• Northumbria University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
EURECOM Featured Masters Courses
Cranfield University at Shrivenham Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Swansea University Featured Masters Courses
"image" AND "processing"×
0 miles

Masters Degrees (Image Processing)

We have 149 Masters Degrees (Image Processing)

  • "image" AND "processing" ×
  • clear all
Showing 1 to 15 of 149
Order by 
The International Master Program in Image Processing and Computer Vision provides specialized training in a field of increasing importance in our daily lives. Read more

The International Master Program in Image Processing and Computer Vision provides specialized training in a field of increasing importance in our daily lives. It is essential in domains such as medicine, surveillance, industrial control, remote sensing, e-commerce and automation. The program covers a wide range of methods in computer vision thus guaranteeing highly-qualified graduates in this field. Three partner universities, with internationally recognized experience in these domains, have pooled their complementary expertise and developed this international postgraduate cooperation initiative.

The result is a high-quality, strongly recognized, triple Master degree that respects the 120 ECTS syllabus, and is well adapted to job market criteria. In order to benefit from the knowledge of these three partner universities and their professors, students spend an entire semester in each university.

Program structure

All students follow the same curriculum with some optional courses. The program is organized as follows:

Semester 1: PPCU, Budapest, Hungary

  • Functional Analysis (5 ECTS) – Compulsory
  • Parallel Computing Architectures (3 ECTS) – Compulsory
  • Numerical Analysis 1 (4 ECTS) – Compulsory
  • Basic Image Processing Algorithms (5 ECTS) – Compulsory
  • Data mining (5 ECTS) - Compulsory
  • Stochastic Signals and Systems (4 ECTS) – Optional
  • FPGA-based Algorithm Design (5 ECTS) – Optional
  • Biomedical Signal Processing (4 ECTS) – Optional
  • Programming Methodology (5 ECTS) – Optional
  • Intelligent Sensors (3 ECTS) – Optional

Semester 2: UAM, Madrid, Spain

  • Applied Bayesian Methods (6 ECTS) – Compulsory
  • Biomedical Image Processing and Applications (6 ECTS) – Compulsory
  • Biometrics (6 ECTS) – Compulsory
  • Video Sequences Analysis for Video Surveillance (6 ECTS) – Compulsory
  • Tutored Research Project 1 (6 ECTS) - Compulsory

Semester 3: UBx, Bordeaux, France

  • Image and Inversion (6 ECTS) – Compulsory
  • Variational Methods and PDEs for Image Processing (6 ECTS) - Compulsory
  • Advanced Image Processing (3 ECTS) - Compulsory
  • Video and Indexing (3 ECTS) – Compulsory
  • Image Acquisition and Reconstruction (3 ECTS) – Compulsory
  • IT Project Management (3 ECTS) – Compulsory
  • Tutored Research Project 2 (6 ECTS) – Compulsory

Semester 4: Internship in academic or industry laboratory

Strengths of this Master program

  • International program taught by experts from three different universities in Europe.
  • Triple Master degree.
  • International mobility period in three countries.

After this Master program?

After graduation, students have access to career opportunities such as engineers or further research as PhD students.

Their educational background makes them attractive candidates for companies in the following areas: E-commerce, Medical imaging, Personal assistance, Automation, Industrial control, Security, Post-production, Remote sensing, Software publishing.



Read less
See the department website - http://www.cis.rit.edu/graduate-programs/master-science. The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Read more
See the department website - http://www.cis.rit.edu/graduate-programs/master-science

The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Formal course work includes consideration of the physical properties of radiation-sensitive materials and processes, the applications of physical and geometrical optics to electro-optical systems, the mathematical evaluation of image forming systems, digital image processing, and the statistical characterization of noise and system performance. Technical electives may be selected from courses offered in imaging science, color science, engineering, computer science, science, and mathematics. Both thesis and project options are available. In general, full-time students are required to pursue the thesis option, with the project option targeted to part-time and online students who can demonstrate that they have sufficient practical experience through their professional activities.

Faculty within the Center for Imaging Science supervise thesis research in areas of the physical properties of radiation-sensitive materials and processes, digital image processing, remote sensing, nanoimaging, electro-optical instrumentation, vision, medical imaging, color imaging systems, and astronomical imaging. Interdisciplinary efforts are possible with other colleges across the university.

The program can be completed on a full- or a part-time basis. Some courses are available online, specifically in the areas of color science, remote sensing, medical imaging, and digital image processing.

