• New College of the Humanities Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
University of Worcester Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"imaging"×
0 miles

Masters Degrees (Imaging)

  • "imaging" ×
  • clear all
Showing 1 to 15 of 542
Order by 
The full time MSc Medical Imaging. International programme provides a coherent pathway of study relevant to contemporary medical imaging practice. Read more
The full time MSc Medical Imaging: International programme provides a coherent pathway of study relevant to contemporary medical imaging practice.

It is designed to be of particular interest to international students, with a qualification in diagnostic radiography or medical technology, who are currently working in the area of medical imaging and who wish to enhance their knowledge so as to contribute to improve medical imaging services. It is designed to support healthcare professionals develop their knowledge, understanding and theoretical skills related to medical imaging required for a professional who aspires to work at an advanced level of practice.

Education within the clinical environment is not a component of the course and on successful completion students will not be eligible to apply for Health and Care Professions Council (HCPC) registration.

The programme is delivered by the Radiography academic team within the School of Allied Health professions and Sport in partnership with clinical and scientific experts working within specialised areas of medical imaging to ensure the curriculum remains appropriately diverse and clinically relevant, and alongside the part time MSc Medical Imaging programme for UK students.

This full-time MSc pathway is a modular programme encompassing a range of academic modules related to medical imaging, and research. Upon successful completion of the MSc Medical Imaging: International, students will have the knowledge and understanding necessary to work at an advanced level of practice within their chosen medical imaging discipline and apply research informed learning to international health communities to inform health service practice and delivery.

The role of higher education within the UK is not only to develop the learning and critical thinking skills of students but to provide students such as yourself with the opportunity to study for an award which will support your current and future career prospects within a dynamic and evolving healthcare environment.

Why Bradford?

The MSc Medical Imaging: International programme is aligned with the Faculty of Health’s SSPRD framework, a multidisciplinary framework for continuing professional development. The framework provides an opportunity to study alongside students from a range of healthcare disciplines to provide an enriched learning experience.

The programme is delivered by the experienced Radiography academic team within the School of Allied Health Professions and Sport in partnership with clinical and scientific experts working within specialised areas of medical imaging to ensure the curriculum remains appropriately diverse and clinically relevant, and alongside the part time MSc Medical Imaging programme for UK students.

This full-time MSc pathway is a modular programme encompassing a range of academic modules related to medical imaging, and research. Upon successful completion of the MSc Medical Imaging: International, students will have the knowledge and understanding necessary to work at an advanced level of practice within their chosen medical imaging discipline and apply research informed learning to international health communities to inform health service practice and delivery.

There is now some flexibility in module choice for MSc Medical Imaging: International. Applicants have a choice to study 2 out of 3 optional modules which support their experience and knowledge. They will then have 3 core modules which are compulsory.
The ethos of sustainable development is a fundamental feature of the programme with students encouraged to develop autonomous learning skills and the ability to apply critical thinking to clinical practice.

Modules

-Current Topics in Medical Imaging
-Preparing for a Systematic Review
-Pursuing a Systematic Review
-Computed Tomography
-Magnetic Resonance Imaging
-Principles of Reporting

Learning activities and assessment

When you have completed the programme you will be able to;
-Develop a detailed knowledge and understanding of the literature that relates to your specialist field of practice
-Critically analyse and synthesise the research evidence that informs the development of policy and service delivery in your specialist field of practice
-Evaluate and critically apply theoretical concepts and where appropriate, for your field of practice, master practical skills for the management of complex issues within your field of practice
-Reflect upon and demonstrate knowledge of values, ethical thinking, equality awareness, inclusive practice and demonstrate mastery within your specialist field or practice
-Develop and demonstrate the ability to articulate sound arguments using a variety of formats including written and oral communication skills
-Demonstrate management and leadership through effective communication, problem solving, and decision making
-Demonstrate the ability to become an autonomous learner through independent study and critical reflection on continuing development needs
-Demonstrate the ability to use IT skills to gather and synthesise information , to access course materials
-Demonstrate a critical awareness and understanding of different theoretical constructs underpinning research and/or project management methodologies.
-Design, undertake and report on either a systematic review, a piece of empirical research, work based or management project that contributes to or extends the body of knowledge for your field of practice

The MSc Medical Imaging assessments allows students flexibility to direct assessments to their area of developing practice and have been praised by external examiners for their relevance to current clinical practices. Assessments range from: portfolios demonstrating advanced practice skills; case studies; presentations; critical evaluations of imaging practices; examinations in image appearances and imaging technology; and a final research project.

Students need to achieve a mark of 40% for each assessment for each module.

Career support and prospects

The theoretical knowledge gained in the imaging modalities of Computed Tomography, Magnetic Resonance Imaging, and/or principles of medical image reporting will compliment the skills of critical reflection and research that developing practitioners and academics will use in advancing their careers.

Read less
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. Read more
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. This MSc, taught by leading scientists and clinicians, will equip imaging students from all science backgrounds with detailed knowledge of the advanced imaging techniques which provide new insights into cellular, molecular and functional processes, preparing them for a PhD or a career in industry.

Degree information

Imaging is essential for diagnosis of disease and development of novel treatments. This programme focuses on translational medical imaging, and the development and use of preclinical imaging technologies to detect, monitor and prevent illnesses such as cancer, heart diseases and neurodegeneration. Students will undertake an independent research-based project in UCL’s world-class laboratories and develop their communication skills in biomedical science.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits), and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time) is offered. A Postgraduate Certificate (60 credits, full-time) is offered. There are no optional modules for this programme.

Core modules
-Advanced Biomedical Imaging Techniques I & II
-Practical Preclinical Research (including Home Office Personal Licence)
-Translational Biomedical Imaging of Disease and Therapy I & II
-Science Communication for Biomedicine
-Statistical Methods in Research
-Ethics and Regulation of Research

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of 7,000 words or a manuscript suitable for submission to a peer-reviewed journal.

