• Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
University of Dundee Featured Masters Courses
Cass Business School Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
University of Portsmouth Featured Masters Courses
"hydrodynamics"×
0 miles

Masters Degrees (Hydrodynamics)

We have 26 Masters Degrees (Hydrodynamics)

  • "hydrodynamics" ×
  • clear all
Showing 1 to 15 of 26
Order by 
Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. Read more

Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. The course is designed for you as an experienced or recently graduated engineer who wants to develop your subsea knowledge.

Your teaching modules operate in short 'intensive schools' with time after the module to complete the assignments, where applicable. They include:

-Input from industry experts

-Site visits

-Industry-based projects

-Teaching from other disciplines

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in subsea engineering. The degree is taught using a mix of the academic staff from the School of Marine Science and Technology as well as visiting lecturers and experts from industry.

You will undertake a research project leading to a dissertation. This may be a critical review and/or computational or experimental project using the University's world leading testing facilities. The research project is supported by an academic supervisor and may be conducted with an industrial partner which, where appropriate, may be your employer.

Delivery

Ten taught modules worth 120 credits are delivered in blocks through semester one and/or two. A dissertation or research project, worth 60 credits, is undertaken across the three semesters.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Facilities

You have access to dedicated facilities including:

  • a student common room
  • a computer laboratory
  • the Henri Kummerman Marine Resource Centre

You also have access to a set of excellent testing facilities:



Read less
The Naval Architecture MSc is designed to provide the necessary knowledge and skills in naval architecture theory, analysis and design procedures, as applied to naval and merchant ships, so that students may be easily integrated into industrial ship design teams. Read more

The Naval Architecture MSc is designed to provide the necessary knowledge and skills in naval architecture theory, analysis and design procedures, as applied to naval and merchant ships, so that students may be easily integrated into industrial ship design teams.

About this degree

Students study ship dynamics, ship hydrodynamics, ship structures, the use of computers in advanced engineering analysis, and work in multidisciplinary teams with marine engineers (from the sister Marine Engineering MSc) on a comprehensive and unique ship design exercise. Research skills are honed through project work undertaken in the specialist fields of hydrodynamics, ship dynamics, structures and design.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (90 credits), a ship design exercise (45 credits) and a research project (45 credits).

Core modules

  • Ship Dynamics
  • Ship Structures (including subsea structures)
  • Ship Hydrodynamics

Optional modules

There are no optional modules for this programme.

Dissertation/report

All students complete a ship design group exercise, and undertake an independent research project which explores an aspect of ship design or performance analysis in depth.

Teaching and learning

The programme is delivered through lectures, tutorials, individual and group projects, seminars and coursework assignments, which include advanced computational analysis. Assessment is through written, oral and viva voce examinations and assessed coursework (including the evaluation of technical reports, problem solving exercises, project reports, computational and modelling skills, and oral presentations).

Further information on modules and degree structure is available on the department website: Naval Architecture MSc

Funding

Scholarships relevant to this department are displayed below.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The Naval Architecture MSc has been accredited, for a period of five years from the 2012 student cohort, by the Institute of Marine Engineering, Science & Technology (IMarEST) as meeting the further learning requirements, in full, for registration as a Chartered Engineer. There is currently a global shortage of well-qualified naval architects and consequently the job prospects are very good.

Recent career destinations for this degree

  • Graduate Engineer, Ministry of Defence (MoD)
  • Graduate Naval Architect, QinetiQ
  • Deputy Naval Architecture Officer, Canadian Armed Forces
  • Engineer, American Bureau Of Shipping
  • Naval Engineer, Cotecmar

Employability

UCL Naval Architecture MSc students are highly employable. The programme is designed to embed higher learning through academic study, individual research and a multidisciplinary ship design exercise. It is delivered by leading researchers from across UCL in collaboration with the Ministry of Defence. Students benefit from the close association with both the defence and commercial marine sectors with many lectures delivered by industry and, in some cases, world-leading experts. Networking is further enhanced during the design reviews and final VIP presentations where industry experts provide external challenge, advice and guidance to students while also taking the opportunity to talent-spot.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

This MSc has several unique features. Direction and a significant portion of the teaching is carried out by staff seconded from the UK Ministry of Defence with recent experience of leading ship design teams.

