• Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
Cass Business School Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Pennsylvania Featured Masters Courses
"hydraulic" AND "modellin…×
0 miles

Masters Degrees (Hydraulic Modelling)

We have 11 Masters Degrees (Hydraulic Modelling)

  • "hydraulic" AND "modelling" ×
  • clear all
Showing 1 to 11 of 11
Order by 
Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management. Read more

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules

Structural Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering and Management Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for bridge analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
  • The ability to design bridge structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
  • The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
  • A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
  • A knowledge and understanding of the common and less common materials used in bridge engineering
  • A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
  • The ability to critically evaluate bridge engineering concepts
  • The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
  • The ability to understand the limitations of bridge analysis methods
  • A knowledge and understanding to work with information that may be uncertain or incomplete
  • A Knowledge and understanding of sustainable development related to bridges
  • The awareness of the commercial, social and environmental impacts associated with bridges
  • An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
  • A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills

  • The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
  • The ability to generate innovative bridge designs (B)
  • The ability to use theory or experimental research to improve design and/or analysis
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • Synthesis and critical appraisal of the thoughts of others;

Professional practical skills

  • The awareness of professional and ethical conduct
  • A Knowledge and understanding of bridge engineering in a commercial/business context
  • Ability to use computer software to assist towards bridge analysis
  • Ability to produce a high quality report
  • Ability of carry out technical oral presentations

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner
  • Collect and analyse research data
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The growing demand for infrastructure to sustain modern societies and underpin economic and social development requires creative solutions from all engineering professionals. Read more
The growing demand for infrastructure to sustain modern societies and underpin economic and social development requires creative solutions from all engineering professionals. This course will give you the skills to shape and maintain the world around us.

You might be a graduate from our BSc (Hons) Civil Engineering course, or perhaps someone with a BEng qualification. We will help you move your career forward so you can play a leading role in the design, construction and maintenance of a broad range of infrastructure projects.

One of the key objectives of our course is preparing you for chartered status. We will develop your technical ability, understanding of engineering principles, commercial flair and environmental awareness. In addition, you'll look at contractual issues, health and safety, business functionality, communication skills, report writing, code of conduct and your responsibility to a team.

We are seeking Joint Board of Moderators (JBM) accreditation for Leeds based delivery, subject to final output, from Autumn 2013.

- Research Excellence Framework 2014: our University's results for the Architecture, Built Environment and Planning unit, which it entered for the first time, were impressive with 37% of its research being rated world leading or internationally excellent

Visit the website http://courses.leedsbeckett.ac.uk/civilengineering_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

You will specialise in areas such as structures, transportation, water supply and treatment, power generation and supply, and your potential employers could include consultants, local authorities, central government, contractors and government agencies. If you're already working in the industry this is a chance to progress in your career by studying part-time to prepare yourself for applying for chartered status.

- Civil Engineer
- Design Engineer
- Project Engineer
- Structural Engineer

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You'll have access to first-class teaching laboratories, including a full range of civil engineering testing equipment for hydraulics, geotechnics, highway materials, concrete, structures and general materials. Our civil engineering research facility - dedicated to the research work of students and staff - will be available to play a major role in your dissertation project.

We'll give you the opportunity to plan your own objectives for career development, setting up visits to sites and consultancy offices to aid your development - while engineering experts will share their expertise and experience in a series of guest talks. We'll also encourage you to research and discuss current civil engineering issues on a regular basis.

This is a very accessible course in which our teaching takes up only one afternoon and evening of your time.

Modules

Transportation Studies (20 Credits)
This module considers the analysis, design and maintenance of highways - you will study areas such as route location, geometrics, junction and pavement design, and management. You will also examine the design and operation of airports and railways.

Civil Engineering Management (20 Credits)
We will cover all the management and procedural considerations that go into the development and delivery of a civil engineering project. You'll develop an understanding of the legal and commercial frameworks that projects work with and build your confidence in making decisions based on qualitative and quantitative analysis.