Teaching and learning
The programme is delivered through a combination of seminars, lectures, laboratory work, site visits and practicals. Assessment is through examination, presentations, essays, practical reports and the dissertation.

Careers

UCL is involved in the dynamic and successful London-based entrepreneurial activity in biomedical imaging. It has a strong track record in placing postgraduates in key positions within industry (e.g. Siemens, Philips, GE Healthcare, GSK, SMEs and start-ups) and at other leading academic institutions with preclinical imaging facilities, including the Universities of Oxford and Cambridge in the UK, and MIT and NIH in the US. This MSc will provide ideal training for students who wish to apply to UCL’s EPSRC Centre for Doctoral Training in Medical Imaging.

Employability
This programme belongs to the School of Life and Medical Sciences; one of the largest and most prestigious aggregations of academics in its field, with a global reputation for teaching informed by cutting-edge research. Our close links with major hospitals and industry allow students to perform significant research projects.

Students will foster an awareness of the commercial opportunities and diverse funding mechanisms for the development of new ideas, technologies and applications using imaging. Our learning methods will prepare students for careers in academic or industrial science, as well as providing transferable skills in presentation, writing, organisation and team work.

The first cohort of students on the Advanced Biomedical Imaging MSc are due to graduate in 2016, therefore no information on graduate destinations is currently available.

Why study this degree at UCL?

UCL offers a world-class environment in medical imaging and hosts several medical and biomedical imaging centres of excellence.

The UCL Centre for Advanced Biomedical Imaging is one of the world’s most advanced imaging centres, with 11 state-of-the-art imaging technologies, and is dedicated to developing imaging techniques of the future. Biomedical imaging is an interdisciplinary field drawing together biology, medicine, physics, engineering, and art.

The MSc is linked to University College London Hospitals (UCLH), including Great Ormond Street Hospital, the UCH Macmillan Cancer Centre and National Hospital for Neurology and Neurosurgery. This will provide an ideal training for further research and applications for a PhD at UCL Centre for Doctoral Training in Medical Imaging.

Read less
Medical imaging is a rapidly developing field of growing importance both in patient management and clinical decision making and in drug development and evaluation. Read more
Medical imaging is a rapidly developing field of growing importance both in patient management and clinical decision making and in drug development and evaluation. Dramatic developments in imaging both anatomy and molecular processes, especially using Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Magnetic Resonance Imaging (MRI). Research and development in the field is highly multi-disciplinary with key roles played by computing scientists and mathematicians, chemists, pharmacists, physicists, biologists, and of course clinicians. The Division of Imaging Sciences & Biomedical Engineering hosts a multidisciplinary team of academics directing a wide range of cutting-edge research projects, with an emphasis on translation “from bench to bedside”.

Key benefits

- Access to state of the art preclinical and clinical imaging facilities

- Clinically applied modules

- Two 4 month research projects within the Imaging Sciences’ Wellcome/EPSRC Medical Engineering Centre or CRUK/EPSRC Comprehensive Cancer Imaging Centre

- Research facilities based within a hospital environment enabling basic imaging science to be translated quickly into the clinic

- May constitute first year of a 4-year PhD

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/medical-imaging-sciences-mres.aspx

Course detail

- Description -

Medical Imaging Sciences aims to provide graduates of chemistry, physics, computing, mathematics, biology, pharmacy or medicine, with advanced training in the imaging field. Intended mainly as preparation for a PhD, but also serves as training for employment in hospitals and industry. Key components are two research projects, which may be linked around different aspects of a single research area in medical imaging.

- Course purpose -

Medical imaging is a rapidly expanding field that needs input from team members with knowledge and skills in these different areas (chemistry, physics, computing, mathematics, biology, pharmacy, medicine) to achieve its promise in improving patient care. The aim of this MRes programme is to provide students who have graduated in any of these subject areas with advanced training to prepare them to apply their specialist graduate skills in the imaging field. The programme is intended mainly as a preparation for a PhD in the field, at King's or elsewhere, but it also serves as training for employment in hospitals and industry.

- Course format and assessment -

Taught modules are presented in a variety of formats, including lectures, workshops, laboratory practicals, site visits etc. Assessment is based on coursework and examination.

Both research projects are carried out under the supervision of academics within the Division’s five departments (Biomedical Engineering; Cancer Imaging; Cardiovascular Imaging; Imaging Chemistry and Biology and Perinatal Imaging and Health). Some research projects may take place in a collaborating laboratory elsewhere in King's or at a collaborating institution.

Career prospects

Expected destinations are study for PhD, employment (research or service) in the NHS and commercial nuclear medicine services, the pharmaceutical or medical engineering industry.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
See the department website - http://www.cis.rit.edu/graduate-programs/master-science. The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Read more
See the department website - http://www.cis.rit.edu/graduate-programs/master-science

The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Formal course work includes consideration of the physical properties of radiation-sensitive materials and processes, the applications of physical and geometrical optics to electro-optical systems, the mathematical evaluation of image forming systems, digital image processing, and the statistical characterization of noise and system performance. Technical electives may be selected from courses offered in imaging science, color science, engineering, computer science, science, and mathematics. Both thesis and project options are available. In general, full-time students are required to pursue the thesis option, with the project option targeted to part-time and online students who can demonstrate that they have sufficient practical experience through their professional activities.

Faculty within the Center for Imaging Science supervise thesis research in areas of the physical properties of radiation-sensitive materials and processes, digital image processing, remote sensing, nanoimaging, electro-optical instrumentation, vision, medical imaging, color imaging systems, and astronomical imaging. Interdisciplinary efforts are possible with other colleges across the university.

The program can be completed on a full- or a part-time basis. Some courses are available online, specifically in the areas of color science, remote sensing, medical imaging, and digital image processing.

