• Goldsmiths, University of London Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Manchester Featured Masters Courses
Coventry University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"imperial"×
0 miles

Masters Degrees (Imperial)

We have 244 Masters Degrees (Imperial)

  • "imperial" ×
  • clear all
Showing 1 to 15 of 244
Order by 
The MRes in Bioengineering prepares students for research careers in Bioengineering, equipping them to analyse and solve problems using an integrated, multidisciplinary approach. Read more

The MRes in Bioengineering prepares students for research careers in Bioengineering, equipping them to analyse and solve problems using an integrated, multidisciplinary approach. Graduates of the programme will be able to pursue careers at the interface between the physical, biological and medical sciences in academia, industry, the public sector and non-governmental organisations. The programme provides a solid foundation for those who intend to go on to study for a PhD.

The programme includes lectures, workshops, seminars, practical work and a period of full-time work on a significant research project. The course will prepare students to analyse and solve problems in bioengineering using an integrated, multidisciplinary approach.

The programme consists of a taught element (25%) and research element (75%). Core modules of the taught element include Computational methods for bioengineering, Statistics and data analysis, the MRes Journal Club, a minimum of 2 electives, and Research seminar. The Electives of the taught element include for example Biomechanics, Computational neuroscience, Biomaterials, Machine learning and neural computation, Image processing and Brain-machine interfaces.

The research element includes the literature review plan, a poster presentation, the individual MRes thesis report and an oral examination.

About the Department

The Department of Bioengineering at Imperial College London is leading the bioengineering agenda both nationally and internationally, advancing the frontiers of our knowledge in the discipline’s three main areas: — Biomedical Engineering: Developing devices, techniques and interventions for human health. — Biological Engineering: Solving problems related to the life sciences and their applications for health. — Biomimetics: Using the structures and functions of living organisms as models for the design and engineering of materials and machines.

In the most recent Research Excellence Framework (2014), 95% of the Department’s returned research was judged either ‘world-leading’ or ‘internationally excellent’, confirming our position as the leading Department in the UK. We’re committed to building on this success, expanding both our basic and applied bioengineering research, and providing excellent training through our popular undergraduate, Masters and PhD programmes.

As befits a new and growing discipline, the Department’s staff come from diverse academic disciplines including all main branches of engineering, physical sciences, life sciences and medicine, creating a rich collaborative environment. The interaction of our staff, along with colleagues across the institution, ensures our research benefits from both engineering rigour and clinical relevance.

We focus on six core themes: — Biomechanics and Mechanobiology — Molecular and Cellular Bioengineering — Detection, Devices and Design — Implants and Regenerative Medicine — Human and Biological Robotics — Neural Engineering. These areas are connected and fluid, with staff and students working across more than one area, and often at the interfaces.

How to Apply

Application deadline for entry 2018 entry is 31 July 2018; for Applicants who are likely to need a visa to study in the UK, the deadline is 30 June 2018. However, the programme is very popular which means it can be closed earlier when full, so you should apply early to avoid disappointment. There may also be funding deadlines that apply to you.

Before making an application, you need to contact potential research project supervisors to ensure that there is a suitable project available for you. Examples of projects are listed here.

Once you’ve found a suitable project and supervisor, you should then please apply via Imperial College’s online application system:

a.       Please include a brief project proposal in your personal statement to confirm that your application is being made to a research area, stating supervisor choice and motivation.

b.       We require two academic references.

c.       Your application will be reviewed by the proposed supervisor and MRes Bioengineering Programme Director initially. Applicants are interviewed by two members of academic staff where there is potential of finding a suitable project and supervisor.

d.       If your interview is successful and a suitable project and supervisor can be confirmed, applicants usually will be offered a conditional place, subject to meeting Imperial College entry requirements and obtaining appropriate funding for the duration of the studies.

Please note that it can take 2-3 months after the application was made until the applicants can be informed about the outcome of the application.

If you are a Home or EU student who meets certain criteria, you may be able to apply for a Postgraduate Master’s Loan of up to £10,280 from the UK government. The loan is not means-tested, and you can choose whether to put it towards your tuition fees or living costs.

Imperial College offer a range of (competitive) scholarships for postgraduate students to support them through their studies. Please visit the scholarships search tool to see what you might be eligible for. There are also a number of external organisations also offer awards for Imperial students, find out more about  non-Imperial scholarships.

We look forward to receiving your application!



Read less
MRes in Cancer Biology. Imperial College London. Dept of Histopathology. COURSE CODE. A3CB. http://www1.imperial.ac.uk/medicine/teaching/postgraduate/taughtcourses/mrescancerbiology/. Read more
MRes in Cancer Biology
Imperial College London
Dept of Histopathology
COURSE CODE: A3CB
http://www1.imperial.ac.uk/medicine/teaching/postgraduate/taughtcourses/mrescancerbiology/

Imperial College is ranked in the top five universities of the world, according to the 2007 Times Higher Education Supplement league tables.

This MRes is a 1-year full-time postgraduate course run by the Faculty of Medicine, Dept of Oncology at the Hammersmith Hospital Campus of Imperial College London.

This course is designed both for BSc graduates with a suitable first degree in subjects such as Life Sciences or Biomedical Sciences and clinicians specializing in cancer related fields including medical or clinical oncology wishing to undertake a research degree to further their career in academic medicine.

Course objectives:
1) To provide science or medical graduates with an excellent introduction to the cellular and molecular biological basis of cancer.
2) To enable students to experience some of the most technologically advanced and diverse approaches currently being applied in the broad field of cancer biology through two independent 19-week research projects within the Faculty of Medicine, Imperial College.
3) To introduce students to the research environment, develop the experimental expertise required to embark on an independent research career and provide training in key transferable skills including bioinformatics, and grant writing.
4) To facilitate interactions between clinical and non-clinical scientists, enabling the cross-fertilisation of ideas and approaches bringing about greater understanding and future productive collaboration between scientists with differing backgrounds.