The Naval Architecture MSc has been accredited, for a period of five years from the 2012 student cohort, by the Institute of Marine Engineering, Science & Technology (IMarEST) and the Royal Institution of Naval Architects (RINA) as meeting the further learning requirements, in full, for registration as a Chartered Engineer.

The large majority of students of this MSc continue directly to employment in the industry.



Read less
Your programme of study. Introduction. Structural engineering has always been an important discipline within engineering and critical to aerospace, renewables, oil and gas installations, renewables, civil engineering areas, mechanical engineering, logistical industries and new commercial needs. Read more

Your programme of study

Introduction

Structural engineering has always been an important discipline within engineering and critical to aerospace, renewables, oil and gas installations, renewables, civil engineering areas, mechanical engineering, logistical industries and new commercial needs. Materials have become exciting to work with in terms of composition, enhanced capabilities and improvements to all aspects of life with innovations in Nano technologies, and smart technology linking into all aspects of engineering. There is always an increasing need to improve every aspect of life and work and structural engineering plays a big part in steady innovations towards wider applications and major steps forward.

This advanced programme allows you to explore the new capabilities and not only work with them in a practical sense but have the skills and knowledge to apply your learning to new challenges in these industries are more in an analytical sense. Much learning that has been applied to all structural engineering has come from the oil and gas industry, aviation, subsea, large civil projects where there is a need for safety, reducing risk and performance in all the challenging conditions presented. Learning comes from all areas of commercial structural engineering projects which have enabled challenging tasks to take place. You look at risers, hydrodynamics, risk and reliability, lightweight structures, mathematical optimisation to model scenarios, composite materials and their positive and negative aspects, vibration, offshore designs, fire and explosion risk and safety and fluid dynamics.

You will learn about how different materials work, the challenges of designing for a variety of conditions, risk and performance and the interconnection with other engineering disciplines.

 Courses listed for the programme

SEMSESTER 1

  • Mathematical Optimisation
  • Lightweight Structures

Optional Courses

  • Risers Systems and Hydrodynamics
  • Engineering Risk and Reliability Analysis

SEMESTER 2

  • Individual Project in Advanced Structural Engineering

SEMESTER 3

  • Advanced Composite Materials
  • Structural Vibrations

Optional Courses

  • Offshore Structural Design
  • Fire and Explosion Engineering
  • Computational Fluid Dynamics

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Aberdeen University is in the 'Oil and Gas' capital of Europe and the industry has influenced programmes and research led teaching offered by the university. Many programmes are reviewed by a wider industry advisory board to ensure they are relevant to skills and application required for life long careers and future trends
  • The programme is taught by practising engineers who are also research intensive academics
  • Engineering at University of Aberdeen enables graduates to follow employment options internationally to progress major projects and innovations

Where you study

  • University of Aberdeen
  • Full Time
  • 12 Months
  • September or January start

 International Student Fees 2017/2018

  • International
  • Scotland and EU
  • Other UK

Find out more from the programme page

*Please be advised that some programmes have additional costs

Scholarships

View all funding options in:

Fees

 Living in Aberdeen

Campus Facilities

Find out more about living in Aberdeen and living costs

Similar  programmes:

 



Read less
Our Technology in the Marine Environment MRes provides research training, supervision and collaboration to international standards in the topics covered by the marine technology research groups. Read more
Our Technology in the Marine Environment MRes provides research training, supervision and collaboration to international standards in the topics covered by the marine technology research groups.

The MRes breaks down into approximately 40% taught modules and 60% research in collaboration with an industrial partner.