Plan of study

All students must earn 30 credit hours as a graduate student. The curriculum is a combination of required core courses in imaging science, elective courses appropriate for the candidate’s background and interests, and either a research thesis or graduate paper/project. Students must enroll in either the research thesis or graduate paper/project option at the beginning of their studies.

Core courses

Students are required to complete the following core courses: Fourier Methods for Imaging (IMGS-616), Image Processing and Computer Vision (IMGS-682), Optics for Imaging (IMGS-633), and either Radiometry (IMGS-619) or The Human Visual System (IMGS-620).

Speciality track courses

Students choose two courses from a variety of tracks such as: digital image processing, medical imaging, electro-optical imaging systems, remote sensing, color imaging, optics, hard copy materials and processes, and nanoimaging. Tracks may be created for students interested in pursuing additional fields of study.

Research thesis option

The research thesis is based on experimental evidence obtained by the student in an appropriate field, as arranged between the student and their adviser. The minimum number of thesis credits required is four and may be fulfilled by experiments in the university’s laboratories. In some cases, the requirement may be fulfilled by work done in other laboratories or the student's place of employment, under the following conditions:

1. The results must be fully publishable.

2. The student’s adviser must be approved by the graduate program coordinator.

3. The thesis must be based on independent, original work, as it would be if the work were done in the university’s laboratories.

A student’s thesis committee is composed of a minimum of three people: the student’s adviser and two additional members who hold at least a master's dgeree in a field relevant to the student’s research. Two committee members must be from the graduate faculty of the center.

Graduate paper/project option

Students with demonstrated practical or research experience, approved by the graduate program coordinator, may choose the graduate project option (3 credit hours). This option takes the form of a systems project course. The graduate paper is normally performed during the final semester of study. Both part- and full-time students may choose this option, with the approval of the graduate program coordinator.

Admission requirements

To be considered for admission to the MS in imaging science, candidates must fulfill the following requirements:

- Hold a baccalaureate degree from an accredited institution (undergraduate studies should include the following: mathematics, through calculus and including differential equations; and a full year of calculus-based physics, including modern physics. It is assumed that students can write a common computer program),

- Submit a one- to two-page statement of educational objectives,

- Submit official transcripts (in English) of all previously completed undergraduate or graduate course work,

- Submit letters of recommendation from individuals familiar with the applicant’s academic or research capabilities,

- Submit scores from the Graduate Record Exam (GRE) (requirement may be waived for those not seeking funding from the Center for Imaging Science), and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 600 (paper-based) or 100 (Internet-based) are required. Students may also submit scores from the International English Language Testing System. The minimum IELTS score is 7.0. International students who are interested in applying for a teaching or research assistantship are advised to obtain as high a TOEFL or IELTS score as possible. These applicants also are encouraged to take the Test of Spoken English in order to be considered for financial assistance.

Applicants seeking financial assistance from the center must have all application documents submitted to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Additional information

- Bridge courses

Applicants who lack adequate preparation may be required to complete bridge courses in mathematics or physics before matriculating with graduate status.

- Maximum time limit

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more

About the course

The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Diagnostic Imaging pathway gives you the opportunity to demonstrate development of your critical evaluative and problem solving skills in specialised areas of practice such as magnetic resonance imaging (MRI) and computerised tomography (CT).

See the website http://www.herts.ac.uk/courses/msc-medical-imaging-and-radiation-sciences-diagnostic-imaging

Course structure

The MSc Medical Imaging and Radiation Sciences: Diagnostic Imaging is modular in structure. If you wish to collect credits towards and award or a qualification see below the award and credit requirements:
- Postgraduate certificate - 60 credits
- Postgraduate diploma - 120 credits
- Masters degree - 180 credits

To complete a Masters degree award for this course you need to collect the following credits:
- Research modules - 60 credits
- Diagnostic imaging modules - minimum 30 credits
- Optional interprofessional modules - maximum 90 credits

Why choose this course?

- It gives you the opportunity to share ideas with other health professions in order to develop intellectual abilities and assist in the advancement of health care
- It offers you flexible study options based on a modular structure
- It includes interprofessional learning
- Teaching is done by experienced staff and visiting external specialists
- Accredited by the College of Radiographers

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.

Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Modules are assessed by a variety of methods for example essays, presentations, reports, posters and practical examinations.

Work Placement

The University cannot offer to provide clinical placements for students.

Professional Accreditations

Accredited by the College of Radiographers

Find out how to apply here http://www.herts.ac.uk/courses/msc-medical-imaging-and-radiation-sciences-diagnostic-imaging#how-to-apply

Find information on Scholarships here http://www.herts.ac.uk/apply/fees-and-funding/scholarships/postgraduate

Read less
Programme description. The programme disseminates imaging knowledge, skills and understanding, in order to enable effective and efficient use of imaging, clinically, in research and in industry. Read more

Programme description

The programme disseminates imaging knowledge, skills and understanding, in order to enable effective and efficient use of imaging, clinically, in research and in industry.

Our flexible, intermittent, part-time, online distance learning (OLDL) programme aims to:

•provide an understanding of imaging theory, techniques, analysis and applications

•develop research planning and designing skills, incorporating imaging

•enable interpretation and analysis of relevant imaging data

•relate imaging research to clinical applications

Online learning

Access world class teaching at the University of Edinburgh, while maintaining your local professional & personal commitments where you live, thereby keeping down costs by not being resident in Edinburgh.

Our online students not only have access to Edinburgh’s excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Programme structure

You may choose to study to Certificate, Diploma or Masters level.

Find out more about the compulsory and optional courses in this degree programme. We publish the latest available information for this programme. Please note that this may be for a previous academic year.

You may take up to 30 credits per semester, 60 credits per year.

Postgraduate Professional Development (PPD) is aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Masters, Postgraduate Diploma or Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. We offer online credit-bearing courses which run for 11 weeks at a time. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Although PPD courses have various start dates throughout a year you may only start a Masters, Postgraduate Diploma or Postgraduate Certificate programme in the month of September. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Learning Outcomes

Describe the full range of imaging theory, techniques, analysis and applications.