Structure of the MRes in Cancer Biology:
The course comprises an initial eight week taught component in which the cellular and molecular basis of cancer biology are covered plus an introduction to the clinical and pathological aspects of carcinogenesis. Within this period will also be a series of workshops covering key transferable skills such as statistics, bioinformatics and grant writing. This is followed by two separate 19-week research placements in the Faculty of Medicine, Imperial College London.


Career opportunities:
The course is primarily designed to prepare students for an academic or industrial research career, with those students successfully completing the course ideally placed to apply for fellowships and register for a Ph.D.

Entrance requirements:
Applications are welcomed from candidates with a first degree in an appropriate medical or science subject. Candidates are normally expected to hold a good first degree (upper second class or better) from a UK university or an equivalent qualification if obtained outside the UK. In line with Imperial College policy, students for whom English is not their first language will be expected to pass the British council IELTS test at grade 6.0 or above, with a score of 5 or above I each component. An alternative is the TOEFL Internet Based Test (minimal score of 90 overall, with required scores of 20 in Speaking and 24 in Writing).

To apply for a place, go to
https://apply.embark.com/grad/imperial/
For application forms & information regarding course fees:
The Registry, Sherfield Building, Imperial College London, London SW7 2AZ

Places are extremely limited

For informal enquiries please see the course website below or contact the Course Organizer Dr Ernesto Yague at

http://www1.imperial.ac.uk/medicine/teaching/postgraduate/taughtcourses/mrescancerbiology/

Valuing diversity and committed to equality of opportunity
-----------------------------------------------
Home, EU and Overseas applicants hoping to start this course in October 2014 are eligible to apply for the Imperial Faculty of Medicine Master’s Degree Scholarships. This scheme offers a variety of awards, including full tuition payment and a generous stipend. For more information, please visit our website: http://www1.imperial.ac.uk/medicine/prospectivestudents/mastersdegreescholarships/

Read less
The MA in Imperial History will be administered by the School of History and convened by Dr. Giacomo Macola, Senior Lecturer in African History. Read more
The MA in Imperial History will be administered by the School of History and convened by Dr. Giacomo Macola, Senior Lecturer in African History.

This programme allows you to examine key themes and regions in the making of world history, from the 18th century to the present day.

Imperial history is a rapidly growing and innovative field of historical research, which offers you the opportunity to explore the origins, workings and legacies of empires. By critically engaging with a range of theoretical and empirical literatures, as well as conducting original research, you use historical data to tackle momentous questions relating to violence, development and global inequality.

Led by five specialists in the School of History, the programme takes a broad interdisciplinary approach which also encompasses renowned academics from other departments. The team offers particular expertise in African political history, the history of military technology and conflict, global histories of religion and the newly-emerging field of children and childhoods. You also have the opportunity to participate in the activities of the Centre for the History of Colonialisms (http://www.kent.ac.uk/history/centres/colonialisms/index.html).

This programme offers an ideal launching pad for students who envisage careers with an international dimension or plan to embark on doctoral work.

Visit the website https://www.kent.ac.uk/courses/postgraduate/360/imperial-history

The School of History at the University of Kent offers a great environment in which to research and study. Situated in a beautiful cathedral city with its own dynamic history, the University is within easy reach of the main London archives and is convenient for travelling to mainland Europe.

The School of History is a lively, research-led department where postgraduate students are given the opportunity to work alongside academics recognised as experts in their respective fields. The School was placed eighth nationally for research intensity in the Research Excellence Framework 2014, and consistently scores highly in the National Student Survey.

There is a good community spirit within the School, which includes regular postgraduate social meetings, weekly seminars and a comprehensive training programme with the full involvement of the School’s academic staff. Thanks to the wide range of teaching and research interests in the School, we can offer equally wide scope for research supervision covering British, European, African and American history.

At present, there are particularly strong groupings of research students in imperial and African history, medieval and early modern cultural and social history, early modern religious history, the history and cultural studies of science and medicine, the history of propaganda, military history, war and the media, and the history of Kent.

Course structure

The MA in Imperial History is available for one year full-time, or two years part-time study

Students take four modules: two compulsory and two additional specialist modules (to be chosen from a menu of at least five variable yearly options). 60 further credits are earned through a final 15,000-word-long dissertation.

Modules

Compulsory modules

- Methods and Interpretations in Historical Research
- Themes and Controversies Modern Imperial History
- Dissertation of 15,000 words

Optional modules

- Liberation Struggles in Southern Africa
- War in the Hispanic World since 1808
- Colonial Childhoods
- An Intimate History of the British Empire
- Europe in Crisis, 1900-1925
- No End of a Lesson: Britain and the Boer War
- Writing of Empire and Settlement
- Colonial and Postcolonial Discourses

Assessment

This is by coursework and a 15,000-word dissertation, which counts for one-third of the final grade.

Study support

Postgraduate resources
The resources for historical research at Kent are led by the University’s Templeman Library: a designated European Documentation Centre which holds specialised collections on slavery and antislavery, and on medical science. The Library has a substantial collection of secondary materials to back-up an excellent collection of primary sources including the British Cartoon Archive, newspapers, a large audio-visual library, and a complete set of British Second World War Ministry of Information propaganda pamphlets.

The School has a dedicated Centre for the Study of Propaganda and War, which has a distinctive archive of written, audio and visual propaganda materials, particularly in film, video and DVD. Locally, you have access to: the Canterbury Cathedral Library and Archive (a major collection for the study of medieval and early modern religious and social history); the Centre for Kentish Studies at Maidstone; and the National Maritime Collection at Greenwich. Kent is also within easy reach of the country’s premier research collections in London and the national libraries in Paris and Brussels.