Civil Engineering Professional Context (20 Credits)
This module examines the role of the civil engineer in society - such as responsibilities to society, the environment and economy - and the professional conduct expected of the role. The module will cover the requirements and processes for making a professional membership application.

Structural Analysis & Design (20 Credits)
You will gain a greater understanding of the engineering principles applied to the analysis and design of structures, giving you the skills and confidence to apply these techniques.

Fluid Mechanics & Water Engineering (20 Credits)
In this module you will focus on the properties of fluids and the principles of fluid mechanics, hydraulic modelling and fluid systems analysis. You will develop an understanding of the issues, problems and solutions within the water infrastructure sector of civil engineering.

Geotechnical Analysis & Design (20 Credits)
You will learn to produce complex engineering solutions to a professional standard. We will provide you with an in-depth understanding of engineering principles in relation to geotechnical analysis and design, looking at how to solve geotechnical engineering problems and produce innovative designs.

Materials Technology (20 Credits)
We will increase your understanding of the uncertainties and consequences of material behaviour during design, manufacture and in service. You'll study the environmental and safety implications of the materials used for nuclear power production.

Civil Engineering Dissertation (40 Credits)
This is an in-depth study of a topic relevant to civil engineering and that reflects your specific interests. This is an opportunity to apply and further enhance your research skills and technical knowledge.

Facilities

- Design Studios
Our modern multi-media studios include a dedicated CAD suite and specialist software, such as REVIT, allowing students to develop skills in 3D design and building information modelling.

- Library
Our libraries are two of the only university libraries in the UK open 24/7 every day of the year. However you like to study, the libraries have got you covered with group study, silent study, extensive e-learning resources and PC suites.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering. Read more

The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering.

Topics include deep foundations in urban areas, tunnelling, foundations for energy infrastructure, deep water energy resources exploration and field monitoring.

During your studies you will have the opportunity to apply the knowledge and practical understanding of scientific methodology you have acquired on a research project under the guidance and advice of an experienced supervisor.

This will help you develop the skills to acquire, analyse, and critically evaluate data, and then draw valid, defendable conclusions that can withstand professional scrutiny.

Graduates are highly employable, and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over one academic year (full-time) and between two and five academic years (part-time or distance learning). It consists of eight taught modules and a dissertation.

On successful completion of this MSc programme students will be deemed to have completed the further learning necessary to combine with a suitable BEng (Hons) degree fulfilling the academic base for the professional qualification of Chartered Engineer.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Geotechnical Engineering Group Modules

Selected Structural Engineering Group Modules

Selected Construction Management Group Modules

Selected Infrastructure Engineering Group Modules

Selected Water and Environmental Engineering Group Modules

Students must choose eight modules from those listed above. For the main and subsidiary awards there are restrictions on the choice of modules within each module group. These are outlined in the table above.

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of some of the challenges faced during the analysis, design and construction of foundation and geotechnical structures
  • The ability to select and apply most appropriate analysis methodology for problems in ground engineering including advanced and new methods
  • The ability to design foundations in a variety of ground conditions 
  • A working knowledge of the key UK, European and some International standards and codes of practice associated with the analysis and design of foundations and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Learn more about opportunities that might be available for this particular programme by using our student exchanges search tool.

Academic support, facilities and equipment

Modules are taught by academic members in the geotechnical area, and some lectures for the Advanced Geotechnical Engineering MSc will be delivered by visiting academics and practicing engineers from industry.

You will also be allocated a personal tutor to guide you during your time with us at the University. You can expect a varied, stimulating and rewarding time here and will receive all the support you need to progress your learning. 

In addition to the University Library and Learning Centre’s extensive resources, our excellent testing facilities can support experimentally based MSc dissertation projects. 

Prizes

VJ Tech Prize for Best MSc Student in Advanced Geotechnical Engineering

A prize of £1,000, sponsored by VJ Tech, one of the world’s top geotechnical engineering manufacturers specialising in advanced soil testing equipment for labs.

The prize will be awarded to the best performing student(s) on the MSc Advanced Geotechnical Engineering based on module results and overall performance during the programme.