Discuss how imaging is used to investigate both normal and abnormal processes and functions (clinically and in research).

Feel confident to undertake well designed, methodologically sound and practical research using imaging.

Create a study design methodology.

Analyse results and use statistics as applied to imaging studies.

Be aware of health and safety regulations and legislation related to imaging.

Translate from basic imaging research to the clinical arena.

Be empowered to take a critical view of existing research particularly with an awareness of reproducibility and reliability of techniques, sources of bias in research and clinically.

Demonstrate innovation before discussing and presenting their work to their peers.

Development of skills in grant and research proposal formulation.

Develop the tools to initiate and execute research autonomously and produce publishable research summaries.

Develop good practice in communication and collaboration using modern online communication tools.

Acquire imaging knowledge to engage with new developments.


Career opportunities

Clinical graduates will exit the programme with improved clinical image management skills, and will also be better able to advise companies and businesses which develop tools and techniques for their specialties, where imaging is required. For pre-clinically focused students, an imaging skill set expands academic possibilities and is more likely to assist with translational techniques necessary to bridge the preclinical and clinical sciences.

The degree will also be attractive as a preliminary qualification before undertaking career training in hospital Medical Physics (for physicists and engineers), as well as a preliminary qualification before taking a PhD or research scientist post involving medical physics, medical imaging, biomechanics in academia or industry.



Read less
This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

The award in Medical Imaging and Radiation Science is specially designed for professionals in medical imaging and radiotherapy and has the following aims.

A. Advancement in Knowledge and Skill
‌•To provide professionals in Medical Imaging and Radiotherapy, as well as others interested in health technology, with the opportunity to develop advanced levels of knowledge and skills;
‌•To develop specialists in their respective professional disciplines and enhance their career paths;
‌•To broaden students' exposure to a wider field of health science and technology to enable them to cope with the ever-changing demands of work;
‌•To provide a laboratory environment for testing problems encountered at work;
‌•To equip students with an advanced knowledge base in a chosen area of specialisation in medical imaging or radiotherapy to enable them to meet the changing needs of their disciplines and contribute to the development of medical imaging or radiation oncology practice in Hong ‌Kong; and
‌•To develop critical and analytical abilities and skills in the areas of specialisation that are relevant to the professional discipline to improve professional competence.

B. Professional Development
‌•To develop students' ability in critical analysis and evaluation in their professional practices;
‌•To cultivate within healthcare professionals the qualities and attributes that are expected of them;
‌•To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
‌•To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice
‌•To equip students with the necessary skill in research to enable them to perform evidence-based practice in the delivery of healthcare service and industry.

D. Personal Development
‌•To provide channels through which practising professionals can continuously develop themselves while at work; and
‌•To allow graduates to develop themselves further after graduation.

Programme Characteristics

The Medical Imaging and Radiation Science award offers channels for specialization and the broadening of knowledge for professionals in medical imaging and radiotherapy. It will appeal to students who are eager to become specialists or managers in their areas of practice. Clinical experience and practice in medical imaging and radiotherapy are integrated into the curriculum to encourage more reflective observation and active experimentation.

Programme Structure

The Postgraduate Scheme in Health Technology consists of the following awards:
‌•MSc in Medical Imaging and Radiation Science
‌•MSc in Medical Laboratory Science

A range of subjects that are specific to Medical Imaging and Radiation Science, and a variety of subjects of common interest and value to all healthcare professionals, are offered. In general, each subject requires attendance on one evening per week over a 13-week semester.

Award Requirements

Students must complete 1 Compulsory Subject (Research Methods & Biostatistics), 4 Core Specialism Specific Subjects, 2 Elective subjects (from any subjects within the Scheme) and a research-based Dissertation or 3 other subjects from the Scheme. They are encouraged to select a dissertation topic that is relevant to their professional and personal interests. Students who have successfully completed 30 credits, but who have taken fewer than the required 4 Core Specialism Specific Subjects, will be awarded a generic MSc in Health Technology without a specialism award.

Students who have successfully completed 18 credits, but who decide not to continue with the course of MSc study, may request to be awarded a Postgraduate Diploma (PgD) as follows:
PgD in a specialism if 1 Compulsory Subject, 4 Core Subjects and 1 Elective Subject are successfully completed; or
PgD in Health Technology (Generic) if 1 Compulsory Subject and any other 4 subjects within the Scheme are successfully completed.

Core Areas of Study

The following is a list of Core Subjects. Some subjects are offered in alternate years.

‌•Multiplanar Anatomy
‌•Advanced Radiotherapy Planning & Dosimetry
‌•Advanced Technology & Clinical Application in Computed Tomography
‌•Advanced Technology & Clinical Application in Magnetic Resonance Imaging
‌•Advanced Topics in Health Technology
‌•Advanced Ultrasonography
‌•Computed Tomography (CT): Practicum
‌•Digital Imaging & PACS
‌•Imaging Pathology

Having selected the requisite number of subjects from the Core list, students can choose the remaining Core Subjects or other subjects available in this Scheme as Elective Subjects.

The two awards within the Scheme share a similar programme structure, and students can take subjects across disciplines. For subjects offered within the Scheme by the other discipline of study, please refer to the information on the MSc in Medical Laboratory Science.

English Language Requirements

If you are not a native speaker of English, and your Bachelor's degree or equivalent qualification is awarded by institutions where the medium of instruction is not English, you are expected to fulfil the University’s minimum English language requirement for admission purpose. Please refer to the "Admission Requirements" http://www51.polyu.edu.hk/eprospectus/tpg/admissions-requirements section for details.