Dynamic publishing culture
Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Journal of Contemporary History; English Historical Review; British Journal for the History of Science; Technology and Culture; and War and Society.

Global Skills Award
All students registered for a taught Master's programme are eligible to apply for a place on our Global Skills Award Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/gsa.html). The programme is designed to broaden your understanding of global issues and current affairs as well as to develop personal skills which will enhance your employability.

Research areas

Medieval and early modern history
Covering c400–c1500, incorporating such themes as Anglo-Saxon England, early-modern France, palaeography, British and European politics and society, religion and papacy.

Modern history
Covering c1500–present, incorporating such themes as modern British, European and American history, British military history, and 20th-century conflict and propaganda.

History of science, technology and medicine
Incorporating such themes as colonial science and medicine, Nazi medicine, eugenics, science and technology in 19th-century Britain.

Careers

As the job market becomes increasingly competitive, postgraduate qualifications are becoming more attractive to employers seeking individuals who have finely tuned skills and abilities, which our programmes encourage you to hone. As a result of the valuable transferable skills developed during your course of study, career prospects for history graduates are wide ranging. Our graduates go on to a variety of careers, from research within the government to teaching, politics to records management and journalism, to working within museums and galleries – to name but a few.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Inspiring the future crop of experts in Computational Science and Engineering. Students will gain deep knowledge and skills in cutting-edge computational techniques for real world science and engineering applications to meet industry demand. Read more

Inspiring the future crop of experts in Computational Science and Engineering

Students will gain deep knowledge and skills in cutting-edge computational techniques for real world science and engineering applications to meet industry demand.

The Applied Computational Science and Engineering MSc will educate future domain-specialists in computational science. This course will expand your knowledge of numerical methods, computational science, and how to solve large scale problems by applying novel science and engineering approaches. It is suitable for graduates of disciplines including mathematics and physical sciences, geophysics and engineering, and computer science.

  • Preparing tomorrow’s technologists, entrepreneurs and computational problem solvers
  • Large scale, big data, machine learning
  • Model dynamical processes using numerical methods and advanced programming
  • Combining mathematics, physical sciences, engineering, and computational science

Study Programme

Students will have the chance to participate in individual and group research projects as well as to write reports and present technical work, developing the project management and numerical skills that are desired by employers.

The study programme consists of eight taught modules, and one individual research project which accounts for one third of the study programme.

Term 1

Modern programming methods

Modelling dynamical processes

Numerical methods

Applying computational science

Term 2

Advanced programming

Patterns for parallel programming

Inversion and optimisation

Machine learning

Term 3 (summer)

Independent Project

This immersive, hands-on MSc course will enable students to develop their skills and techniques for a range of science and engineering applications utilising High Performance Computing resources. Students will learn alongside world-class researchers in the Department of Earth Science and Engineering. There will be a strong emphasis on high productivity problem solving using modern computational methods and technologies, including computer code development and parallel algorithms.

Applicants who want to pursue analytical careers in industry geoscience and engineering are a target for this course. Graduates will develop the skills necessary to enter the modern industrial workforce. This MSc will also prepare for your PhD studies in fields such as computational techniques, simulation, numerical modelling, optimisation and inversion, heat transfer, and machine learning applications.

The Applied Computational Science and Engineering MSc programme will ensure that students are able to apply appropriate computational techniques to understand, define and develop solutions to a range of science and engineering problems. You will have the chance to participate in individual and group research projects as well as to write reports and present technical work, developing the project management and numerical skills desired by employers.

Key Information

Duration: 1 year full-time

Start Date: October 2018

Campus: South Kensington, London

ECTS: 90 Credits

Please contact Postgraduate Education Manager, Samantha Symmonds, with any queries: 

Flyer for new Applied Computational Science and Engineering MSc

The Applied Computational Science and Engineering MSc is subject to College approval.

Find out more about postgraduate study at Imperial College London, including tuition fees, admissions and how to apply.



Read less
Many of the interconnected, global and political processes in the contemporary world stem from the legacies of imperialism and colonialism. Read more
Many of the interconnected, global and political processes in the contemporary world stem from the legacies of imperialism and colonialism. This innovative MA provides global, imperial and postcolonial perspectives on the making of the modern world.

This programme analyses the forces of globalisation, the global trajectory and dissemination of ideas, the relationship of knowledge to power, and the history of resistance to imperial expansion. It takes an expansive approach to the global history of ideas by examining representations, images, power, and cultural encounters. You will be taught by some of the foremost experts in their respective fields. The MA has particular, but not exclusive focus on South Asian, African and British Imperial history and cultures.

This programme is ideal for anybody wanting a career with an international aspect, entering fields such as journalism, the civil service, international NGOs and business. Its rigorous intellectual approach will be of particular benefit to those planning to pursue doctoral work, preparatory to an academic career.

The range of topics you will be able to pursue include:

• British Imperial Culture and Identity
• Cultures of Resistance
• Race in Global Perspective
• Colonial Power and Indigenous Knowledge
• Religion and Imperialism
• Anti-colonial Nationalism
• Cross-cultural Encounters

This programme:

• Is interdisciplinary in nature
• Taught by world renowned academics, including Professor Sir Christopher Bayly
• Has an extensive range of module choices

Why study Global and Imperial History at Queen Mary?

The School of History offers a wide range of postgraduate programmes and has a world-class research base. Our high-quality teaching is inspired and informed by our research, and carried out in an atmosphere conducive to learning. Our academic staff have outstanding research reputations and include six Fellows of the British Academy, the former President of the Royal Historical Society and two recipients of the French distinction of the Ordre des Palmes Académiques.