Your research project will normally be in one of the areas addressed by the marine technology research groups:
-Marine Hydrodynamics and Structures
-Marine Design, Production and Operations
-Sustainable Maritime Engineering
-New Energy Infrastructure

Depending on your previous academic training and the requirements of the project, you may receive formal instruction through taught modules in important areas.

The substantial marine technology research community, including 50 research students, 140 MSc students, six-10 post-doctoral students, six technicians and 16 full-time academic staff, provides you with opportunities to progress your career, whether in industry or academia.

Our annual Postgraduate Research Conference provides you with an opportunity to share research experience and practise vital presentation skills.

We hold joint meetings of the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST). You are invited to join these meetings as they offer vital insight into the workings of professional bodies.

Our research students have been very successful at finding employment across a wide range of sectors. Professional institutes hold Newcastle research degrees in high regard when assessing work applications.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Placements

Leading industrial organisations in the Marine and Renewables sector sponsor many research projects. Other projects involve collaboration between Newcastle and other institutions.

Recent partnerships and collaborations include International Paint, Lloyds Register and BAE Systems.

Facilities

You have access to a wealth of excellent facilities within the School of Marine Science and Technology, including extensive laboratories such as the:
-Hydrodynamics laboratory
-Emerson Cavitation Tunnel
-Princess Royal, a versatile twin-hulled locally designed and built vessel supported by a dedicated shore station at Blyth Harbour

Read less
Our Offshore Engineering MSc provides you with the specialist education necessary to enter the offshore engineering industry. You will specialise in the design, dynamic and strength analysis of fixed and floating offshore oil and gas platforms. Read more
Our Offshore Engineering MSc provides you with the specialist education necessary to enter the offshore engineering industry. You will specialise in the design, dynamic and strength analysis of fixed and floating offshore oil and gas platforms. You will also study subsea systems, including marine systems to produce renewable energy.

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in offshore engineering. You also choose an individual dissertation project. This may be theoretical, experimental or the development of a simulation model of hydrodynamics and/or structural strength of offshore systems. Research strengths include:
-Hydrodynamics of deepwater offshore structures
-Pipeline and subsea systems
-Structural analysis of offshore structures
-Dynamics of mooring and marine riser systems

You will also benefit from participating in projects sponsored directly by industry partners whenever they are available.

Delivery

Seven taught modules worth 100 credits are delivered through semester one and/or two. A dissertation research project, worth 80 credits, is undertaken across the three semesters.

The course is also available with a preliminary year if you do not meet the entry criteria for the one-year MSc course.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
The MPhil programmes in Marine Sciences provide research training, supervision and collaboration to international standards. You can choose a wide range of topics within the marine science research groups of Marine Hydrodynamics and Structures (MHS) and Sustainable Shipping and Marine Engineering (SSME). Read more
The MPhil programmes in Marine Sciences provide research training, supervision and collaboration to international standards. You can choose a wide range of topics within the marine science research groups of Marine Hydrodynamics and Structures (MHS) and Sustainable Shipping and Marine Engineering (SSME).

Your research project will be in one of the areas addressed by the marine technology research groups:
-Marine Hydrodynamics and Structures (MHS)
-Sustainable Shipping and Marine Engineering (SSME)

Depending on your previous academic training and the requirements of the project, you may receive formal instruction through taught modules in important areas.

The substantial marine technology research community including 50 research students, 140 MSc students, six to 10 post-doctoral students, six technicians and 16 full-time academic staff provides you with opportunities to progress your career, whether in industry or academia.

Our annual Postgraduate Research Conference provides you with an opportunity to share research experience and practise vital presentation skills. We also instigated the UK Marine Technology Postgraduate Conference which involves research student presentations from leading UK universities involved in Marine Technology research. These universities take turns to host the conference which is sponsored by Lloyds Register, the Royal Institute of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST).