Plan of study

All students must earn 30 credit hours as a graduate student. The curriculum is a combination of required core courses in imaging science, elective courses appropriate for the candidate’s background and interests, and either a research thesis or graduate paper/project. Students must enroll in either the research thesis or graduate paper/project option at the beginning of their studies.

Core courses

Students are required to complete the following core courses: Fourier Methods for Imaging (IMGS-616), Image Processing and Computer Vision (IMGS-682), Optics for Imaging (IMGS-633), and either Radiometry (IMGS-619) or The Human Visual System (IMGS-620).

Speciality track courses

Students choose two courses from a variety of tracks such as: digital image processing, medical imaging, electro-optical imaging systems, remote sensing, color imaging, optics, hard copy materials and processes, and nanoimaging. Tracks may be created for students interested in pursuing additional fields of study.

Research thesis option

The research thesis is based on experimental evidence obtained by the student in an appropriate field, as arranged between the student and their adviser. The minimum number of thesis credits required is four and may be fulfilled by experiments in the university’s laboratories. In some cases, the requirement may be fulfilled by work done in other laboratories or the student's place of employment, under the following conditions:

1. The results must be fully publishable.

2. The student’s adviser must be approved by the graduate program coordinator.

3. The thesis must be based on independent, original work, as it would be if the work were done in the university’s laboratories.

A student’s thesis committee is composed of a minimum of three people: the student’s adviser and two additional members who hold at least a master's dgeree in a field relevant to the student’s research. Two committee members must be from the graduate faculty of the center.

Graduate paper/project option

Students with demonstrated practical or research experience, approved by the graduate program coordinator, may choose the graduate project option (3 credit hours). This option takes the form of a systems project course. The graduate paper is normally performed during the final semester of study. Both part- and full-time students may choose this option, with the approval of the graduate program coordinator.

Admission requirements

To be considered for admission to the MS in imaging science, candidates must fulfill the following requirements:

- Hold a baccalaureate degree from an accredited institution (undergraduate studies should include the following: mathematics, through calculus and including differential equations; and a full year of calculus-based physics, including modern physics. It is assumed that students can write a common computer program),

- Submit a one- to two-page statement of educational objectives,

- Submit official transcripts (in English) of all previously completed undergraduate or graduate course work,

- Submit letters of recommendation from individuals familiar with the applicant’s academic or research capabilities,

- Submit scores from the Graduate Record Exam (GRE) (requirement may be waived for those not seeking funding from the Center for Imaging Science), and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 600 (paper-based) or 100 (Internet-based) are required. Students may also submit scores from the International English Language Testing System. The minimum IELTS score is 7.0. International students who are interested in applying for a teaching or research assistantship are advised to obtain as high a TOEFL or IELTS score as possible. These applicants also are encouraged to take the Test of Spoken English in order to be considered for financial assistance.

Applicants seeking financial assistance from the center must have all application documents submitted to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Additional information

- Bridge courses

Applicants who lack adequate preparation may be required to complete bridge courses in mathematics or physics before matriculating with graduate status.

- Maximum time limit

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
Our MSc Systems, Control and Signal Processing degree will allow you to build on the core topic of signal processing with specialisms in systems theory, image processing and machine learning. Read more

Our MSc Systems, Control and Signal Processing degree will allow you to build on the core topic of signal processing with specialisms in systems theory, image processing and machine learning. This one year course will give you highly transferable skills in algorithmic development and programming.

Introducing your degree

Focus on systems and signal processing in a programme that encompasses contemporary approaches to a broad range of topics.

Overview

This programme is structured around a core of topics in signal processing, with specialisms in control and systems theory, image processing and machine learning.

The programme is centred around the research base at Southampton and reflects leading research in ECS in the areas of:

  • signal processing
  • robotics
  • systems and control theory
  • image processing
  • machine learning

The programme has a high mathematical content, and much of the material is strongly computationally based. You will develop strong transferable skills in algorithmic development and programming.

View the programme specification document for this course

Career Opportunities

This programme provides an excellent platform for further research in either industry or academia.

Graduates from our MSc programme are employed worldwide in leading companies at the forefront of technology. ECS runs a dedicated careers hub which is affiliated with over 100 renowned companies including:

  • IBM
  • Arm
  • Microsoft Research
  • Imagination Technologies
  • Nvidia
  • Samsung
  • Google

Visit our careers hub for more information.

Through an extensive blend of networks, mentors, societies and our on-campus startup incubator, we also support aspiring entrepreneurs looking to build their professional enterprise skills. Discover more about enterprise and entrepreneurship opportunities.