The £1,000 may be awarded to an individual student or split between two students displaying the best performance in their MSc programme.

Keller Prize for Best MSc Project in Advanced Geotechnical Engineering

A prize of £500 sponsored by Keller Group plc, the world’s largest independent ground engineering contractor.

The prize will be awarded to the student(s) with the best MSc Dissertation completed as part of the MSc Advanced Geotechnical Engineering, as defined by the course leader according to the module results and potential impact of the output of the individual project.

The £500 may be awarded to an individual student or split between a number of students displaying the best performance in their MSc Dissertations.



Read less
Flooding affects millions worldwide. It ruins homes, destroys livelihoods and threatens lives. Read more

About the course

Flooding affects millions worldwide. It ruins homes, destroys livelihoods and threatens lives.

Our new Flood and Coastal Engineering MSc has been developed with the Environment Agency to maintain and enhance the skills and experience of professionals to deliver successful flood management to protect communities from flooding. The course is sponsored by the Environment Agency, supported by local authorities across the UK, and is delivered in cooperation with HR Wallingford, a renowned independent civil engineering and environmental hydraulics organisation with expertise in flood risk assessment and management.

On the course you’ll develop your knowledge of structural design, geotechnics and how to manage and mitigate risk against extreme flood events through environmental assessment and strategic management. You’ll also develop your skills in hydraulic modelling, flood estimation and engineering design.

This course is for graduates who have usually studied engineering, mathematics, environmental science, geography or geology and are now looking to become chartered engineers. The course engages students in knowledge, understanding and application of engineering solutions, and is closely aligned to environmental, social and climatic issues affecting our world today.

Course Content

Advanced River and Coastal Science
Advanced River and Coastal Engineering
Flood and Coastal Management, Governance and Risk
Mathematical Methods, Data and GIS
Design Projects
Structures, Soil Mechanics and Design

Special Features

The Flood and Coastal Engineering MSc provides the basis for developing a career as a professional engineer, and is pending accreditation by the Joint Board of Moderators (representing the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation, and the Institute of Highway Engineers) and the Chartered Institution of Water and Environmental Management.

Brunel University London is ranked a UK top 10 engineering university (U.S. News & World Report, Best Global Universities 2016).

The course sits alongside our other well-established and fully-accredited Civil Engineering degree programmes, which were ranked fourth in London (Complete University Guide 2017).

You’ll benefit from our strong links with industry through the Environment Agency and HR Wallingford, the world-leading hydraulics and engineering research organisation, who work closely with Brunel University London and the Environment Agency.

Teaching

You’ll be introduced to subject material including key concepts, information and approaches through lectures and seminars, laboratory practicals, field work, self-study and individual research reports. A personal tutor will be allocated to you to support you during your time at Brunel.

Assessment

You’ll be assessed in a variety of ways including assignments, lab and design reports, project work, presentations, posters and examinations.

Read less
Together with its partners TU Dresden and University of Lisbon, UNESCO-IHE conducts the Joint Erasmus Mundus Programme in Groundwater and Global Change - Impacts and Adaptation (GroundwatCH). Read more
Together with its partners TU Dresden and University of Lisbon, UNESCO-IHE conducts the Joint Erasmus Mundus Programme in Groundwater and Global Change - Impacts and Adaptation (GroundwatCH).

Groundwater and Global Change - Impacts and Adaptation seeks to offer a distinctive curriculum built on the cornerstones of hydro(geo)logy, climatology, impacts and adaptation, within a framework of human pressures, global change and feedbacks, around the following academic focal areas:

General Hydrogeology
Groundwater Data Collection
Interpretation and Modelling
Climate Processes and Modelling
Integrated River Basin and Water Resource Management
Groundwater and Environmental Impacts
Groundwater, Society and Policies
Groundwater, Climate and Global Change Impacts and Adaptation

With this curriculum GroundwatCH aims to address the current gaps in higher education with regard to the understanding of the interactions between groundwater, surface water, climate and global change, and how we need to consider and can benefit from these interactions when dealing with adaptation.

