing potential, thus being able to contribute to the growth and consolidation of the value of Italian and foreign companies. Students can choose to apply in Product Development Studios that are more focused on product feasibility or product interaction. The programme is entirely taught in English; students may also choose courses that are taught in Italian.

Subjects

Among the available courses:
- Product Development Design Studio
- Mechanical Design
- Materials Selection Criteria In Design & Engineering
- Final Project Work
- Design For Manufacturing
- Reverse Modeling
- Virtual Prototyping
- Design Fundamentals
- Semiotics
- Cad - 3d
- Materials Experience
- Design History

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/design-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/design-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
You can access six study streams on this Masters programme. Bridge Engineering. Construction Management. Geotechnical Engineering. Read more

You can access six study streams on this Masters programme:

  • Bridge Engineering
  • Construction Management
  • Geotechnical Engineering
  • Structural Engineering
  • Water Engineering and Environmental Engineering
  • Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

Programme structure

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

  • The Civil Engineering programme aims to provide graduate engineers with:
  • Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
  • It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
  • A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
  • The properties, behaviour and use of relevant materials
  • The management techniques which may be used to achieve civil engineering objectives within that context
  • Some of the roles of management techniques and codes of practice in design
  • The principles and implementation of some advanced design and management techniques specific to civil engineering
  • Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
  • The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
  • The wider multidisciplinary engineering context and its underlying principles
  • Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
  • The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
  • The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills

  • Analyse and solve problems
  • Think strategically
  • Synthesis of complex sets of information
  • Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
  • Select and transfer knowledge and methods from other sectors to construction-based organisation
  • Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
  • Dynthesis and critical appraisal of the thoughts of others

Professional practical skills

  • Awareness of professional and ethical conduct
  • Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
  • Evaluate and integrate information and processes in project work
  • Present information orally to others
  • Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
  • Use concepts and theories to make engineering judgments in the absence of complete data
  • Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner 
  • Collect and analyse research data 
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
This MSc course produces graduates with the creative, technical and managerial skills and expertise that are highly sought after in the field of engineering design. Read more
This MSc course produces graduates with the creative, technical and managerial skills and expertise that are highly sought after in the field of engineering design.

Based on research expertise within the Department of Mechanical Engineering, the programme covers an extensive range of innovative design techniques and approaches, reflecting how design impacts across all sectors of industry, and broadening your career opportunities as much as possible.

It will not only help prepare you for an exciting career in the industry, but also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Engineering Design you will:

- understand the issues associated with creativity and innovation
- develop knowledge and experience of the global commercial environment
- gain the expertise needed to manage engineering design projects and teams.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/design/index.html

Collaborative working

Our course includes traditionally taught subject-specific units and business and group-orientated modular work.

These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/TEME-AFM10.html) for more detail on individual units.

Semester 1 (October-January):
The first semester introduces the fundamental principles of new product design and development, advanced design and innovation techniques, and computer aid packages for design.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students.

Subjects covered

- Professional skills for engineering practice
- Advanced computer-aided design
- Engineering systems simulation
- Innovation & advanced design
- Materials in engineering design
- Product design & development

Career Options

Previous graduates of the University of Bath MSc in Engineering Dynamics and Control have gone on to careers in the UK and overseas in areas such as environmental design and design consultancies.

Recent graduates have secured jobs at:

Garrad Hassan
ABB Research
Dyson

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
Why this course?. Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Read more

Why this course?

Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Solving problems of air, land and water pollution and protecting society against natural disasters are also important aspects of civil engineering.

Engineering graduates are in high demand from recruiting companies worldwide.

This 18-month MSc course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments, with practical experience provided by the industrial placement.

The course has a significant design element based on the most up-to-date specialist design guidelines. This includes a major design project that integrates acquired knowledge and acts as a platform for structured self-learning.

This MSc in Civil Engineering with Industrial Placement is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, mathematics, physics and mechanical engineering may also be considered.