‌•Additional Document Required
‌•Employer's Recommendation
‌•Personal Statement
‌•Transcript / Certificate

How to Apply

For latest admission, please visit [email protected] http://www51.polyu.edu.hk/eprospectus/tpg and eAdmission http://www.polyu.edu.hk/admission

Enquiries

For further information, please contact:
Telephone: (852) 3400 8653
Fax: (852) 2362 4365
E-mail:

For more details of the programme, please visit [email protected] website http://www51.polyu.edu.hk/eprospectus/tpg/2016/55005-rmf-rmp

Read less
Our world leading courses use innovative teaching methods to develop your knowledge and skills in forensic imaging and support you in your distance learning… Read more
Our world leading courses use innovative teaching methods to develop your knowledge and skills in forensic imaging and support you in your distance learning experience wherever you are in the world - for radiographers, technologists, and other forensic imaging professionals.These courses will support you to develop a forensic protocol that adheres to relevant guidance and legislation, and develop skills in producing images that will be acceptable in court by learning about the requirements for high-quality evidence.

Course details

You will learn about how to image children for suspected physical abuse and investigation of infant deaths, location of forensic evidence (for example drug smuggling, ballistic material), age assessments for human trafficking or illegal immigration, and identification of the deceased. A new module will develop skills in post-mortem imaging utilising CT and MRI to replace the conventional autopsy. The PgCert develops forensic imaging skills, enabling you to undertake forensic imaging in your department and to comply with the forensic radiography guidelines from the Society and College of Radiographers and the International Association of Forensic Radiographers. The second year develops more advanced forensic imaging skills in mass fatalities and Disaster Victim Identification, and a practice area of your choice. During your third year (MSc) you develop the research skills needed to contribute to the forensic imaging knowledge base.

Professional accreditation

Our courses are recognised by the Chartered Society of Forensic Sciences and accredited by the Society and College of Radiographers.

What you study

Two modules ensure that you are fit for practice within the scope of forensic practice relevant to the needs of a clinical radiology department. The first is Medico-Legal Issues in Forensic Imaging Practice (Sept - Jan) and the second is Principles of Forensic Imaging (Jan - June). All sessions are facilitated by recognised specialists in the field of forensics, demonstrating the multi-disciplinary nature of forensic practice.

Year 1
Core modules
-Medico-legal Issues in Forensic Imaging Practice
-Principles of Forensic Imaging (Radiographers)

Option modules (choose one of the following):
-Minimally Invasive Autopsy
-Paediatric Forensic Imaging

Year 2
Core modules (MSc only)
-Designing Research Projects
-Forensic Imaging in Mass Fatalities

Option modules (choose one of the following):
-Minimally Invasive Autopsy
-Negotiated Learning in Forensic Imaging Practice
-Paediatric Forensic Imaging

Year 3
Core module (MSc only)
-TBC

Modules offered may vary.

Teaching

These courses are taught by distance learning, and are structured to keep you on track throughout your studies. You never need to attend the university, and apart from the webinars, you can complete the online activities at times that work best for you.

The three-week induction at the start of the course gives you time to get to know the virtual learning environment, learn what electronic learning resources are available to you, and introduces you to each other and the course. You will also have the opportunity to improve your writing skills with online workshops. So when the forensic topics start, you are read to concentrate on the subject.

Weekly contact with your tutor and peers via instant messaging or email, for support when you want it.

Topics are delivered at a pace that gives you more time to learn about that area and relate this to your own practice.

Structured activities help you to think about each topic and discuss ideas with your peers – videos, screencasts, quizzes, directed reading, virtual workspace for discussion, and interactive and collaborative work.

Regular webinars where you and your peers join together online at the same time to engage in a teaching session with your tutor or other forensic specialist.

Webinars take place on an evening (6.30pm - 8.30pm) and there are approximately six per 12-14 week module.

Courtroom simulation – learn how to give evidence and experience being cross-examined.

International specialists in the field of forensics, demonstrating the multidisciplinary nature of forensic practice in mass fatalities incidents, will facilitate all sessions. Previously, these specialists have included forensic radiographers and technologists, consultant paediatricians, consultant paediatric radiologists, forensic pathologists, forensic biologists, forensic researchers, rorensic anthropologists, HM Coroner, and a post-mortem imaging service provider.

The assessment strategy is designed to be compatible with distance learning and to provide a variety of methods, enabling a more inclusive assessment strategy – written assignments and presentations. These are submitted online or presented in the webinar room.

Employability

The Society and College of Radiographers advocates that those who undertake forensic imaging examinations must be educated and trained at postgraduate level. This course addresses this. Successfully completion of the course enhances your career as a practitioner with specialist imaging skills.

Most advanced posts in the NHS require a master’s degree. If you plan to become the lead radiographer/technologist for forensic imaging in your department, the advanced skills you develop in this course will give you an advantage.

Feedback from previous students indicates that as a result of this course, they have become articulate and confident in presenting their research at conferences, aspiring, creative and confident in changing practice, aspiring to enhance practice resulting in promotion to forensic lead, and becoming more confident as a person. In addition, they have become articulate in writing at Level 7, critical of research, creative with learning and adaptable to learning and time management. Furthermore, they have been facilitated to be adaptable, confident, articulate leaders in forensic radiography with some becoming active committee members of the International Association of Forensic Radiographers, with some also engaging with the Department of Health and Home Office as a result, demonstrating the significant impact of this course on forensic imaging nationally and internationally.

Read less
This part-time programme is designed to be studied over an eleven month period, commencing in early September and being completed in July of the following year. Read more
This part-time programme is designed to be studied over an eleven month period, commencing in early September and being completed in July of the following year. The programme consists of two 30 credit core modules.

The MRI theory module, delivered in the first semester, is designed to give students an understanding of the scientific principles behind magnetic resonance imaging and the knowledge to explore the relationship between technical parameters and anatomical and pathological appearances. This theoretical module may also be accessed by students who are not registered for the full MRI certificate course as an option within the MSc in Medical Imaging programme.