Read less
We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Read more
We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Our research has global consequences and our academics are leaders in their field.

Our School of Civil Engineering and Geosciences has a successful research group that focuses on water resources. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Our research themes include:
-Catchment hydrology and sustainable management
-Flood risk and coastal management
-Climate change impacts and adaptation

We supervise MPhil and PhD students in the following areas:
-Flow and transport processes in surface and subsurface systems. This includes river mechanics and contaminant and sediment transport
-Planning and control of hydraulic networks
-Sustainable management of the water environment, including urban, rural agricultural and forestry environments
-Climate change impact assessment, including flood risk
-Environmental hazard assessment and mitigation, including landslide hazard
-Integrated surface and groundwater pollution controls
-Integrated assessment of coupled natural, technological and human systems

Our research has access to facilities and centres within the Newcastle Institute for Sustainability:
-Water Resource Systems Research Laboratory
-Centre for Earth Systems Engineering Research (CESER)
-Centre for Land Use and Water Resources Research (CLUWRR)

Delivery

We offer the MPhil and PhD on a full time and part time basis. You will have formal training in research skills and methods. Discipline-specific training is available if you need it. You may be able to undertake paid laboratory demonstrating to gain teaching experience.

Read less
This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the. Read more

This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the:

  • Technical aspects of infrastructure engineering within a social, economic, environmental and political context
  • Factors that affect and drive infrastructure planning and funding
  • Interdependent nature of infrastructure across different sectors

You will qualify with a sound understanding of the whole life-cycle of infrastructure assets, the environmental impact of infrastructure projects, and formal asset-management techniques enabling you to maximise the benefits of infrastructure assets in the future.

The lectures given by our academic staff are complemented by visiting speakers from different infrastructure companies such as Network Rail, Thames Water, Environment Agency, Transport for London, ARUP, KPMG, etc., covering different aspect of infrastructure engineering and management. During the academic year, infrastructure specialists carry out Keynote Lectures focusing on important infrastructure projects and approaches. Past Keynote Speakers include Sir John Armitt, Sir Terry Morgan, Sir Michael Pitt, Sir David Higgins, Keith Clarke, James Stewart, Andrew Wolstenholme, Michele Dix, Humphrey Cadoux-Hudson. A number of field visits are also organised to provide an overview of real-life infrastructure operation and management. Past field visits have taken place to both the National Grid and Network Rail Control Centers.

Graduates from the programme are highly employable but have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied full-time over one academic year and part-time or distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Infrastructure Engineering and Management Group Modules

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Water and Environmental Engineering Group Modules

Wind Energy Group Modules

Dissertation

Modes of study 

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn).

Distance learning

This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have. Get full information about our distance learning programme (PDF).

Academic support, facilities and equipment

Modules related to the different groups are taught by a total of 20 full or part-time members of academic staff, as well as a number of visiting lecturers from the industry and government.

In addition to the University Library and Learning Centre’s extensive resources, our excellent testing facilities can support experimentally based MSc dissertation projects. 

Educational aims of the programme

The programme aims to provide graduates with:

  • The state-of-the-art of infrastructure engineering and management that is required for the realisation of the complex delivery of new and management and of existing infrastructure.
  • A holistic overview of infrastructure as a system of systems, viewed within the social, economic and environmental context, and the drivers for sustainable infrastructure development and change.
  • A knowledge of the fundamental multi-disciplinary frameworks that can be adopted for the planning, design, management and operation of interconnected infrastructure systems.
  • A specialisation in an infrastructure area of their choice (i.e. bridge, building, geotechnical, water, wind) providing them with detailed background for the analysis and solution of specific problems associated with individual infrastructure components.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations. Read more
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations.