The MSc in Civil Engineering with Industrial Placement has three optional specialist streams:

- Structural Engineering & Project Management

- Geotechnical Engineering & Project Management

- Geoenvironmental Engineering & Project Management

- Civil Engineering with Water Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineeringwithindustrialplacement/

Industrial placement

A wide range of companies, such as AECOM, ATKINS, CAPITA, CH2M HILL and ClimateXChange (Scotland’s Centre of Expertise on Climate Change), are offering placements exclusively for this MSc. A full list of companies can be provided upon request. The 8 to 12 weeks industrial placement will take place in the period from June to September.

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

In additional to the industrial placement you'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:

- geomechanics

- microbiology

- analytical chemistry

- structural design

- Field investigation

We’re equipped with:

- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses

- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures

- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory

We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:

- suction-controlled double-wall triaxial cells

pressure plates

- triaxial cells equipped with bender elements for dynamic testing

- image analysis unit to monitor soil specimen deformation

- instruments for measurement of pore-water tensile stress

- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software and numerical modelling

You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:

- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)

- ABAQUS finite element packages

- Ansys

- Autodesk Civil 3D

- Limit State

- Strand 7

- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).

For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:

- engineering consultancies, where the work normally involves planning and designing projects

- contractors, where you’ll be managing and overseeing works on-site

- working for utilities or local authorities

- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523*.

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp



Read less
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. Read more
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. A balance of theory and practice is applied to the solving of real engineering design problems. All projects meet the product design requirements of one of our many co-operating companies.

Core study areas include structural analysis, engineering management and business studies, computer aided engineering, product design and human factors, engineering design methods, sustainable product design, the innovation process and project management, sustainable development: the engineering context and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Programme modules

Compulsory Modules:
- Structural Analysis
- Engineering Management and Business Studies
- Computer Aided Engineering
- Product Design and Human Factors
- Engineering Design Methods
- Sustainable Product Design
- The Innovation Process and Project Management
- Sustainable Development: The Engineering Context
- Project

Careers and further study

Engineering design related jobs in product, process and system design environments, providing project management and communication skills and direct technical input. Graduates may also study for an MPhil or PhD with the School.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation
- Practical guidance and feedback from industrial automation experts from around the world
- Live knowledge from the extensive experience of expert instructors
- Credibility and respect as the local industrial automation expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Next intake is scheduled for June 27, 2016. Applications now open; places are limited.

Now also available on Campus.

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

ENTRANCE REQUIREMENTS

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:
a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.
b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.
c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):
• Industrial Automation
• Industrial Engineering
• Instrumentation, Control and Automation
• Mechanical Engineering
• Mechanical and Material Systems
• Mechatronic Systems
• Manufacturing and Management Systems
• Electrical Engineering
• Electronic and Communication Systems
• Chemical and Process Engineering
• Robotics
• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation
- Practical guidance and feedback from industrial automation experts from around the world
- Live knowledge from the extensive experience of expert instructors
- Credibility and respect as the local industrial automation expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Perth Campus next intake is scheduled for June 27, 2016. Applications now open; places are limited.

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

ENTRANCE REQUIREMENTS

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:
a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.
b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.
c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):
• Industrial Automation
• Industrial Engineering
• Instrumentation, Control and Automation
• Mechanical Engineering
• Mechanical and Material Systems
• Mechatronic Systems
• Manufacturing and Management Systems
• Electrical Engineering
• Electronic and Communication Systems
• Chemical and Process Engineering
• Robotics
• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
Those who study the Masters in Civil Engineering will gain advanced knowledge and associated analytical and problem-solving skills in a range of key sub-disciplines of Civil Engineering, and develop the ability to apply this knowledge in engineering design and to the solution of open-ended and multi-disciplinary problems. Read more
Those who study the Masters in Civil Engineering will gain advanced knowledge and associated analytical and problem-solving skills in a range of key sub-disciplines of Civil Engineering, and develop the ability to apply this knowledge in engineering design and to the solution of open-ended and multi-disciplinary problems. The MSc in Civil Engineering is intended for students with a first degree in Civil Engineering or a closely related discipline who wish to extend their expertise to a higher level in preparation for a professional career.