The second module, clinical MRI, is delivered in semester two and is designed to provide the student with a structured and monitored experiential learning opportunity in their workplace. It is designed to enable students to critically evaluate MRI protocols used in clinical practice with respect to the evidence base in order to inform service delivery and practice.

The programme sits within the MSc in Medical Imaging programme and the Faculty of Health Studies SSPRD framework, and upon successful completion of this MRI course students can continue their studies by registering for additional modules from the Medical Imaging or School module portfolio, to obtain a postgraduate Diploma or Master's Degree.

Why Bradford?

The Magnetic Resonance Imaging (MRI) programme was first validated in 1996 and since then it has proved to be a popular choice of study demonstrating its continued clinical relevance. The programme is delivered in partnership with clinical and scientific experts working within MRI to ensure it remains clinically relevant and of value to radiographers in developing the knowledge, understanding and skills, in MRI, that are required of a professional who aspires to work at an advanced level.

Modules

-Magnetic Resonance Imaging
-Clinical Magnetic Resonance Imaging

Learning activities and assessment

A 'block' attendance format is utilised in the delivery of the academic learning and this mode of delivery has proved to be popular with students who benefit academically from the concentrated period of time that can be devoted to their studies and learning with their peers. There are 5 blocks of academic learning and these are delivered in the first 6 months of the course.

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
Medical Imaging impinges on virtually every facet of clinical practice and is one of the key elements in diagnosis, monitoring of and in some cases guiding of therapy. Read more
Medical Imaging impinges on virtually every facet of clinical practice and is one of the key elements in diagnosis, monitoring of and in some cases guiding of therapy. Knowledge of the appropriateness and limitations of the various techniques for imaging is therefore an important skill for clinical scientists, healthcare professionals and clinicians.

It is as well to emphasise at this stage that the programmes offered in Medical Imaging are not clinical courses. However, the teaching of the technical aspects of the various imaging modalities will be firmly grounded in the clinical usage of those modalities. Many of the lecturers are also at the forefront of research in their particular field and will bring insights from, not just current imaging practice but, imaging techniques which are currently in their infancy.

An MSc and a PGDip are offered in Medical Imaging; you are allowed to transfer from your original programme, to another one, provided that you do this before you have completed the programme and before an award has been made. Part time study is also an option. Please contact us on for information on this.

Course Aim

This MSc is designed not only for recent graduates preparing for a career in medical imaging, but also for professionals already working in the field. It aims to cover all aspects of medical imaging, from the basic physics involved, through the different modalities, to the current issues involved in working in a modern UK NHS radiology department.

Objectives - By the end of the MSc programme students should be able to:
•Demonstrate knowledge and understanding of the physical and mathematical aspects of image formation of several techniques;
•Identify the anatomical and physiological properties of tissue associated with image formation and contrast for several techniques;
•Analyse and compare the technical performance of various modalities;
•Demonstrate an understanding of the clinical applications of each technique, the variables involved and how they can be compared;
•Critically analyse the optimisation of combinations of imaging modalities for specific patient groups;
•Analyse the equipment and staff management issues associated with the use of modern technology in modern clinical practice;
•Apply IT in literature searching, analysis and display of data, and report writing to enhance life-long learning in medical imaging;
•Demonstrate enhancement of their professional skills in communication, problem-solving, learning effectively and quickly, and effective self-management;
•Critically evaluate relevant published work, demonstrating an understanding of the underpinning principles of statistics, project design and data analysis;
•Plan and implement a research project.

Read less
This course is designed for health professionals who use diagnostic imaging and interventions in their current role, including. -Diagnostic and therapeutic radiographers. Read more
This course is designed for health professionals who use diagnostic imaging and interventions in their current role, including:
-Diagnostic and therapeutic radiographers.
-Radiation technologists.
-Physiotherapists.
-Nurses.
-Advanced nurse practitioners.
-Junior doctors.
-Dentists.
-Podiatrists.

It is available worldwide as you don't have to attend the university. You complete your learning at a time and place that suits your own personal and employment circumstances.

You learn in a variety of areas and formats, tailoring the content to your individual circumstance and need. There are opportunities to develop your theoretical knowledge in and around diagnostic imaging, or to specialise in a particular area.

Modules relate to diagnostic imaging as well as wider health practice, and take place in a multi-disciplinary and international environment. The core topics covered include:
-Image interpretation (musculoskeletal, chest, abdominal, CT head).
-Cross-sectional imaging (CT / MRI).
-Interventional.
-Research.
-Education in health care.

As this is a distance learning course, you use various online platforms and technologies to support your learning, such as our virtual learning environment (SHUspace) and PebblePad. Learning takes place in various formats including:
-Online presentations and live collaborative sessions with tutors.
-Discussion forums with peers and tutors.
-Imaging case studies.
-Access to a wide range of online resources and textbooks.
-Ongoing formative activities (e-tivities).

You are supported by an expert team of academics and tutors, all of whom are experienced registered health professionals. Current clinical practitioners also help develop and deliver resources. The course team has a range of specialist expertise including:
-Image interpretation.
-Cross-sectional imaging.
-Interventional radiology.
-Research.
-Higher education.
-Professional issues.
-Advanced practice.

You have a course leader and a named academic advisor to support your learning. Each module has a module leader to aid you specifically in that area, and we have dedicated student support officers who support all aspects of your time on the course.

This course allows you to apply masters level thinking to your practice and boost your confidence in your judgement. This can enhance your job prospects and career progression wherever you choose to work.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-diagnostic-imaging

Study individual modules

You can study individual modules from this course and gain academic credit towards a qualification. Visit our continuing professional development website for more information: http://www.shu.ac.uk/faculties/hwb/cpd/modules.html

Professional recognition

This course is accredited by the Society and College of Radiographers.

Course structure

Distance learning. Starts September and January.