Read less
Are you interested in developing new technologies that will help to feed our growing population?. If so, see how our research and training is helping to shape our future. Read more
• Are you interested in developing new technologies that will help to feed our growing population?
• If so, see how our research and training is helping to shape our future...
• Industrial Internships are available on a competitive basis.
• Scholarships for Full or Part contribution towards fees and bursary are available for students who wish to consider either full or part-time option of the course.

The world leading Department of Chemistry (http://www.imperial.ac.uk/chemistry) and Institute of Chemical Biology (http://www.chemicalbiology.ac.uk) at Imperial College London is offering a 1-year multidisciplinary Masters in Research (MRes) in Plant Chemical Biology.
This course will equip you with the skills to tackle problems that lie at the plant/physical science interface on a molecular level. Chemical Biology through physical science innovation will lead to the development of novel technologies, vital to overcome future global challenges such as addressing the food, fuel and fibre needs of our growing population.
Advances in understanding biomolecular processes have often depended on the collaborative efforts of biochemists, chemists and physicists. Students will get training from both academic and industrial leaders in the plant and chemical biology fields. The course will enable students to bridge the gap that can exist between the physical and plant science disciplines because of differences in ‘language’, perspective and methodology. The course consists of an 8-month interdisciplinary research project, specialist lectures, transferable skills courses, interactive workshops, tutorials, journal clubs, and seminars.

Syngenta are the key industrial partner on this course. Joint Syngenta/Imperial research projects (internships) are available on a competitive basis. Students will either be based at Syngenta or at Imperial.

Successful graduates from this course will be ideally placed to undertake PhD studies or apply directly to the agri-science industrial sector.

For more information (including a copy of the course flyer and booklet) on the MRes in Plant Chemical Biology; Multidisciplinary Research for next Generation Agri-Sciences and details on how to apply, please see (http://www.imperial.ac.uk/chemicalbiology/mrescrop).

Visit the MRes in Plant Chemical Biology; Multidisciplinary Research for next Generation Agri-Sciences (Full or Part-time course) page on the Imperial College London web site for more details!

Read less
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London. Read more
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London.

OPEN DAY

visit the course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017.

OUTLINE

Taxonomy and systematics provide the foundation for studying the great diversity of the living world. These fields are rapidly changing through new digital and molecular technologies. There is ever greater urgency for species identification and monitoring in virtually all the environmental sciences, and evolutionary ‘tree thinking’ is now applied widely in most areas of the life sciences. These courses provide in-depth training in the study of biodiversity based on the principles of phylogenetics, evolutionary biology, palaeobiology and taxonomy. The emphasis is on quantitative approaches and current methods in DNA-based phylogenetics, bioinformatics, and the use of digital collections.

LOCATION

The course is a collaboration of Imperial College London (Silwood Park) with the Natural History Museum. This provides an exciting scientific environment of two institutions at the forefront of taxonomic and evolutionary research.

[[SYLLABUS ]]
The MRes in Biosystematics features hands-on research projects that cover the main methodological approaches of modern biosystematics. After 6 weeks of general skills training, students will ‘rotate’ through three research groups each conducting a separate 14-week project in specimen-based phylogenetics, molecular systematics/genomics, and bioinformatics. The projects may be of the student’s own design. Students attend small group tutorials, lab meetings and research seminars.

TRANSFERABLE SKILLS]

The GSLSM (Graduate School of Life Sciences and Medicine) at Imperial College London provides regular workshops covering a wide range of transferable skills, and MRes students are encouraged to undertake at least four during the year. Topics include: Applied Writing Skills, Creativity and Ideas Generation, Writing for Publication, Introduction to Regression Modelling, Introduction to Statistical Thinking.

RECENT PROJECTS

MORPHOLOGICAL

The Natural History Museum’s Dorothea Bate Collection of dwarfed deer from Crete: adaptation and proportional size reduction in comparison with larger mainland species
Cambrian lobopodians and their position as stem-group taxa
Atlas of the Caecilian World: A Geometric Morphometric perspective
Tooth crown morphology in Caecilian amphibians
Morphometrics of centipede fangs: untapping a possible new source of character data for the Scolopendromorpha
Phylogeny of the Plusiinae (Lepidoptera: Noctuidae): Exploring conflict between larvae and adults
A comparison between species delineation based on DNA sequences and genital morphometrics in beetles (Coleoptera)

MOLECULAR

Geographical distribution of endemic scavenger water beetles (Hydrophilidae) on the island of Madagascar based on DNA sequence data
Cryptic diversity within Limacina retroversa and Heliconoides inflate
Phylogenetics of pteropods of the Southern Oceans
Molecular discrimination of the European Mesocestoides species complex
A molecular phylogeny of the monkey beetles (Coleoptera: Scarabaeidae: Hopliini)
The molecular evolution of the mimetic switch locus, H, in the Mocker Swallowtail Papilio dardanus Brown, 1776
Phylogenetic and functional diversity of the Sargasso Sea Metagenome

BIOINFORMATICS

A study into the relation between body size and environmental variables in South African Lizards
Cryptic diversity and the effect of alignment parameters on tree topology in the foraminifera
Delimiting evolutionary taxonomic units within the bacteria: 16S rRNA and the GMYC model
Testing the molecular clock hypothesis and estimating divergence times for the order Coleoptera
Taxon Sampling: A Comparison of Two Approaches
Investigating species concepts in bacteria: Fitting Campylobacter and Streptococcus MLST profiles to an infinite alleles model to test population structure
Assessing the mitochondrial molecular clock: the effect of data partitioning, taxon sampling and model selection

ON COMPLETION OF THE COURSE, THE STUDENTS WILL HAVE:

• a good understanding of the state of knowledge of the field, together with relevant practical experience, in three areas of biosystematic science in which he or she has expressed an interest;
• where applicable, the ability to contribute to the formulation and development of ideas underpinning potential PhD projects in areas of interest, and to make an informed decision on the choice of potential PhD projects;
• a broad appreciation of the scientific opportunities within the NHM and Imperial College;
• knowledge of a range of specific research techniques and professional and transferable skills.