Read less
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. Read more
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. The School enjoys an international reputation for its work and prides itself in allowing students the freedom to realise their maximum potential.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

We undertake high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Visit the website https://www.kent.ac.uk/courses/postgraduate/262/electronic-engineering

Project opportunities

Some projects available for postgraduate research degrees (http://www.eda.kent.ac.uk/postgraduate/projects_funding/pgr_projects.aspx).

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning. Read more

This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning.

State-of-the-art computer-vision and machine-learning approaches for image and video analysis are covered in the course, as well as low-level image processing methods.

Students also have the chance to substantially expand their programming skills through projects they undertake.

Read about the experience of a previous student on this course, Gianmarco Addari.

Programme structure

This programme is studied full-time over 12 months and part-time from 24 to 60 months. It consists of eight taught modules and a standard project. 

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Technical characteristics of the pathway

This programme in Computer Vision, Robotics and Machine Learning aims to provide a high-quality advanced training in aspects of computer vision for extracting information from image and video content or enhancing its visual quality using machine learning codes.

Computer vision technology uses sophisticated signal processing and data analysis methods to support access to visual information, whether it is for business, security, personal use or entertainment.

The core modules cover the fundamentals of how to represent image and video information digitally, including processing, filtering and feature extraction techniques.

An important aspect of the programme is the software implementation of such processes. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspirations.

Key to the programme is cross-linking between core methods and systems for image and video analysis applications. The programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by the Centre for Vision, Speech and Signal Processing (CVSSP).

Career prospects

Computer vision specialists are be valuable in all industries that require intelligent processing and interpretation of image and video. This includes industries in directly related fields such as:

  • Multimedia indexing and retrieval (Google, Microsoft, Apple)
  • Motion capture (Foundry)
  • Media production (BBC, Foundry)
  • Medical Imaging (Siemens)
  • Security and Defence (BAE, EADS, Qinetiq)
  • Robotics (SSTL)

Studying for Msc degree in Computer Vision offers variety, challenge and stimulation. It is not just the introduction to a rewarding career, but also offers an intellectually demanding and exciting opportunity to break through boundaries in research.

Many of the most remarkable advancements in the past 60 years have only been possible through the curiosity and ingenuity of engineers. Our graduates have a consistently strong record of gaining employment with leading companies.

Employers value the skills and experience that enable our graduates to make a positive contribution in their jobs from day one.

Industrial collaborations

We draw on our industry experience to inform and enrich our teaching, bringing theoretical subjects to life. Our industrial collaborations include:

  • Research and technology transfer projects with industrial partners such as the BBC, Foundry, LionHead and BAE
  • A number of our academics offer MSc projects in collaboration with our industrial partners

Research perspectives

This course gives an excellent preparation for continuing onto PhD studies in computer vision related domains.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Application period/deadline. March 14 - 28, 2018. Interdisciplinary knowledge in medical and health technologies from theoretical and practical perspective. Read more

Application period/deadline: March 14 - 28, 2018

• Interdisciplinary knowledge in medical and health technologies from theoretical and practical perspective

• Capability to design and implement biomedical measurement systems and health applications, and process multimodal biomedical signals and images

• Opportunity to modify personal study profile according to your professional interests

The applicant can select from the two alternatives. Degrees to be obtained:

(1) Master of Health Sciences, with focus on biomechanics, medical imaging and health technology applications

(2) Master of Science (Technology), with focus on biomedical signal and image processing, machine learning, and measurement and analysis of biomedical data

The International Master’s Degree Programme in Biomedical Engineering (BME) is a two-year interdisciplinary programme focusing on biomechanics and medical imaging as well as biomedical signal and image processing. The programme will give you relevant skills and core knowledge of the latest methods, tools and technologies combined with issues such as:

• Anatomy and physiology

• Biomechanics

• Biomedical measurements

• Medical physics and imaging techniques

• Biomedical signal and image processing

• Machine learning

• E-Health

• Health technology applications

Finland has impressive health technology industry and its health care system is worldwide known. University of Oulu and the OuluHealth innovation ecosystem offer an excellent platform for research and development (R&D). The BME program is organized by internationally recognized high-quality research groups in close collaboration with the Oulu University Hospital. The program and the international research groups have also cooperation with other health care organizations and health technology industry.

Master graduate from the BME program typically works in different expert duties in industry, research, education, and health care. He/she may work e.g. as designer, developer, researcher, service provider, or entrepreneur. Typically the tasks involve strong international perspective.