Why this programme

◾Civil engineering at the University of Glasgow is ranked 4th in the UK and 1st in Scotland (Guardian University Guide 2017).
◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾You will select courses from key sub-disciplines of Civil Engineering, notably structural engineering, geotechnical engineering, environmental engineering, computational mechanics and transportation engineering.
◾With all lecture courses selected from sets of options, you can choose to develop a degree of specialization in a given sub-discipline or to remain broad-based, thus tailoring the programme to suit your interests and career aspirations.
◾Two major design project courses will develop your abilities to apply your knowledge of Civil Engineering to design of engineering projects. One of these projects is specifically civil engineering in content, but the other is multi-disciplinary in nature and will also involve MSc students from other engineering disciplines, working in teams to tackle a broad-based design problem.
◾You will also undertake an individual project, allowing you to investigate a specific topic in considerable depth.
◾You will be taught by staff who are leading researchers in their fields, so that course content can reflect state-of-the-art understanding, relevant to future challenges for civil engineering industry and the profession.
◾The programme is designed to provide the advanced education required of civil engineers of tomorrow.
◾With a 93% overall student satisfaction in the National Student Survey 2016, Civil Engineering at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc Civil Engineering include lectures, tutorials, design classes and computing labs, and give you the opportunity to take part in team design projects, other coursework and project-based activities, and a major individual project.

Core courses
◾Civil design project
◾Integrated systems design project.

Optional courses

Select a total of 8 courses, at least 5 of which must be from List A:

List A
◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Applied engineering mechanics 4
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS
◾Reclamation of contaminated land 5
◾Structural concrete C5.

List B
◾Environmental biotechnology 4
◾Geotechnical engineering 4
◾Ground engineering 4
◾Renewable energy 4
◾Structural analysis 4
◾Structural design 4
◾Transportation systems engineering 4.

Projects

◾To complete the MSc degree you must undertake an individual project worth 60 credits.
◾Projects can involve laboratory work, computational modelling, fieldwork, theoretical development, design or a study of industry application.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to industry.
◾Your project is completed under the supervision of an academic staff member. You can choose a topic from a list of MSc projects in Civil Engineering. Alternatively, should you have your own idea for a project, staff members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The School of Engineering has extensive contacts with industrial partners who contribute to several of the taught courses, through active teaching, curriculum development, and panel discussion.
◾The two design projects courses represent the types of projects undertaken in industry, and typically there will be input from industry practitioners in setting up the projects used in these courses.
◾Some MSc individual projects will involve interaction with industry.

Career prospects

Career opportunities include positions in civil engineering, structural engineering and environmental engineering, and working with design consultants, contractors and public authorities or utilities.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has an excellent reputation for civil engineering, the department is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

Key Features of MSc in Civil Engineering

The MSc Civil Engineering course aims to provide advanced training in civil engineering analysis and design, particularly in modelling and analysis techniques.

As a student on the MSc Civil Engineering course you will be provided with in-depth knowledge and exposure to conventional and innovative ideas and techniques to enable you to develop sound solutions to civil engineering problems.

Through the MSc Civil Engineering course, you will also be provided with practical computer experience through the use of computational techniques, using modern software, to provide a solution to a range of current practical civil engineering applications. This will enable you to apply the approach with confidence in an industrial context.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

As a student on the Master's course in Civil Engineering, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Modules

Modules on the MSc Civil Engineering course typically include:

Water and Wastewater Infrastructure

Finite Element Computational Analysis

Advanced Structural Design

Fluid-Structure Interaction

Entrepreneurship for Engineers

Computational Plasticity

Numerical Methods for Partial Differential Equations

Computational Case Study

Reservoir Modelling and Simulation

Dynamics and Transient Analysis

Coastal Engineering

Coastal Processes and Engineering

Flood Risk Management

Accreditation

The MSc Civil Engineering course at Swansea University is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

Strong interaction and cooperation is forged with the construction industry and relevant member institutions of the Joint Board of Moderators (JBM), particularly the Institution of Civil Engineers (ICE) and the Institution of Structural Engineers (IStructE).