The course specialises in enabling students to produce mechatronic components which increase performance and energy efficiency, as sought after by industries worldwide.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Mechatronics you will learn to:

- implement the concepts of mechatronics design principles to the solution of complex multi-physics engineering systems
- apply artificial intelligence and modern control and computer engineering techniques to improve the performance of modern equipments and devices

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/mechatronics/index.html

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

You will complete your MSc through an individual research project under the supervision of two supervisors; one from the Department of Electronic & Electrical Engineering (http://www.bath.ac.uk/elec-eng/) and one from Mechanical Engineering (http://www.bath.ac.uk/mech-eng/), assigned to one of our leading research centres (http://www.bath.ac.uk/engineering/research/index.html).

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#H) for more detail on individual units.

Semester 1 (October-January):
The first semester covers the fundamental principles of computational artificial intelligence, integrated engineering control techniques and mechatronic systems modelling and simulation.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Further advanced options will give you an in depth knowledge of how electrical and mechanical engineering can be integrated to effect state of the art technologies.

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation, done under the supervision of two supervisors, one from the Department of Electronic & Electrical Engineering and one from Mechanical Engineering

- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

- Examples of typical projects include the design and control of autonomous robots; undersea tidal wave power generators; and the design and control of high speed mechanisms.

Subjects covered

- Computational intelligence
- Control engineering
- Engineering systems simulation
- Power systems control
- Professional skills for engineering practice
- Signals & information

Career Options

Graduates with knowledge and training in both electrical and mechanical engineering are very much in demand in aerospace, automotive and manufacturing industries.

More and more of the hydraulic and mechanical aspects of these industries are being replaced by mechatronics components to reduce weight and increase performance and energy efficiency.

The career opportunities in the UK and worldwide are very significant. Jobs our recent graduates have secured include:

Product Research Development Engineer, KTP Associate, University of Bath, UK
Project Manager, Guandong Best Control Technology, PR China
Software Engineer, DIAGNOS, UK
Engineer, MAN Diesel & Turbo, USA

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
This Master of Science programme, taught entirely in English, aims at preparing high level professionals that can deal with a variety of problems common to all development and resource exploitation plans. Read more

Mission and Goals

This Master of Science programme, taught entirely in English, aims at preparing high level professionals that can deal with a variety of problems common to all development and resource exploitation plans. Their expertise will range from the knowledge of modelling of land and ecological systems, to acquisition and analysis of relevant data, geo-referencing and geo-processing, to pollution abatement technologies and reclamation plans. Students following this programme may either specialize in Geomatics or Environmental Engineering with particular emphasis on sustainable development and water resources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-geomatic-engineering/

Career Opportunities

In addition to the classic professional opportunities for Environmental and Land Planning Engineering, studying Geomatic Engineering in depth allows to work in national or local bodies involved in cartography, land registries and collection of land data or in the aerospace and ICT industries involved in the management of territorial databases. On the other side, graduates with a deeper knowledge in Environmental Engineering can also found opportunities in the field of international relations, large multinational corporations and in non-governmental organizations.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Environmental_and_Geomatic_Engineering_02.pdf
This Master of Science programme, taught entirely in English, aims at preparing high level professionals that can deal with a variety of problems common to all development and resource exploitation plans. Their expertise will range from the knowledge of modeling of land and ecological systems, to acquisition and analysis of relevant data, geo-referencing and geo-processing, to pollution abatement technologies and reclamation plans. Students will increase their understanding of the functioning of ecosystems, learn how to assess the local and global environmental impacts of human activities, and apply advanced methods, techniques and models to identify, describe, quantify and develop integrated systems to support environmental decision-makers. The programme is organized around two main topics: Geomatics or Environmental Engineering, with particular emphasis on sustainable development and water resources. The first specialization aims at creating experts in surveying, monitoring, representing the land shape and processes in terms of information systems, while the second provides the future engineers with a clear understanding of sustainability issues and of their application in the current professional activities.

The programme is taught in English.