Occupational profiles of the graduates:

• Developing and testing products in the industry as well as marketing and post-marketing support and managerial tasks

• Research, education, and specialist duties in academia and research institutes

• Consulting on the use and procurement of products, evaluation of performance, maintenance, customization of appliances to clinical and research needs in health care units

• Public official tasks related to the quality control, and management, and establishment of safety standards

Students applying for the programme must possess an applicable B.Sc. degree in biomedical engineering, biophysics, physics, computer engineering, computer science, information technology, electrical engineering, control engineering, mechanical engineering, or other related fields.

Email Now



Read less
Research profile. The Institute for Digital Communications (IDCOM) is the UK's leading research institute in signal processing and communications and is home to the Li-Fi research and development centre. Read more

Research profile

The Institute for Digital Communications (IDCOM) is the UK's leading research institute in signal processing and communications and is home to the Li-Fi research and development centre. We have three major centres of activity; signal processing, communications systems and tomographic imaging. Our programme of research delivers world leading research in signal and image processing and communications from fundamental theoretical and algorithmic work through to its translation to specific audio, imaging, radar/sonar, and communications applications.

The Institute has excellent research facilities, including state-of-the-art computing systems and laboratories for agile tomography, and audio signal processing, as well as the Li-Fi research and development centre for visible light communications. Internationally recognised for our research on communications systems and signal processing, we offer research topics including: green radio; visible light communications; cognitive radio; compressive sensing; distributed sensor signal processing; and agile tomography.

IDCOM holds the only UK Research Council platform award in sensor signal processing, in collaboration with the joint research institute in signal and image processing and Heriot-Watt University, recognising our world leading research status.

Training and support

The development of transferable skills is a vital part of postgraduate training and a vibrant, interdisciplinary training programme is offered to all research students by the University’s Institute for Academic Development (IAD). The programme concentrates on the professional development of postgraduates, providing courses directly linked to postgraduate study.

Courses run by the IAD are free and have been designed to be as flexible as possible so that you can tailor the content and timing to your own requirements.

Our researchers are strongly encouraged to present their research at conferences and in journal during the course of their PhD.

Every year, the Graduate School organises a Postgraduate Research Conference to showcase the research carried out by students across the Research Institutes

Our researchers are also encouraged and supported to attend transferable skills courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

Facilities

The Institute has excellent research facilities, including state-of-the-art computing systems and laboratories for usability engineering, audio signal processing and visible light communications.

Masters by Research

An MSc by Research is based on a research project tailored to a candidate’s interests. It lasts one year full time or two years part time. The project can be a shorter alternative to an MPhil or PhD, or a precursor to either – including the option of an MSc project expanding into MPhil or doctorate work as it evolves. It can also be a mechanism for industry to collaborate with the School.



Read less
Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries. Read more

Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries.

This programme delivers the expertise you'll need to forge a career in medical imaging, including radiation physics, image processing, biology, computer vision, pattern recognition, artificial intelligence and machine learning.

Programme structure

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and an extended project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab.

The Department’s student common room is also covered by the university’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices. There is also a Faculty quiet room for individual study.

We pride ourselves on the many opportunities that we provide to visit collaborating hospitals. These enable you to see first-hand demonstrations of medical imaging facilities and to benefit from lectures by professional practitioners.

To support material presented during the programme, you will also undertake a selection of ultrasound and radiation detection experiments, hosted by our sister MSc programme in Medical Physics.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Technical characteristics of the pathway

Medical Imaging is a rapidly growing discipline within the healthcare sector, incorporating engineers, physicists, computer scientists and clinicians. It is driven by the recent rapid development of 3-D Medical Imaging Systems, fuelled by an exponential rise in computing power.

New methods have been developed for the acquisition, reconstruction, processing and display of digital medical-image data with unprecedented speed, resolution and contrast.

This programme in Medical Imaging is aimed at training graduates for careers in this exciting multi-disciplinary area, and our graduates can expect to find employment in the medical imaging industry or the public health care sector.

It represents a blend of fundamental medical physics topics concerned with image acquisition and reconstruction coupled with imaging science and image engineering topics such that graduates understand how images are formed and how advanced machine-based methods can be bought to bare to provide new diagnostic information.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This specialist option of the . MSc Computational and Software Techniques in Engineering. Read more

This specialist option of the MSc Computational and Software Techniques in Engineering has been developed to deliver qualified engineers to the highest standard into the emerging field of digital signal and image processing who are capable of contributing significantly to this increased demand for both real-time and off-line systems operating over a range of mobile, embedded and workstation platforms.