FURTHER INFORMATION

Students are encouraged to view the NHM website for further information, and to contact the course administrator if they have any queries. Visits can be arranged to the NHM to meet the course organisers informally and to be given a tour of the facilities. Applications should be made online on the Imperial College London website.

Read less
The MRes in Biomedical Research. Bacterial Pathogenesis and Infection is a 12 month postgraduate course providing exemplary academic and research training. Read more
The MRes in Biomedical Research: Bacterial Pathogenesis and Infection is a 12 month postgraduate course providing exemplary academic and research training. The Bacterial Pathogenesis and Infection stream is a specialised stream on a larger course (the MRes in Biomedical Research). This programme will provide research training in fundamental aspects of bacterial pathogenesis, host immunity and antibiotic resistance, with particular attention to the scientific, technical and professional acumen required to establish research independence. The emphasis will be on molecular approaches to understanding bacterial infection biology, as a function of bacterial pathogenic strategy and physiology, as well as resistance to host defences and antibiotic therapy, and is comprised of two 20-week research projects embedded within research-intensive groups and a series of lectures, seminars, tutorials and technical workshops.

Based in the MRC Centre for Molecular Bacteriology and Infection, the course provides an opportunity to learn directly from internationally-respected scientists through sustained interaction for the duration of the course. This programme will deliver training in: Molecular microbiology, including integration of molecular and cellular information to understand the genetic basis of virulence; modelling host and microbial aspects of infection to help characterise the host-pathogen interaction and immunity; functionality and physiological relevance of microbial virulence factors; mechanisms of antibiotic resistance and persistence; derivation of mechanistic approaches to problem-solving in molecular and cellular biomedical science.

Course Objectives
The emphasis is on molecular approaches to understanding infection as a function of bacterial pathogenic strategy and physiology. This research-oriented approach to training in biomedical science will comprise both theoretical and practical elements. The course will expose students to the latest developments in the field through two mini-research projects and a series of technical workshops. Students will gain experience in applying technologically advanced approaches to biomedical research questions.

Specifically the course will deliver research training in:

• Molecular bacteriology, integrating molecular and cellular information to understand the genetic basis of microbial virulence.
• Modelling host and microbial aspects of infection to help characterise the host-pathogen interaction and immunity.
• By experimentation, understanding the biochemical functions and physiological relevance of microbial virulence factors and antibiotic resistance.
• Derivation of mechanistic approaches to problem-solving in molecular and cellular biomedical science.

Individuals who successfully complete the course will have developed the ability to:

• Demonstrate practical dexterity in the commonly employed and more advanced practical techniques of molecular and cellular microbiology
• Exercise theoretical and practical knowledge and competence required for employment in a variety of biomedical environments
• Identify appropriate methodology during experimental planning
• Interpret and present scientific data
• Interrogate relevant scientific literature and develop research plans
• Recognise the importance of justifying expenditure (cost and time) during experimental planning
• Recognise potential methodological failings and strategise accordingly
• Perform novel laboratory-based research, and exercise critical scientific thought in the interpretation of findings
• Write and defend research reports, which appraise the results of laboratory based scientific study
• Communicate effectively through writing, oral presentations and IT to facilitate further study or employment in molecular, cellular and physiological science
• Exercise a range of transferable skills

This will be achieved by providing:

• A course of lectures, seminars, tutorials and technical workshops. The programme is underpinned by the breadth and depth of scientific expertise in the participating department.
• Hands-on experience of a wide repertoire of scientific methods
• Two research projects
• Training in core transferable skills

The MRC Centre for Molecular Bacteriology and Infection (Departments of Medicine and Life Science) is located at the South Kensington Campus of Imperial College London. http://www.imperial.ac.uk/mrc-centre-for-molecular-bacteriology-and-infection

Candidates are expected to hold a good first degree (upper second class or better) from a UK university or an equivalent qualification if obtained outside the UK.

Please visit the course website for more information about how to apply, and for more information about the various streams of specialism which run within the course.

Early application is strongly advised. Please note that while applications can be considered after receipt of one recent reference, two will be required as standard for confirmation of acceptance by College.

If you have any questions, please contact:

Kylie Glasgow
Manager, Centre for Molecular Bacteriology and Infection
Imperial College London
London, SW7 2AZ
E-mail

-----------------------------------------------
Home, EU and Overseas applicants hoping to start this course in October 2017 will be eligible to apply for the Faculty of Medicine Dean's Master’s Scholarships. This scheme offers a variety of awards, including full tuition payment and a generous stipend. For more information, please visit http://www.imperial.ac.uk/medicine/study/postgraduate/deans-masters-scholarships/. Applications for 2017 are not yet open (do check the website again early in the new year).

Read less
MSc in Medical Ultrasound. The MSc in Medical Ultrasound programme is both academic and vocational in nature and is the only MSc of this type to offer a clinical attachment as part of the course. Read more

MSc in Medical Ultrasound

The MSc in Medical Ultrasound programme is both academic and vocational in nature and is the only MSc of this type to offer a clinical attachment as part of the course.

The MSc aims to train students to use research and development skills to develop the field of medical ultrasound. Students can choose one of two sub specialities:

Full time course

MSc in Medical Ultrasound – Vascular (Course Code: A3A1)

MSc in Medical Ultrasound – Echocardiography (Course Code: A3A2)

You will be placed in a clinical attachment at Imperial College Healthcare NHS Trust.

Attending 5 days per week for the duration of the course. (this is included in the fee)

Students should not expect to be scanning every day and hardly at all in the 1st term.