Delivery

This research degree operates through the Postgraduate Researcher Development Programme (PGRDP). This is part of the Faculty of Science, Agriculture and Engineering (SAgE) Graduate School.

Your original research project is managed in the marine technology research groups. There is flexibility in how your research outputs are achieved. Supervisory inputs and collaborations with other Schools and Faculties are common.

Aside from the PGRDP, the programme of work suits you and your project requirements. You will achieve a certain number of credits through the PGRDP and School in your first two years. You will also:
-Write a thesis for viva voce examination
-Attend regional and international conferences in your chosen subject area
-Prepare papers for publication in academic journals

Work experience

Leading industrial organisations in the Marine and Renewables sector sponsor many research projects. Other projects involve collaboration between Newcastle and other institutions. The marine technology research groups form part of extensive national and international networks.

Recent partnerships and collaborations include:
-International Paint
-Lloyds Register
-BAE Systems

Read less
Your programme of study. The programme is delivered on. campus. full time. and online. part time to give you flexible study options. Read more

Your programme of study

The programme is delivered on campus full time and online part time to give you flexible study options. If you want to join the growing companies operating in the subsea industry in Aberdeen or internationally or set up your own company this programme will provide you with a high level of technical training

The Master of Science in Subsea Engineering seeks to prepare highly-trained, highly-qualified, business-aware graduates that can make an immediate impact in their chosen career, and who can address the need for key skills in the subsea industry. Subsea Engineering at the University of Aberdeen has a unique relationship with the subsea industry both locally and internationally, and the programme receives contributions from local industrial organisations in terms of relevant and up-to-the minute contributions to teaching, and support in the specification of group and individual projects.

Aberdeen is the heart of the European oil and gas industry, an international hub for companies engaged in Subsea Engineering. A degree from the University of Aberdeen puts you in a unique position to develop business links alongside of learning and developing international skills within the flexible, modular programme.

Courses listed for the Campus programme

Semester 1

  • Offshore Structures and Subsea Systems
  • Subsea Control
  • Subsea Integrity
  • Subsea Construction, Inspection and Maintenance

Semester 2

  • Pipelines and Soil Mechanics
  • Risers Systems and Hydrodynamics
  • Flow Assurance
  • Engineering Risk and Reliability Analysis

Semester 3

  • Subsea Engineering Individual Project

Courses for the Online Programme

Year 1

  • Offshore Structures and Subsea Systems
  • Subsea Construction, Inspection and Maintenance
  • Pipelines and Soil Mechanics
  • Engineering Risk and Reliability Analytics

Year 2

  • Subsea Control
  • Subsea Integrity
  • Risers Systems and Hydrodynamics
  • Flow Assurance

Year 3

  • Subsea Engineering Individual project

Find out more detail by visiting the programme web page

Online delivery

Why study at Aberdeen?

  • Aberdeen is a recognised hub and centre of excellence in Subsea, as Europe's energy capital and 'World Energy City'
  • The programme is accredited by the Institute of Marine Engineering, Science and Technology (MarEST) and Institution of Mechnical Engineers (IMechE). the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), The
  • Institute of Highway Engineers (IHE) and Chartered Institution of Highways and Transportation (CIHT)
  • We are able to draw upon knowledge and industry experience within the subsea sector on our doorstep to challenge you
  • The programme is very employable with graduates moving to CEO level

Where you study

  • University of Aberdeen
  • Full Time
  • September start

There is also an online delivery of this programme

  • Online
  • 5 Months 27, 30 Months
  • Part Time
  • September and January start

International Student Fees 2017/2018

Find out about fees for campus delivery:

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Find out about online fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen for Campus Study

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Online delivery

Other engineering disciplines you may be interested in:



Read less
Your programme of study. A crucial part of the oil and gas industry, energy and marine based industries, Subsea Engineering is an essential and highly trained area of work involving all discipline areas within Engineering. Read more

Your programme of study

A crucial part of the oil and gas industry, energy and marine based industries, Subsea Engineering is an essential and highly trained area of work involving all discipline areas within Engineering. University of Aberdeen has gained an industry reputation in the energy industry which is located in the City due to extensive research and collaboration since the industry grew in the 1970s. This level of research and work within industry who also advise on many of the vocational/academic programmes at the University ensures a level of rigour which will carry you as a professional right throughout your career.