Who is it for?

Developed for students interested in software development within the wide spectrum of industries in which digital signal processing and/or digital image processing plays a significant role. Suitable for candidates from a broad range of engineering backgrounds, including aeronautical, automotive, mechanical and electrical engineering in addition to the more traditional computational sciences background, who wish to both develop and complement their existing skill-set in this new area. Part-time students have a flexible commencement date.

Why this course?

This option of the MSc in Computational and Software Techniques in Engineering aims to develop your skill-base for the rapidly expanding engineering IT industry sector, not only in the UK but all over the world. Graduates in this option have the opportunity to pursue a wide range of careers embracing telecommunications, the automotive industry, medical imaging, software houses and industrial research where demand for skills is high.

This course additionally forms part of the ESTIA (Ecole Supérieure des Technologies Industrielles Avancées) Cranfield MSc programme which gives ESTIA students the opportunity to study this degree based either at Cranfield University or ESTIA in Bidart, South-West France.

Cranfield University is very well located for visiting part-time students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course is directed by an industrial advisory panel who meet twice a year to ensure that it provides the right mix of hands-on skills and up-to-date knowledge suitable for the wide variety of applications that this field addresses.

A number of members also attend the annual student thesis presentations which take place at the end of July. This provides a good opportunity for students to meet key employers.

Course details

The course consists of 12 core modules, including a group design project, plus an individual research project. 

The course is delivered via a combination of structured lectures, tutorial sessions and computer based workshops. Mathematical and computational methods form the basis of the specialist modules, covering the theory and application of DSIP algorithms for the analysis, interpretation and processing of data in diverse fields such as computer vision, robotics, vibro-acoustic condition monitoring, medical diagnosis, remote sensing and data visualisation. This set of specialist modules are designed to provide students with the programming techniques necessary to develop, maintain and use core DSIP solution software over a wide range of industrial settings.

Group project

The group project which takes place in the spring is designed to provide you with invaluable experience of delivering a project within an industry structured team. The project allows you to develop a range of skills including learning how to establish team member roles and responsibilities, project management, delivering technical presentations and gaining experience of working in teams that include members with a variety of expertise and often with members who are based remotely.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Recent Group Projects include:

  • Real-time Robotic Sensing
  • Automatic Video Surveillance
  • Face Recognition Systems
  • Applied Digital Signal Processing for Gear Box Analysis
  • Vibro-acoustic Analysis of Turbine Blades.

Individual project

The individual research project allows you to delve deeper into an area of specific interest. It is very common for industrial partners to put forward real world problems or areas of development as potential research project topics. In general you will begin to consider the research project after completing 3-4 modules - it then runs concurrently with the rest of your work.

For part-time students it is common that their research thesis is undertaken in collaboration with their place of work.

Recent Individual Research Projects include:

  • Vision Systems for Real Time Driver Assistance
  • Pattern Recognition for Vibration Analysis
  • Image Stabilisation for UAV Video Footage
  • Presenting Driver Assistance Information Using Augmented Reality
  • Real-time Object Tracking for Intelligent Surveillance Systems
  • 3D Stereo Vision Systems for Robotics and Vehicles.

Assessment

Taught modules 45%, Group project 5%, Individual research project 50%

Your career

The MSc in Computer and Machine Vision attracts enquiries from companies all over the world who wish to recruit high quality graduates. There is considerable demand for students with expertise in engineering software development and for those who have strong technical programming skills in industry standard languages and tools. Graduates of this course will be in demand by commercial engineering software developers, automotive, telecommunications, medical and other industries and research organisations, and have been particularly successful in finding long-term employment.

Some students may go onto degrees, on the basis of their MSc research project. Thesis topics are most often supplied by individual companies on in-company problems with a view to employment after graduation - an approach that is being actively encouraged by a growing number of industries.

A selection of companies that have recruited our graduates include:

  • BAE Systems
  • European Aeronautic Defence and Space Company (EADS)
  • Defence, Science and Technology Laboratory (Dstl)
  • Orange France
  • Microsoft
  • EDS Unigraphics
  • Delcam
  • GKN Technology
  • Logica
  • Oracle Consulting Services
  • National Power
  • Altran Technologies
  • Earth Observation Sciences Ltd
  • Oracle Consulting Services
  • Easams Defence Consultancy
  • Xyratex.


Read less
This programme provides graduates and working professionals with a broad training in signal processing and communications. Read more

This programme provides graduates and working professionals with a broad training in signal processing and communications. It is suitable for recent graduates who wish to develop the specialist knowledge and skills relevant to this industry and is also suitable as advanced study in preparation for research work in an academic or industrial environment or in a specialist consultancy organisation.