Part time course

MSc in Medical Ultrasound – Vascular (Course Code: A3A124)

You must already be working in a suitable vascular dept elsewhere. You will have to attend lectures and tutorials one day per week from October – March and any exam dates.

Intake & Application

There is only one intake per year, in October. Registration usually opens in November/December the year before and will continue until all places are full.

Places on the course are very limited (25) and we receive 100’s of applications so early application is strongly advised.

Your application will only be reviewed if submitted with all College requirements and has two recent academic references. It will not proceed any further without these.

All information for the MSc is available using the links below:  

Course information

Entry requirements & Applying

English Requirements and all IELTS information

Future prospects

Applicants should note that this is an academic course and does not entitle you to become a sonographer. This course is not CASE registered.

Further exams would have to be taken by either the:

Society of Vascular Technologists

Or

The British Society of Echocardiography



Read less
If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. Read more

Access advanced technology and approaches being used in cancer biology

If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. With two streams on offer – Cancer Biology, and Cancer Informatics – we have the options available for you to choose the best way for you to use your life-sciences degree to meet your objective. We will provide you with a broad-training in research as well as theoretical and practical skills to help you take the next step in your career.

Streams

There are two streams available:

•Cancer Biology - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology/
•Cancer Informatics - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology-cancer-informatics/

Is this programme for you?

You will perform novel laboratory-based research, accumulate experimental findings and exercise critical scientific thought in the interpretation of those findings.

The course comprises both theoretical and practical elements, embracing cutting-edge developments in the field. You will experience some of the most technologically advanced approaches currently being applied to the broad field of cancer research.

As the taught component of the MRes is short, you will be expected to have sufficient lab experience in order to be able you to hit the ground running when you enter the lab.

You will need to be an independent person, who is looking for a challenge. If you're not afraid of hard work then we would welcome an application from you!

Application

Decisions on applications are made in batches, with the following deadlines for each batch:
•09:00 GMT (UTC) Tuesday, 31 January 2017
•09:00 BST (UTC+1) Wednesday, 26 April 2017
•09:00 BST (UTC+1) Monday, 31 July 2017

You will receive notification of a conditional offer or rejection in the weeks following these deadlines. If you do not hear from us, it is because you have been placed on the waiting list. We withhold the right to close application early, so ensure that you submit your application sooner, rather than later.

Please note that we are unable to consider your application without at least one academic reference from your most recent institution.

Programme structure

The course comprises an initial four/five week taught component in which the cellular and molecular basis of cancer biology are covered, plus an introduction to the clinical and pathological aspects of carcinogenesis. This information is contained within the lectures which will partly be on the lecturer's own research, making use of the excellent researchers we have within Imperial College London. Within this period will also be a series of workshops covering key transferable skills such as oral presentation of scientific data and grant writing.

This is followed by two separate research placements of roughly 20 weeks each within the recently created Imperial College Cancer Research UK Centre, the Faculty of Medicine at the Hammersmith Hospital campus of Imperial College, and other collaborating institutes across London (e.g. Institute of Clinical Sciences, The Francis Crick Institute).

Read less
If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. Read more

Research training at the computational/clinical translational science interface

If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. With two streams on offer – Cancer Biology, and Cancer Informatics – we have the options available for you to choose the best way for you to use your life-sciences degree to meet your objective. We will provide you with a broad-training in research as well as theoretical and practical skills to help you take the next step in your career.

Streams

There are two streams available:

•Cancer Biology - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology/
•Cancer Informatics - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology-cancer-informatics/

Is this programme for you?

You will engage with both theoretical and practical elements. The theoretical elements will include why particular methods are used, assumptions they are based on and understanding the technical limitations and quality control of different data types. The practical elements will include data handling and the computational method employed for each data type.

When you enter your projects, you will perform novel bioinformatics-based research, accumulate experimental findings and exercise critical scientific thought in the interpretation of those findings. The research projects may also include a smaller component of wet-lab experiments to provide some validation of the findings from the bioinformatics research.

You will need to be an independent person, who is looking for a challenge. If you're not afraid of hard work, then we would welcome an application from you.

Application

Decisions on applications are made in batches, with the following deadlines for each batch:
•09:00 GMT (UTC) Tuesday, 31 January 2017
•09:00 BST (UTC+1) Wednesday, 26 April 2017
•09:00 BST (UTC+1) Monday, 31 July 2017

You will receive notification of a conditional offer or rejection in the weeks following these deadlines. If you do not hear from us, it is because you have been placed on the waiting list. We withhold the right to close application early, so ensure that you submit your application sooner, rather than later.

Please note that we are unable to consider your application without at least one academic reference from your most recent institution.

Programme structure

The course comprises an initial four/five week taught component in which the cellular and molecular basis of cancer biology are covered, plus an introduction to the clinical and pathological aspects of carcinogenesis. This information is contained within the lectures which will partly be on the lecturer's own research, making use of the excellent researchers we have within Imperial College London. Within this period will also be a series of workshops covering key transferable skills such as oral presentation of scientific data and grant writing. This is shared with the Cancer Biology stream.

While the Cancer Biology stream move into their first project, you will receive three weeks of specialist training in informatics which is comprised of lectures and workshops. You will then complete an initial assignment before beginning your first research placement of roughly 16 weeks, and then a second project of roughly 20 weeks. These will be within the recently created Imperial College Cancer Research UK Centre, the Faculty of Medicine at the Hammersmith Hospital campus of Imperial College, and other collaborating institutes across London (e.g. Institute of Clinical Sciences, The Francis Crick Institute).

Read less
Spanning 12 months full-time, this degree programme focuses on the intricate and unique field of medical device development and the key entrepreneurship and management skills required to get the device to market, from concept to business planning and market emergence. Read more

Spanning 12 months full-time, this degree programme focuses on the intricate and unique field of medical device development and the key entrepreneurship and management skills required to get the device to market, from concept to business planning and market emergence.