You combine technical knowledge with understanding of systems, types of risks, challenges in very hard to reach areas, integrity, inspection, maintenance, controls, flow assurance, reliability and mechanics of various structures and facilities. The industry continuously changes as more technology comes on board to support integrity and reliability issues, but the basics remain the same in requiring solid engineering skills, knowledge, analysis and problem solving ability.

Careers in this area can include: Analysis Engineer, Marine Contractor, Subsea Field Engineer, Subsea Installation Engineer, and similar positions in the energy industry. There are also other industries which involve Subsea Engineering and knowledge. You gain plenty of accreditations of professional standing as follows:

  • Institution of Structural Engineers
  • Institute of Mechanical Engineers
  • The Institute of Marine Engineering, Science and Technology
  • Institution of Civil Engineers
  • Institute of Highway Engineers
  • Chartered Institution of Highways and Transportation
  • Energy Institute

University of Aberdeen offers this programme on campus and online to allow some level of flexibility in studying from different locations. The University is highly regarded in the energy industry and offers programmes which are tailored to operations, facilities and professional management of the oil and gas industry. There are world renowned experts who teach on specific programmes at the University such as Energy Economics, MBA, Energy Law, Engineering, Geology and other subject areas such as strategic planning and risk management.

You can study both on campus or online.

Courses listed for the programme

Subsea Engineering (Campus)

Semester 1

  • Offshore Structures and Subsea Systems
  • Subsea Control
  • Subsea Integrity
  • Subsea Construction, Inspection and Maintenance

Semester 2

  • Pipelines and Soil Mechanics
  • Risers Systems and Hydrodynamics
  • Flow Assurance
  • Engineering Risk and Reliability Analysis

Semester 3

  • Subsea Engineering Individual Project

Find out more detail by visiting the programme web page

Campus programme

Subsea Engineering (Online)

Year 1

  • Offshore Structural and Subsea Systems
  • Subsea Construction, Inspection and Maintenance
  • Pipelines and Soil Mechanics
  • Engineering Risk and Reliability Analysis

Year 2

  • Subsea Control
  • Subsea Integrity
  • Risers Systems and Hydrodynamics
  • Flow Assurance

Year 3

  • Subsea Engineering Individual Project

Find out more detail by visiting the programme web page

Online programme

Why study at Aberdeen?

  • Aberdeen is recognised as a Global Centre of Excellence for Subsea development and operations. The programme is fully accredited professionally and overseen by an Industry Advisory Board
  • You learn from the industry and the university in the 'World Energy City' of Aberdeen getting the chance to visit industry relevant events, networking opportunities and events on campus

Where you study

International Student Fees 2017/2018

  • Scotland/EU £5500
  • Other UK £5500
  • International £20 000

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Find out more about fees

Scholarships

View all funding options on our funding database via the latest opportunities page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and Living costs

Other engineering disciplines you may be interested in:



Read less
Why this course?. Marine Technology is one of the pathways offered in the Sustainable Engineering programme. The course is designed for experienced or newly qualified engineers in. Read more

Why this course?

Marine Technology is one of the pathways offered in the Sustainable Engineering programme.

The course is designed for experienced or newly qualified engineers in:

  • Naval Architecture
  • Marine Engineering
  • Mechanical Engineering
  • Civil Engineering
  • Electrical Engineering or related disciplines

This flexible programme combines study in specialist, advanced engineering technologies underpinned with training in sustainability. The programme has been developed with direct industrial involvement to provide you with a solid understanding of modern, sustainable engineering. As well as gaining an understanding of how sustainable engineering applies to Marine Technology, this programme will also provide you with key transferable skills to aid your employability.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

You must take three specialist modules if you are studying for the Postgraduate Certificate and up to five if you are studying for a Postgraduate Diploma or MSc.