These companies actively engaged with Civil Engineering at Swansea University: Atkins, Arup, Balfour Beatty Civil Engineering Ltd, Black and Veatch Ltd, City and Council of Swansea, Dean and Dyball, Halcrow UK, Hyder (Cardiff), Interserve Ltd, the Institution of Civil Engineers (ICE), Laing O’Rourke, Mott MacDonald Group Ltd, Veryard Opus.

Career Prospects

The civil engineering sector is one of the largest employers in the UK and demand is strong for civil engineering graduates. Thie MSc Civil Engineering course also equips you with the skills to be involved in other engineering projects and provides an excellent basis for a professional career in structural, municipal and allied engineering fields.

The MSc Civil Engineering is suitable for those who would like to prepare for an active and responsible career in civil engineering design and construction. Practising engineers will have the chance to improve their understanding of civil engineering by attending individual course modules.

Student Quotes

“I decided to study at the College of Engineering as it is a highly reputable engineering department.

My favourite memories of the course are the practical aspects and the lab work. Group projects have given me the opportunity to work in a team to overcome engineering-based problems. Studying at the College of Engineering has given me a good knowledge of engineering principles and has helped me to apply this to real life problems.

As part of my time here, I took part in the IAESTE programme. I worked with the Department of Civil Engineering at the University of Manipal, Southern India, on a development project involving an irrigation system.

My future plan is to get some experience in an engineering firm, and hopefully, this experience will allow me to work abroad for an NGO on further development projects."

Thomas Dunn, MSc Civil Engineering



Read less
Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management. Read more

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules

Structural Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering and Management Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for bridge analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
  • The ability to design bridge structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
  • The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
  • A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
  • A knowledge and understanding of the common and less common materials used in bridge engineering
  • A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
  • The ability to critically evaluate bridge engineering concepts
  • The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
  • The ability to understand the limitations of bridge analysis methods
  • A knowledge and understanding to work with information that may be uncertain or incomplete
  • A Knowledge and understanding of sustainable development related to bridges
  • The awareness of the commercial, social and environmental impacts associated with bridges
  • An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
  • A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills

  • The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
  • The ability to generate innovative bridge designs (B)
  • The ability to use theory or experimental research to improve design and/or analysis
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • Synthesis and critical appraisal of the thoughts of others;

Professional practical skills

  • The awareness of professional and ethical conduct
  • A Knowledge and understanding of bridge engineering in a commercial/business context
  • Ability to use computer software to assist towards bridge analysis
  • Ability to produce a high quality report
  • Ability of carry out technical oral presentations

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner
  • Collect and analyse research data
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality. Read more
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality.

Why this programme

◾Civil engineering at the University of Glasgow is ranked 4th in the UK and 1st in Scotland (Guardian University Guide 2017).
◾With a 93% overall student satisfaction in the National Student Survey 2016, Civil Engineering at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾The University has a long history of research in Civil Engineering. The UK's first Chair of Civil Engineering was established at the University in 1840 and early occupants such as William J. M. Rankine set a research ethos that has endured.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you are a graduate engineer looking to broaden your knowledge of management while also furthering your knowledge of civil engineering, this innovative programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated systems design project, allowing development of skills in project management, quality management and costing.
◾You will be able to apply management to engineering projects, allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A

◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B

◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Projects

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A
◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B
◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the civil engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Civil Engineering include: Arup and Mott MacDonald.
◾During the programme students have an opportunity to develop and practice relevant professional and transferable skills, and to meet and learn from employers about working in the civil engineering industry.

Read less

Show 10 15 30 per page



Cookie Policy    X