Course structure
The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits. The masters (MSc) award is achieved by successfully completing 180 credits.
The combination of modules studied on this course is tailored according to your own areas of interest, aims and goals. You discuss your individual study route with the course leader.

Core modules
-Awareness of error in diagnostic imaging (15 credits)
-Research methods for practice (15 credits)
-Dissertation (60 credits)

Optional modules
-Chest radiographic image interpretation (15 credits)
-Appendicular musculoskeletal radiographic image interpretation (15 credits)
-Axial musculoskeletal radiographic image interpretation (15 credits)
-Abdominal imaging (15 credits)

Optional modules continued
-Cross-sectional imaging (15 credits)
-Computed tomography head image interpretation: acute and emergency care (15 credits)
-Introduction to healthcare education (30 credits)

Assessment
The approach to assessment is varied and we use both formative (not formally marked) and summative (formally marked) assessments in each of the modules. The assessment pattern is designed to encourage your personal, professional, and academic development.Short online formative activities (e-tivities) are used to promote engagement with the distance learning materials, provide support for the final assignment and facilitate online discussion with fellow students on the module. Final summative tasks to assess your completion of the modules are varied but include methods such as:
-Traditional written coursework assignments.
-Online computer-based exams.
-Electronic poster or powerpoint presentations.
-Research proposals and projects.

Other admission requirements

If English is not your first language you will need an IELTS score of 6.5 with a minimum of 5.5 in all skills, or a recognised equivalent. If your level of English language is currently below IELTS 6.5 we recommend you consider an appropriate Sheffield Hallam University Pre-sessional English course which will enable you to achieve the required level of English.

You also need:
-Access to and the ability to use IT software such as Word and PowerPoint.
-Regular access to a computer with reliable internet access.
-Confidence in accessing and using web-based materials.
-Access to diagnostic images in practice.

We determine your suitability for the course and your ability to complete it through your application, references and personal statement. You may also have an advisory interview/email communication with the course leader to:
-Ascertain your needs and aspirations.
-Decide on potential routes and modules of study.
-Give you guidance to prepare for any claims for credit through our accreditation of recognised prior learning (RPL).

Read less
The MSc Medical Imaging programme is intended to provide a Masters-level postgraduate education in the knowledge, skills and understanding of engineering design of advanced medical and biotechnology products and systems. Read more
The MSc Medical Imaging programme is intended to provide a Masters-level postgraduate education in the knowledge, skills and understanding of engineering design of advanced medical and biotechnology products and systems. Students will also acquire a working knowledge of the clinical environment to influences their design philosophy.

Why study Medical Imaging at Dundee?

With biotechnology replacing many of the traditional engineering disciplines within the UK, this programme will allow you to develop the skills to apply your engineering or scientific knowledge to technologies that further the developments in this field. As a result, employment opportunities will be excellent for graduates, both in research and in industry.

We have an active research group, and you will be taught by leading researchers in the field.

What's so good about Medical Imaging at Dundee?

The MSc in Medical Imaging at the University of Dundee will:

Provide knowledge, skills and understanding of medical imaging technologies, particularly in modern biomedical, radiological and surgical imaging instrumentation, biomaterials, biomechanics and tissue engineering

Enhance your analytical and critical abilities, competence in multi-disciplinary research & development

Provide broad practical training in biology and biomolecular sciences sufficient for you to understand the biomedical nomenclature and to have an appreciation of the relevance and potential clinical impact of the research projects on offer

Allow you to experience the unique environment of clinical and surgical aspects in medical imaging in order to provide an understanding of the engineering challenges for advanced practice

Provide core training in electrical, microwave, magnetic, acoustic and optical techniques relevant to the life sciences interface and

Provide broad experience of analytical and imaging techniques relevant for biology, biomolecular and clinical sciences
provide core training in acoustic ultrasound technologies.

Who should study this course?

This course is suitable for students who are recent graduates of mechanical engineering courses or other related programmes.

This course has two start dates - January & September, and lasts for 12 months.

How you will be taught

The programme will involve a variety of teaching formats including lectures, tutorials, seminars, hands-on imaging classes, laboratory exercises, case studies, coursework, and an individual research project.

The teaching programme will include visits to and seminars at IMSaT and clinical departments at Ninewells Hospital and Medical School and Tayside University Hospitals Trust, including the Clinical Research Centre, the Departments of Medicine, Surgery, Dentistry and ENT, the Vascular Laboratory and Medical Physics.

A high degree of active student participation will be encouraged throughout. Taught sessions will be supported by individual reading and study. You will be guided to prepare your research project plan and to develop skills and competence in research including project management, critical thinking and problem-solving, project report and presentation.

What you will study

The course is divided into two parts:

Part I has 60 credits:

Biomechanics (20 Credits)
Biomaterials (20 Credits)
Bioinstrumentation (10 Credits)
Introduction to Medical Sciences (10 Credits)

Part II has one taught module and a research project module. It starts at the beginning of the University of Dundee's Semester 2, which is in mid-January:

Taught module: Advanced Biomedical Imaging Technologies (30 Credits).
Research project (30 Credits for diploma or 90 Credits for MSc)

How you will be assessed

The taught modules will be assessed by a combination of written examinations and coursework. The research project will be assessed by a written thesis and oral presentation.

Careers

This Master's programme provides you with the skills to continue into research in areas such as biomedical and biomaterials engineering as well as progression into relevant jobs within the Mechanical Engineering and Mechatronics industries.

Read less
The part time MSc Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice. Read more
The part time MSc Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice.

It is designed to support healthcare professionals develop their knowledge, understanding and skills related to medical imaging required for a professional who aspires to work at an advanced level of practice.

This part-time MSc pathway is a modular programme encompassing a range of academic and work-based modules related to medical imaging, and research.

Upon successful completion of the MSc Medical Imaging, students will have the knowledge and understanding necessary to work at an advanced level of practice within their chosen medical imaging discipline and apply research informed learning to international health communities to inform health service practice and delivery.