Successful completion of six modules leads to the award of a Postgraduate Certificate.

Group project

You’ll work with a group of students from different pathways of the Sustainable Engineering programme. You’ll produce sustainable solutions to real-life industry problems. This project will include site visits, field trips and progress reports to industry partners.

Successful completion of eight modules and the group project leads to the award of a Postgraduate Diploma.

Individual project

MSc students will study a selected topic in depth and submit a thesis.

Successful completion of eight modules, the group project and an individual project leads to the award of an MSc.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:

  • Science, Engineering & Technology Student of the Year (SET Awards)
  • Best Maritime Technology Student (SET Awards)
  • Double winner of BP’s Ultimate Field Trip Competition
  • Strathclyder of the Year

Learning & teaching

There are two teaching semesters of 11 weeks each.

Each year about 15 experts from the industry give talks and seminars on wide-ranging topics. Industrial visits are made to a variety of companies.

You’re required to attend an induction prior to the start of the course.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

As a graduate you’re prepared for a wide range of challenging and rewarding careers in the marine and related industries. These include:

  • design and construction of all types of marine vehicles
  • project management
  • systems design
  • safety management
  • support services
  • classification societies
  • consultancy services.


Read less
Why this course?. This course is designed to give graduate engineers and well-qualified sea-going personnel an opportunity to acquire the knowledge and skills required for technical ship management. . Read more

Why this course?

This course is designed to give graduate engineers and well-qualified sea-going personnel an opportunity to acquire the knowledge and skills required for technical ship management. 

90% of world trade is carried by sea. You'll gain an understanding of the subjects essential for effective and efficient management of ships and fleets. This course allows you to develop multidisciplinary interests and skills by working with other areas of naval architecture, ocean and marine engineering.

As a graduate you could expect to work in the industry as a technical ship superintendent or manager.

You’ll study

Your course will be made up of three components:

  • Instructional Modules
  • Group Project
  • Individual Project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

All of our degree programmes are and to be (2014) professionally by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Student competitions

The Department of Naval Architecture, Ocean and Marine Engineering (NAOME) supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:

  • Science, Engineering & Technology Student of the Year (SET Awards)
  • Best Maritime Technology Student (SET Awards)
  • Double winner of BP’s Ultimate Field Trip Competition
  • Strathclyder of the Year

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

You’re required to attend an induction prior to the start of the course.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Glasgow is one of the largest centres of ship management industry in the world. There's demand for well-qualified ship superintendents of various levels of practical experience.

As a graduate you’ll be able to make a valuable contribution to the shipping industry.



Read less
The other tracks of the programme are Materials Chemistry, Materials Physics, and Theoretical Physics. Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including computational and numerical techniques. Read more

The other tracks of the programme are Materials Chemistry, Materials Physics, and Theoretical Physics. Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including computational and numerical techniques.

Programme structure 

The structure is modular. All modules have 20 ECTS. Each specialisation track has two obligatory modules that contain the core material of the field. In addition, there is one thematic module that may be chosen from the other modules offered within this programme or other programmes at the University of Turku. The fourth module consists of freely chosen courses and an obligatory Finnish language and culture course (5 ECTS). An MSc thesis (30 ECTS) in addition to seminar, internship, and project work (10 ECTS) are also required, details of which depend on the specialisation. 

Academic excellence and experience

The aim of the Master’s education is to support you to become an independent expert who can evaluate information critically, plan and execute research projects to find new knowledge, and to solve scientific and technological problems independently and as part of a group.

The Astronomy and Space Physics track includes a solid grounding in theoretical aspects as well as providing opportunities for observational studies (e.g. of supernovae or accreting black holes); the space physics group performs experimental, theoretical and computational research on high-energy phenomena in near-Earth space.