Subjects

- Mandatory courses:
Modeling and Simulation, Statistical Analysis of Environmental Data, Natural Resources Management, Environmental and Natural Resources Economy and Geographic Information Systems

Eligible courses:
1. Geomatics
Remote Sensing, Image Analysis, Satellite Navigation and Monitoring; Geophysical Prospecting;

2. Environmental Engineering
Hydraulic Engineering and River Basin Reclamation, Environmental Technology, Engineering and Cooperation for Global Development and Energy for sustainable Development.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-geomatic-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-geomatic-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. Read more

Mission and goals

Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. The MSc in Environmental and Land Planning Engineering focuses on a broad range of interdisciplinary professional capabilities and expertise required to deal with all the issues related to a sustainable utilization of natural resources. We provide a full track in English, which offers a panoply of specialized courses and laboratories addressing all the environmental components, air, water, soil and the biota, and the impacts due to natural hazards and to human activities, as well as their mitigation. We achieve the mission through advanced scientific and technological education.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

Career opportunities

Graduates are expected to be employed in land and environmental service enterprises, engineering firms for design and construction of plants for water and air emissions treatment, energy generation and waste disposal, companies for producing and managing environmental instrumentation, remote sensors and environmental monitoring systems and networks, public authorities and agencies for land planning and control.

The track in Environmental engineering for sustainability is taught in English.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Environmental_Engineering_for_Sustainability.pdf
Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. The MSc in Environmental and Land Planning Engineering focuses on a broad range of interdisciplinary professional capabilities and expertise required to deal with all the issues related to a sustainable utilization of natural resources. We provide a full track in English, which offers a panoply of specialized courses and laboratories addressing all the environmental components (air, water, soil and the biota) and the impacts due either to natural hazards or to human activities, as well as their mitigation. We achieve the mission through advanced scientific and technological education.
Graduates are expected to be employed in land and environmental service enterprises, engineering firms for design and construction of plants for water and air emissions treatment, energy generation and waste disposal, companies for producing and managing environmental instrumentation, remote sensors and environmental monitoring systems and networks, public authorities and agencies for land planning and control.
The track in Environmental engineering for sustainability is taught in English.

Subjects

Available courses include: chemistry for sustainability, soil remediation, engineering and process technologies for water, air and solid wastes treatment, hydrology and hydraulic engineering, ecology, energy systems technologies, environmental impact assessment and quality evaluation, environmental systems engineering and management, geotechnical and seismic engineering, water, land and soil resource management, surface and subsurface water quality modelling and evaluation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Master’s specialisation in Transnational Ecosystem-based Water Management (TWM) is partly taught at Radboud University and partly at the University of Duisburg-Essen in Germany. Read more
The Master’s specialisation in Transnational Ecosystem-based Water Management (TWM) is partly taught at Radboud University and partly at the University of Duisburg-Essen in Germany. At each University you will take different courses concering for example Water governance and Spatial Planning.

-Compulsory courses at Radboud University

Orientation in Biology and Environmental Sciences (3 EC)
Ecological and Environmental Concepts (3 EC)
Management of Ecosystems (3 EC)
Biodiversity and Ecological Assessment (3 EC)
Ecological and Environmental Modelling (3 EC)
Water Governance and Spatial Planning (3 EC)
Integrated Water Management (3 EC)
Environmental Economics for Water Management (3 EC)
Social Aspects of Water Management (3 EC)
Philosophy of water management (3 EC)

-Compulsory courses at the University of Duisburg-Essen

Hydroclimatology and Sustainable Water Management (2 EC)
Hydrogeology and Application (4 EC)
Hydraulics and Sediment Transport (3 EC)
Ecology and Protection of Freshwater Ecosystems and Aquatic Organisms (5 EC)
Field Trips (2 EC)
Water-borne Diseases (2 EC)
Basics in Hydraulic Planning and Facility Design (3 EC)
Waste Water Treatment (3 EC)
Flood Management (3 EC)
River Basin Management (3 EC)

Furthermore, you’ll profit from the expertise at two universities and become familiar with different cultures and research approaches. And after successful completion of the programme, you'll receive a German and a Dutch diploma. With that broad background, our graduates often find a job as manager or project leader, with an all-encompassing view in national or international water-related projects.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X