The role of higher education within the UK is not only to develop the learning and critical thinking skills of students but to provide students such as yourself with the opportunity to study for an award which will support your current and future career prospects within a dynamic and evolving healthcare environment.

Why Bradford?

The MSc Medical Imaging programme at Bradford is a long standing and successful programme delivered by an experienced radiography team, with diagnostic radiographers coming from around the UK, and full time international students choosing to study here.

The programme is delivered in partnership with clinical and scientific experts, and the research informed curriculum ensures it is relevant to current and innovative practice.

Learning activities and assessment

The MSc Medical Imaging assessments allows students flexibility to direct assessments to their area of developing practice and have been praised by external examiners for their relevance to current clinical practices.

Assessments range from: portfolio's demonstrating advanced practice skills; case studies; presentations; critical evaluations of imaging practices; examinations in image appearances and imaging technology; and a final research project.

Students need to achieve a mark of 40% for each assessment for each module.

Career support and prospects

The programme supports students to develop advancing practice skills, knowledge, critical reflection and research skills. It supports developing practitioners and academics current and future career prospects within a dynamic and evolving healthcare environment.

Read less
The Diagnostic Imaging programme has been created by merging the established Breast Imaging and Medical Ultrasound programmes to increase opportunities for inter-professional learning and to allow us to introduce radiography into our postgraduate teaching and learning portfolio. Read more
The Diagnostic Imaging programme has been created by merging the established Breast Imaging and Medical Ultrasound programmes to increase opportunities for inter-professional learning and to allow us to introduce radiography into our postgraduate teaching and learning portfolio.

It is aimed at local, national and international students, who wish to develop their academic and clinical skills, in-depth knowledge & understanding, research and professional practice in diagnostic imaging. We have a highly successful history of teaching breast imaging and medical ultrasound at postgraduate level in a multidisciplinary setting.

This programme is multidisciplinary and will appeal to a range of healthcare professionals including those practicing as breast imagers, medical doctors, nurses, clinical scientists and radiographers.

Why study this programme?
On completion of this programme the student will have clinical and scientific knowledge related to Diagnostic Imaging and an understanding of the evidence and research base of the discipline. They will have specialist clinical expertise underpinned by in-depth theoretical knowledge and practical experience.

On completion of the programme, the student will:
- Be able to demonstrate in-depth, specialist knowledge and mastery of techniques relevant to the discipline and/or to demonstrate a sophisticated understanding of concepts, information and techniques at the forefront of Diagnostic Imaging;
- have acquired the complex skills necessary to perform Diagnostic Imaging examinations competently;
- critically and creatively evaluate current issues, research and advanced scholarship in Diagnostic Imaging.

The programme will:-
Deliver a high quality, research-led educational experience in order to develop highly competent practitioners who contribute positively to healthcare service provision.

For those students wishing to specialise in research led programmes in medical imaging, which do not involve patients or the clinical interpretation of images, Leeds Institute of Genetics, Health and Therapeutics deliver a range of programmes, which may be viewed by using this URL: http://www.leeds.ac.uk/light/teaching/msc_medim

Read less
The MSc Diagnostic Imaging programme aims to enhance students’ professional development enabling them to become leaders in advancing diagnostic imaging practice. Read more
The MSc Diagnostic Imaging programme aims to enhance students’ professional development enabling them to become leaders in advancing diagnostic imaging practice.

Our programme develops advanced skills, such as critical thinking, evidence based practice and research and leadership, providing the skills to effect change based on best and current practice. Building on current knowledge and clinical experience, students will gain an insight of advancing practices.

Students will be expected to use their learning to inform professional discussion and debate. Our teaching team consists of academic experts and clinical specialists, ensuring our content is relevant, current and evidence based. Students can choose to study on the broad based MSc Diagnostic Imaging Programme or on one of our defined area of practice optional pathways; MSc Diagnostic Imaging (Magnetic Resonance Imaging) and MSc Diagnostic Imaging (Medical Ultrasound).

Many of our graduates have gone on to secure promoted positions in management and areas of advancing practice, others have continued to doctorate study.

Optional Pathway: Medical Ultrasound Studies

For those who have an interest in Medical Ultrasound, the MSc Diagnostic Imaging programme offers a pathway of study to gain theoretical knowledge of the physical principles and an understanding of the clinical application. Our teaching team consists of academic experts and clinical specialists, ensuring our content is relevant, current, and evidence based. Our state-of-the-art simulation facilities (Medaphor scan trainers) and sonographic equipment allow opportunities to develop and rehearse practical scanning skills and gain feedback on ability.

The programme aims to enable practitioners, normally from outside the UK, to achieve the knowledge and understanding needed to develop their current practice further or to pursue a career in ultrasound*.

*This programme does not assess nor certify competency to practice in the field of medical ultrasound.

Students on the medical ultrasound studies pathway will follow the module structure given under the MSc Diagnostic Imaging Programme Description, substituting the Advancing Practices in Imaging 2 module with:

Principles of Practice in Medical Ultrasound (30 credits) - Here the students will learn the underpinning theory of ultrasound production, safe & effective practice, patient care, nomenclature, reporting skills, litigation, ethics and image optimisation.

Assessment Methods

A range of assessment methods are used that are appropriate to the content and mode of delivery of each module. These include examinations, written assignments, reflective portfolio, oral and/or poster presentations.

Teaching Methods

We use a blended learning approach including key note lectures, tutorials, workshops simulation, case-studies, student led seminars, e-learning, and self-directed study. Active participation in the learning is essential, both as an individual and as part of a group.

Employment Opportunities

Many of our graduates have gone on to secure promoted positions in management, gastro-intestinal advanced practice, MRI research, and sonographer-led ultrasound services.

Read less

Show 10 15 30 per page



Cookie Policy    X