Master's thesis and topics

The Master’s degree programme includes a compulsory thesis component (30 ECTS), which corresponds to six months of full time work. The thesis is to be written up as a report based on a combination of a literature review and an original research project that forms the bulk of the thesis.

The thesis is an independently made research project but the project will be carried out under the guidance of leading researchers in the field at the University of Turku. It is expected that the student will be embedded within an active research group or experimental team, thereby providing ample opportunity to discuss results and exchange ideas in a group setting.

Specialisation tracks

The Master’s Degree Programme of Physical and Chemical Sciences has four tracks. A short description of each specialisation track is given below. You can find more detailed information of tracks from the specific site of each track in this portal (UTU Masters).

Students specialising in Astronomy and Space Physics can choose among three lines of studies: theoretical astrophysics, observational astronomy and space physics. You will acquire knowledge of various astrophysical phenomena and plasma physics, from Solar system to neutron stars and onto galaxies and cosmology. You will also get hands-on experience with observational techniques, space instrumentation, numerical methods and analysis of large data sets.

The studies of Materials Physics and Materials Chemistry give you an ability to understand and to develop the properties of materials from molecules and nanoparticles via metals, magnetic and semiconducting compounds for pharmaceutical and biomaterial applications. After graduation, you will be familiar with the current methodologies, research equipment and modern numerical methods needed to model properties of materials used in research and technology. Note that there is a sister programme (Master’s Degree Programme in Biomedical Sciences) with a specialisation in medicinal chemistry.

In Theoretical physics you can specialise in various fields at the forefront of European and international research such as quantum technologies, fundamentals of quantum physics, quantum information and optics, quantum field theory and cosmology. You will learn rigorous mathematical and numerical methods to model physical phenomena and solve physical problems with several possible interdisciplinary applications also outside physics. Examples are the studies of complex systems, data science, and machine learning.

Competence description

The Master of Science degree provides the skills to work in many different kinds of positions within areas such as research and development, education and management, and industry. The specialisations of Astronomy and Space Physics provide very good data analysis and programming skills, and thus many graduates have gone on to successful careers in the big data and finance sectors

During the master’s program in astronomy and space physics, you will study plasma physics and hydrodynamics, radiative processes, high-energy astrophysics and solar physics, galaxies and cosmology, astrophysical spectroscopy, radio astronomy and X-ray and gamma-ray astronomy, numerical techniques and programming, statistical methods and particle and photons detectors. You will carry-out hands-on exercises in observational techniques, space instrumentation, and analysis of large data sets. You will also be able to remotely use modern observational facilities and to participate in building space-qualified instruments. You may choose among three lines: space physics, observational astrophysics and theoretical astrophysics. These studies will prepare you for a career in research and development in industry or can often lead into PhD studies.

Job options

The prospects for employment at relatively senior levels is excellent for those trained in the physical and chemical sciences. Thanks to the broad scope of the programme, the skills and knowledge developed as part of this education at the University of Turku provide many employment opportunities in different areas.

Many of our graduates choose to continue their education by pursuing PhD studies in Finland or other European countries (e.g., Belgium, Estonia, Germany and Norway). Others have obtained employment in the software and high-tech industries, for example.

Career in research

The Master’s Degree provides eligibility for scientific postgraduate degree studies. Postgraduate degrees are doctoral and licentiate degrees. The University of Turku Graduate School – UTUGS has a Doctoral Programme in Physical and Chemical Sciences, and covers all of the disciplines of this Master Degree programme. Postgraduate degrees can be completed at the University of Turku. Note that in Finland the doctoral studies incur no tuition fees, and PhD students often receive either a salary, or a grant to cover their living expenses. The Master’s programme is a stepping stone for PhD studies.



Read less
The course is only available to Singaporeans and Permanent Residents of Singapore. This Marine Technology course is for maritime professionals working full time in Singapore. Read more

The course is only available to Singaporeans and Permanent Residents of Singapore.