Engineers or other professionals wishing to participate in the MSc programme may do so on a part-time basis.

Our students gain a thorough understanding of theoretical foundations as well as advanced topics at the cutting edge of research in signal processing and communications, including compressive sensing, deep neural networks, wireless communication theory, and numerical Bayesian methods.

The MSc project provides a good opportunity for students to work on state-of-the-art research problems in signal processing and communications.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses

  • Discrete-Time Signal Analysis
  • Digital Communication Fundamentals
  • Probability, Estimation Theory and Random Signals (PETARS)
  • Image Processing
  • Digital Signal Processing Laboratory

Semester 2 courses

  • Adaptive Signal Processing
  • Advanced Coding Techniques
  • Advanced Wireless Communication
  • Array Processing Methods and MIMO Systems
  • Advanced Concepts in Signal Processing
  • Pre-dissertation project preparation and report

Career opportunities

With our excellent employability record and internationally respected reputation, the University of Edinburgh is a reliable choice for developing your engineering career.

This programme will appeal to graduates who wish to pursue a career in an industry such as communications, radar, medical imaging or anywhere else signal processing is applied.



Read less
Image and signal processing affect our daily lives in an ever-increasing way. Participate in designing this fascinating technology and shape IT‘s future function in business and society. Read more

Image and signal processing affect our daily lives in an ever-increasing way. Participate in designing this fascinating technology and shape IT‘s future function in business and society. Today‘s networked devices for image and signal generation provide a historically unmatched volume of raw data for automated decision making and control systems. The demands are high: How can we design new tools and software in order to best distil useful information? A lot of interesting research and development projects in the private and the public sectors are calling for your expertise. Alternatively, this degree will open career tracks in universities and research labs.

The international Joint Degree Master Programme„Applied Image and Signal Processing“ is conducted in English. The standard period of study is four semesters. The full program is worth a total of 120 points according to the ECTS (European Credit Transfer and Accumulation System). The academic degree of „Master of Science in Engineering“ (MSc) will be awarded upon successful completion of the programme.

From Theory to Practice (Curriculum)

The first semester is devoted to a concise study of the theoretical basis, the mathematical models and the algorithms used in image and signal processing. The second semester additionally focuses on geometric modelling, audio processing and digital media formats. Starting with the third semester, specific application scenarios are discussed and corresponding technologies are investigated in a number of elective courses.

Choose your Elective Courses

The elective courses comprise medical imaging, platform specific signal processing, data science, biometric systems, media security, computational geometry and machine learning.

Apply your Scientific Knowledge

In the third semester, students also start research on their master thesis and acquire profound IT-project management skills. The fourth semester is dedicated to the completion of the master thesis. An accompanying master seminar provides a forum for presenting and defending one‘s approach to a solution and the results obtained, i.e., for scientific discourse with faculty and peers.

Modules & Competences 

This Joint Degree Master Programme is designed to provide students with an in-depth professional and scientific training. Based on appropriate prior bachelor studies, this programme offers a thorough technical training in conjunction with research-driven teaching. It will make the participants familiar with introductory and advanced-level topics in the fields of image and signal processing, their formal and methodical basics, and with diverse fields of application. The sound knowledge and skills acquired in this programme qualify the alumni for diverse practical challenges in their professional work and empower them to contribute to future innovations in image and signal processing. A master thesis serves as a documentary proof of the student‘s ability to tackle scientific problems successfully on his or her own and to come up with a result that is correct with regards to contents and methodology. Furthermore the publication of Master Thesis is intended. Thus, this programme also paves the road to subsequent work in science and technology.



Read less
The Environmental Mapping MSc is designed to appeal to students looking to map and understand the environment. Read more
The Environmental Mapping MSc is designed to appeal to students looking to map and understand the environment. It provides the opportunity to study at an advanced level the ways in which spatial data can be collected, processed and analysed to qualify and understand environmental issues across a wide range of applications.

Degree information

Students receive core training in mapping science, analytical methods, geographic information systems (GIS), image processing, and other fundamentals of geomatics. They develop techniques for the acquisition of data including satellite remote sensing, global navigation satellite systems (GNSS) and LIDAR, alongside techniques for the analysis, processing, interpretation, and display of spatial data.

Students undertake modules to the value of 180 credits. The programme consists of six core modules (60 credits), optional modules (60 credits) and a research project (60 credits). A Postgraduate Certificate (60 credits), full-time 12 weeks, part-time one year is offered.