In addition to specific training in medical device entrepreneurship, you will also develop research and analytical skills related to bioengineering. This provides a solid foundation for those intending to go into industry or on to study for a PhD.

This is a very hands-on course, with much of the training and assessment based around a year-long project aimed at developing an engineering developmental and start-up business plan around a medical device concept.

The programme is supplemented by a small amount of formal teaching (see Course Structure below), and a requirement to attend least one seminar per week throughout the first two terms, either in the Department of Bioengineering or elsewhere in College.

About the Department

The Department of Bioengineering at Imperial College London is leading the bioengineering agenda both nationally and internationally, advancing the frontiers of our knowledge in the discipline’s three main areas: — Biomedical Engineering: Developing devices, techniques and interventions for human health. — Biological Engineering: Solving problems related to the life sciences and their applications for health. — Biomimetics: Using the structures and functions of living organisms as models for the design and engineering of materials and machines.

In the most recent Research Excellence Framework (2014), 95% of the Department’s returned research was judged either ‘world-leading’ or ‘internationally excellent’, confirming our position as the leading Department in the UK. We’re committed to building on this success, expanding both our basic and applied bioengineering research, and providing excellent training through our popular undergraduate, Masters and PhD programmes.

As befits a new and growing discipline, the Department’s staff come from diverse academic disciplines including all main branches of engineering, physical sciences, life sciences and medicine, creating a rich collaborative environment. The interaction of our staff, along with colleagues across the institution, ensures our research benefits from both engineering rigour and clinical relevance.

We focus on six core themes: — Biomechanics and Mechanobiology — Molecular and Cellular Bioengineering — Detection, Devices and Design — Implants and Regenerative Medicine — Human and Biological Robotics — Neural Engineering. These areas are connected and fluid, with staff and students working across more than one area, and often at the interfaces.



Read less
This course provides advanced training in computational methods, the underlying physical principles, and appropriate experimental techniques for aeronautics and other sectors. Read more
This course provides advanced training in computational methods, the underlying physical principles, and appropriate experimental techniques for aeronautics and other sectors.

It is suitable for applicants who wish to enhance their engineering training or to convert to an advanced engineering discipline from backgrounds in mathematics, physics or computer science.

You will develop specialist skills that are attractive to a broad spectrum of both aerospace and non-aerospace engineering industries.

Through links with industry, it is possible for projects to be supervised in part by staff from industry or to be carried out in industry.

Some lecture courses are presented as compact (one or two-week) short course modules, making them readily available for attendees from industry and other universities.

For full information on this course please see:

http://www3.imperial.ac.uk/pgprospectus/facultiesanddepartments/aeronautics/computationalmethods

For details on how to apply please see:

http://www3.imperial.ac.uk/pgprospectus/facultiesanddepartments/aeronautics/howtoapply

Or if you have any enquirers contact our team at

For information about bursaries please see:

http://www3.imperial.ac.uk/aeronautics/pg/bursaries

Read less
The intercollegiate Transport with Sustainable Development MSc, offered in conjunction with Imperial College London, brings together the transport research and training capabilities of the civil engineering departments of the two universities. Read more
The intercollegiate Transport with Sustainable Development MSc, offered in conjunction with Imperial College London, brings together the transport research and training capabilities of the civil engineering departments of the two universities. Students benefit from the multi-disciplinary expertise of both departments and their 45 years' experience as leaders in this field.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/transport-sustainable-development-msc

Key Information

- Application dates
All applicants:
Open: 5 October 2015
Close: 29 July 2016
Fees note: Fees set by Imperial College London

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Set by Imperial College London
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

Students gain the skills necessary to incorporate the concepts of sustainable development in all stages of an engineering project's development, together with a systematic understanding of the causes, motivations and means of personal travel and goods movement, and techniques for analysing transport problems and evaluating projects, plans and policies.

Students undertake modules to the value of 90 ECTS Credits.

- Core Modules
Transport and its Context
Quantitative Methods
Transport Economics
Transport Demand and its Modelling
The Concept of Sustainable Development
Sustainable Development and Engineering Innovation
Applying the Principles of Sustainable Development

- Options
Options may include the following:
Highway Engineering
Road Traffic Theory and its Application
Public Transport
Transport Safety and Risk Management
Quantitative Techniques for Transport Engineering and Planning
Advanced Transport Modelling
Understanding and Modelling Travel Behaviour
Transport and the Environment
Intelligent Transport Systems
Design of Accessible Transport Systems
Freight Transport
Air Traffic Management
Ports and Maritime Transport
Urban Street Planning and Design
Roads and Underground Infrastructure: Design, Construction and Maintenance

- Dissertation/report
All students undertake an independent research project which culminates in a special project of 12,000 words.

Teaching and Learning

The programme is delivered through a combination of lectures, seminars, computer-based work and coursework. Assessment is through unseen written examinations, coursework, an individual literature review, presentations and the dissertation focussing on the final project.

Further information on modules and degree structure available on the department web site Transport with Sustainable Development MSc http://www.cege.ucl.ac.uk/teaching/Pages/Postgraduate/Transport.aspx

Funding

This programme offers a number of bursaries, including awards from the Engineering and Physical Sciences Research Council, the Rees Jeffreys Road Fund and the Brian Large Fund.
For further information please visit: www3.imperial.ac.uk/cts/teaching.
Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

- Brown Family Bursary - NOW CLOSED FOR 2015/16 ENTRY
Value: £15,000 (1 year)
Eligibility: UK students
Criteria: Based on both academic merit and financial need

- Commonwealth Shared Scholarship Scheme (CSSS)
Value: Full fees, flights, stipend, and other allowances (1 year)
Eligibility: Overseas students
Criteria: Based on both academic merit and financial need

- SPDC Niger Delta Postgraduate Scholarship - NOW CLOSED FOR 2015/16 ENTRY
Value: Tuition fees, plus stipend, flights and allowances. (1 year)
Eligibility: Overseas students
Criteria: Based on academic merit

More scholarships are listed on the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships

Careers

Transport graduates find employment with transport operators, consultancies, local and central governments in various countries, and in supranational organisations. Many graduates are employed by companies involved in the manufacture of instrumentation, and in companies specialising in software and other services for the engineering industry.