This Marine Technology course is for maritime professionals working full time in Singapore. Our dynamic course responds to the challenges and demands of the global maritime sector.

This course develops technical and managerial techniques essential to the global maritime sector. You will study key topics including:

-Advanced marine engineering design

-Marine project management

-Marine systems identification, modelling and control

-Regulatory framework for the marine industry

-Surveying ships and offshore installations

-Advanced subsea and pipeline engineering

-Advanced marine design

-Advanced offshore technology

-Advanced hydrodynamics

-Mooring riser and drilling system

Delivery

This course involves a mixture of online learning and face-to-face learning (blended learning) delivered in Singapore.

Each taught module consists of 100 notional study hours. 35 hours are at the intensive school. You will need to read and complete course work during your non-intensive study. Each module takes two months and you will undertake a five taught modules per year.

Pre-school materials are provided for you to review what will be taught and so that you get the most out of the intensive school. The pre-school materials are made available four weeks prior to the intensive school.

A typical school includes:

  • lectures
  • case studies
  • tutorials
  • presentations
  • discussions
  • visits

You will sit an examination during this intensive teaching week. It is worth 60% of the module mark.

Post-school materials include an assignment worth 40% of the module mark. You will submit this four weeks after the school. This consolidates your learning on a module. You must achieve a mark of 50% or more to pass.



Read less
Why this course?. This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering. Read more

Why this course?

This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering.

It provides you with practical knowledge of offshore floating systems. You’ll look at their conceptions, design and installation. You’ll also gain a sound basis of mathematical and engineering fundamentals.

With the world-wide search for offshore oil and gas moving into increasingly hostile areas of ocean and deep and ultra-deep water, floating systems are becoming more widely used. Floating systems must be designed and built to withstand harsh environments with innovative methods and techniques being adopted to develop robust as well as economically efficient and safe structures. In meeting these challenges, concern for the environment is of increasing importance.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

The programme consists of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • towing/wave tank exclusively for teaching purposes
  • marine engine laboratory
  • hydrogen fuel cell laboratory
  • cutting-edge computer facilities
  • industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST).

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70 examination marks.

Careers

Graduates will be well-prepared for a challenging career in all sectors of offshore engineering dealing not only with offshore floating systems but also fixed marine structures.



Read less
Why this course?. This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering. Read more

Why this course?

This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering.

Marine engineering involves the systems and equipment onboard marine vehicles including:

  • design
  • construction
  • installation
  • support

There’s a particular emphasis on propulsion and control systems.

High efficiency and low environmental impact of marine engines are the key factors in assuring economical operation and environmental protection in maritime transportation. This has important implications for both economic success and environmental impact.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

The programme consists of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It'll give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by a survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of the aspects learned from other modules within a specific topic. This'll be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in the form of formal lectures supported with tutorials and laboratory experiments.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is exam assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70% exam marks.

Careers

As a graduate you’ll be prepared for a wide range of challenging and rewarding careers in the marine and related industries.

These include:

  • marine engineering machinery & system design
  • surveying
  • technical superintendence
  • project management
  • safety management
  • support services
  • classification societies
  • consultancy services


Read less
Why this course?. This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures. Read more

Why this course?

This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures.

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines.

You'll be introduced to ultimate strength, fatigue and design concepts for structural components of ships and offshore floating systems. You'll also gain the knowledge of material behaviour together with factors influencing the dynamic behaviour of offshore installations.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities, which will expand your career opportunities in naval architecture, marine, offshore oil and gas industries.

You'll study

Your course is made up of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Career destinations include:

  • Naval Architect
  • Marine Engineer
  • Graduate Engineer
  • Marine Surveyor
  • Offshore Renewables Engineer
  • Project Engineer


Read less

Show 10 15 30 per page



Cookie Policy    X