Core modules
-Analytical and Numerical Methods
-Scientific Computing
-Mapping Science
-Principles and Practice of Remote Sensing

Optional modules - options may include the following:
-Climate Modelling
-Airborn Data Acquisition
-Surface Water Modelling
-Terrestrial Carbon: Monitoring and Modelling
-Global Monitoring of Environment and Society
-Image Understanding
-Dissertation/report

All students undertake an individual research project. The department has links with industry, and projects may be carried out in collaboration with organisations outside UCL.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, tutorials, transferable skills training, compulsory computer training and research supervision. Assessment is through unseen written examinations, coursework, and a dissertation (including a poster presentation).

Careers

The MSc will appeal to individuals interested in developing research training while acquiring vocational skills for work in mapping and monitoring positions in public and private sector institutions. The quantitative skills the degree provides have proved attractive to employers, particularly the grounding in programming, data handling and analysis, image processing and report writing. These skills are generic and have allowed graduates to go into a range of careers in mapping and spatial analysis but also areas such as conservation and management and policy. Environmental Mapping graduates find jobs in diverse companies from consultants and NGOs carrying out environmental and spatial analysis, and governmental and government-affiliated agencies such as DECC and the National Physical Laboratory. The programme is also a suitable training for those wishing to undertake higher-level work as a prelude to a PhD

Employability
The range of generic, transferable skills provided by the programme has proved to be attractive to a range of employers. Students acquire fundamental understanding of the key principles of mapping and data handling and analysis, as well as the ability to communicate their ideas. These principles can and are applicable across a wide range of career options. The interdisciplinary, intercollegiate nature of the degree gives students a unique perspective, not just at UCL, but across the wider world of mapping and environmental science.

Why study this degree at UCL?

The MSc is run by UCL Geography, which enjoys an outstanding reputation for its research and teaching, and has a long pedigree in producing highly employable graduates for industry, research, policy and many other areas.

This MSc offers students an all-round knowledge of monitoring methods and environmental understanding, including the fundamental principles, and current technological developments and applications to local, regional and global problems.

Graduates of the programme are equipped with highly developed practical skills to enable them to take leading roles in academic, governmental or industrial sectors. The degree is integrated with other Geography MSc programmes to provide greater flexibility when choosing optional modules.

Read less
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world. Read more
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world.

Your course will have a new home in Compass House, which will extend our campus along East Road. You’ll have the latest technology at your fingertips and be able to collaborate with other students on innovative projects to hone your skills.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course covers a number of contemporary topics, including power electronics, signal processing, renewable systems, holistic modeling of electronic systems and image processing. Building on your previous experience, and with developed practical skills, you’ll leave with the expert knowledge and understanding to practice safely and effectively in a wide range of environments.

Cambridge is home to the Silicon Fen, Europe’s largest high-technology commercial research and development centre. We have excellent, established links with many employers in the sector including:

- ARM Ltd
- British Computer Society
- Cambridge Network
- Cambridge Silicon Radio
- E2V
- Ford Motor Company
- Selex Sensors and Airborne Systems
- South East Essex PCT

Our specially equipped laboratories provide you with the essential tools you need in the field of industrial electronics and microelectronics. Among other features they are equipped with wind and solar energy systems, development boards with FPGA circuits and power electronics modules. You’ll also have access to our CAD laboratories with the very latest software.

This programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course is designed to address the challenges of the modern industrial world. It focuses on power electronics, renewable systems, signal processing, holistic modelling of electronic systems and image processing. The main aims of the course are to:
• Meet a local, national and international demand for skilled electronic and electrical engineers.
• Provide an opportunity for students to gain in-depth relevant specialist knowledge in electronics systems design.
• Synthesise formal solutions through the application of specialist knowledge to design and create innovative electronic and electrical circuits.
• Perform and develop objective and critical analysis skills necessary to synthesis effective solutions when presented with a set of specifications.
• Equip you with the appropriate depth in understanding of electronic engineering development tools and techniques.