- Employability
Successful completion of this MSc meets the academic requirements for corporate membership of the Chartered Institute of Logistics and Transport. The programme is accredited by the Chartered Institution of Highways and Transportation. The programme is also accredited by the Institution of Civil Engineers as meeting the regulations of the Engineering Council's scheme for enabling graduates without an accredited Bachelor's degree in Civil Engineering to be considered for corporate membership and registration.

Why study this degree at UCL?

The Centre for Transport Studies is an energetic and exciting environment. Students benefit from engaging with the teaching staff who are actively involved in internationally leading research, and advising local, national and international transport agencies.

Both universities are located in the centre of one of the world's most exciting cities, near to relevant professional institutions and transport agencies. London provides a living laboratory in which students can observe many of the problems that they are studying, analyse the success or failure of current approaches to design, and operate and manage them.

Student / staff ratios › 95 staff including 43 postdocs › 200 taught students › 170 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
The Transport with Sustainable Development pathway is suitable for students who wish to direct their career towards issues of transport development and redevelopment, especially in the provision of infrastructure, and its renovation and renewal.

For more information see the Applications page http://www3.imperial.ac.uk/cts/teaching .

Read less
Global Innovation Design (GID) is a joint Master's programme between the Royal College of Art and Imperial College London. It is a unique, transnational Master’s design initiative that brings together three major centres of design, culture, enterprise and industry. Read more

Global Innovation Design (GID) is a joint Master's programme between the Royal College of Art and Imperial College London. It is a unique, transnational Master’s design initiative that brings together three major centres of design, culture, enterprise and industry: Europe, North America and Asia. 

GID is a multidisciplinary, multicultural and multinational design programme awarding both an MA from the Royal College of Art and an MSc from Imperial College London to graduates. GID offers an engaging global curriculum and provides powerful cultural experiences crafted to nurture innovators and designers who are prepared to take on the changing needs of enterprise in the twenty-first century. 

GID international partners include Pratt Institute (New York), Keio University (Tokyo), Nanyang Technological University (Singapore) and Tsinghua University (Beijing). Each of these distinctive institutions brings unique expertise and complementary approaches to design, engineering, business and cultural sensitivity, within the context of internationally oriented design innovation. 

The GID vision is to foster a transformative postgraduate experience that is unparalleled in the world, one that cultivates internationally oriented innovation and design leaders who can tackle complex problems and deliver positive social, environmental, economic and cultural change.

The GID ethos is to cultivate activated people, designers and leaders who are capable of making change in the world. Designers on the Global Innovation Design Master's programme will be expected to generate creative directions that other designers and innovators will follow.

The programme is full time and runs over a period of two calendar years. GID Master's candidates on the joint RCA/Imperial College programme begin their course in London for two terms developing their visions and a body of work which will be thematically and regionally developed throughout the next year and a half.

They have the opportunity to study on the New York/Tokyo route or the Beijing/Singapore route during their first and second years. They then return to London for the final two terms of their graduation year. Graduates from the programme are expected to be central to innovation leadership in the twenty-first century. 

Philosophically, GID challenges designers to ask who they are and what is most important to them; as authors of material culture they are asked what kind of world do they wish to create, and what contributions will they make. Global Innovation Designers create transformational culture. At the centre of the programme is the knowledge that transformational culture is engendered by objects and experiences that are the embodiment of the robustly beautiful and the exquisitely functional combined.

The GID Master's programme offers:

  • a double Master's: MA Royal College of Art and MSc Imperial College London – students are fully enrolled at both institutions
  • programme includes study at world renowned institutions: route one, Keio University in Tokyo and the Pratt Institute in New York, and route 2, Tsinghua University in Beijing and Nanyang Technical University in Singapore
  • the first two terms of the first year are in London, where designers participate in the GID London Core
  • a diverse and international mix of students
  • teaching staff who are highly experienced practitioners and work professionally in their field
  • potential enterprise and commercialisation support through the InnovationRCA incubator
  • leadership skills for design-related enterprises operating in international environments
  • high-level graduate destinations: RCA and Imperial alumni work in international corporations, global consultancies as well as new self-started commercial enterprises

London – Tokyo – New York

Study on the Tokyo/New York route route gives access to Keio University, well known for physical computing and social design interventions, as well as Pratt Institute, renowned for a tradition of excellence in industrial design. 

London – Beijing – Singapore

Study on the Beijing/Singapore route gives access to Tsinghua University, China's number one institution with world class design labs and studios, as well as Nanyang Technical University's School of Art, Design, and Media whose cutting edge programmes in new media and cultural and social design innovation situate it as a leader in emerging Asian and Global design.

At Tsinghua University, London-based students will benefit from studying at the top University in China, gaining first-hand experience of the culture of China and designing with both new and traditional materials in the context of emerging Asian design.

At Nanyang Technical University, London-based students will be exposed to a rich and varied Pan-Asian community. NTU offers world-class communication and video production instruction with cultural understanding at the core. NTU is expert in the practice of “value transmigration”, how to translate a culturally specific artefact into a viable product-service-system in a new cultural context.



Read less

Show 10 15 30 per page



Cookie Policy    X