Upon completion of the course you will be able to:
• Exercise an in-depth understanding of the design mechanisms which can be used to create electronic and electrical designs and critically evaluate their effectiveness.
• Demonstrate an ability to deal with complex and interdependent design issues both systematically and creatively in a sustainability context.
• Analyse and devise strategies to design, evaluate and optimise microelectronics based systems.
• Critically evaluate the tools and techniques required to create microelectronics circuits which satisfy specifications.
• Analyse current research and technical problems within the discipline for further reflection for evaluation and critique.
• Recognise your obligations to function in a professional, moral and ethical way.
• Synthesise original circuit design from a knowledge of current tools, methodologies and strategies.
• Critically survey current and recent practice in the field of electronic and electrical engineering, in a sustainability context, in order to identify examples of best practice and to propose new hypotheses.
• Develop the ability to act autonomously to plan and manage a project through its life cycle, and to reflect on the outcomes.
• Define the goals, parameters and methodology of a research and development activity.

Careers

The possibilities that are open to you range from design or systems engineering, to medical electronics, environmental monitoring, sound technology biophysics or microelectronics. Across industry, whether it’s in process control, construction and building or services, teaching and beyond, there’ll be opportunities to find your own specialist niche.

Core modules

Sustainable Technologies
DSP Applications and ARM® Technology
Digital Systems Design with VHDL and FPGAs
Power Conversion Systems
Remote Sensing and the Internet of Things
Research Methods
Major Project

Assessment

You’ll be assessed through exams and written assignments based on case studies and scenarios.

Facilities

Our Department has specialist laboratories for electronics and microelectronics, equipped with wind and solar energy systems, power electronics modules, development boards with FPGA circuits and more. Our laboratories are designed, maintained, and operated by an in-house team of technical experts. Students also benefit from access to a wide range of central computing and media facilities.

We also operate modern electronic Computer Aided Design labs loaded with the latest software that includes Integrated Synthesis Environment Design Suite, Matlab, Simulink and other relevant software.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains. Read more
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains.

We offer a two-year Master of Science in Computer Science centered on this emerging field. The backbone of the program is constituted by three core units on advanced data management, machine learning, and high performance computing. Leveraging on the expertise of our faculty, the rest of the program is organised in four tracks, Business Intelligence, Health & Life Sciences, Pervasive Computing, and Visual Computing, each providing a solid grounding in data science and engineering as well as a firm grasp of the domain of interest.

By blending standard classes with recitations and lab sessions our program ensures that each student masters the theoretical foundations and acquires hands-on experience in each subject. In most units credit is obtained by working on a final project. Additional credit is also gained through short-term internship in the industry or in a research lab. The master thesis is worth 25% of the total credit.

TRACKS

• Business Intelligence. This track builds on first hand knowledge of business management and fundamentals of data warehousing, and focuses on data mining, graph analytics, information visualisation, and issues related to data protection and privacy.
• Health & Life Sciences. Starting from core knowledge of signal and image processing, bioinformatics and computational biology, this track covers methods for biomedical image reconstruction, computational neuroengineering, well-being technologies and data protection and privacy.
• Pervasive Computing. Security and ubiquitous computing set the scene for this track which deals with data semantics, large scale software engineering, graph analytics and data protection and privacy.
• Visual Computing. This track lays the basics of signal & image processing and of computer graphics & augmented reality, and covers human computer interaction, computational vision, data visualisation, and computer games.

PROSPECTIVE CAREER

Senior expert in Data Science and Engineering. You will be at the forefront of the high-tech job market since all big companies are investing on data driven approaches for decision making and planning. The Business Intelligence area is highly regarded by consulting companies and large enterprises, while the Health and Life Sciences track is mainly oriented toward biomedical industry and research institutes. Both the Pervasive and the Visual Computing tracks are close to the interests of software companies. For all tracks a job in a start-up company or a career on your own are always in order.

Senior computer scientist.. By personalizing your plan of study you can keep open all the highly qualified job options in software companies.

Further graduate studies.. In all cases, you will be fully qualified to pursue your graduate studies toward a PhD in Computer Science.

Read less
This course will provide you with in-depth knowledge and critical awareness of theoretical and practical solutions to problems at the forefront of communications and the processing of signals. Read more

This course will provide you with in-depth knowledge and critical awareness of theoretical and practical solutions to problems at the forefront of communications and the processing of signals.

Communications and signal processing are closely intertwined, and together provide the basis of modern information engineering.

Areas of application include:

  • mobile communications (3G/4G/LTE and future 5G), access networks and wireless communication
  • Communication networks including broadcast and computing communication networks
  • image processing and robotic vision
  • audio and video recording
  • radar and sonar detection
  • biomedical signal processing
  • medical imaging
  • remote sensing
  • array signal processing and beamforming
  • space-time communications and processing

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/electrical-engineering/communications-signal-processing/

If you have any enquiries you can contact our team at:



Read less

Show 10 15 30 per page



Cookie Policy    X