• University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Imperial College London Featured Masters Courses
Cass Business School Featured Masters Courses
Northumbria University Featured Masters Courses
"human" AND "robot"×
0 miles

Masters Degrees (Human Robot)

  • "human" AND "robot" ×
  • clear all
Showing 1 to 15 of 26
Order by 
Understanding all aspects of Human-Robot interaction. the programming that coordinates a robot’s actions with human action as well the human appreciation and trust in the robot. Read more
Understanding all aspects of Human-Robot interaction: the programming that coordinates a robot’s actions with human action as well the human appreciation and trust in the robot.
At present, there are many sensors and actuators in every device – so they may become embedded in a physical reality. For robots that move around in a specific setting there is a pressing need for the development of proper methods of control and joint-action. The embedded, embodied nature of human cognition is an inspiration for this, and vice versa. Computational modelling of such tasks can give insight into the nature of human mental processing. In the Master’s specialisation in Robot Cognition you’ll learn all about the sensors, actuators and the computational modelling that connects them.
Making sense of sensor data – developing artificial perception – is no trivial task. The perception, recognition and even appreciation of sound stimuli for speech and music (i.e. auditory scene analysis) require modelling and representation at many levels and the same holds for visual object recognition and computer vision. In this area, vocal and facial expression recognition (recognition of emotion from voices and faces) is a rapidly growing application area. In the area of action and motor planning, sensorimotor integration and action, there are strong links with research at the world-renowned Donders Centre for Cognition.
At Radboud University we also look beyond the technical side of creating robots that can move, talk and interpret emotions as humans do. We believe that a robot needs to do more than simply function to its best ability. A robot that humans distrust will fail even if it is well programmed. Culture also plays a role in this; people in Japan are more open to the possibilities of robots than in, for example, the Netherlands. We will teach you how to evaluate humans’ attitudes towards a robot in order to use that information to create robots that will be accepted and trusted and therefore perform even better.

See the website http://www.ru.nl/masters/ai/robot

Why study Robot Cognition at Radboud University?

- We offer a great mix of technical and social aspects of robot cognition.

- This programme focuses on programming robot behaviours and evaluating them rather than building the robots themselves. We teach you to programme robots that will be used in close contact with human beings, for example in healthcare and education, rather than in industry.

- Our cognitive focus leads to a highly interdisciplinary AI programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

- This specialisation offers plenty of room to create a programme that meets your own academic and professional interests.

- Together with the world-renowned Donders Institute, the Max Planck Institute and various other leading research centres in Nijmegen, we train our students to become excellent researchers in AI.

- To help you decide on a research topic there is a semi-annual Thesis Fair where academics and companies present possible project ideas. Often there are more project proposals than students to accept them, giving you ample choice. We are also open to any of you own ideas for research.

- Our AI students are a close-knit group; they have their own room in which they often get together to interact, debate and develop their ideas. Every student also receives personal guidance and supervision from a member of our expert staff.

Our research in this field

The programme is closely related to the research carried out in the internationally renowned Donders Institute for Brain, Cognition and Behaviour. This institute has several unique facilities for brain imaging using EEG, fMRI and MEG. You could also cooperate with the Behavioural Science Institute and work in its Virtual Reality Laboratory, which can be used to study social interaction between humans and avatars.

An example of a possible thesis subject:
- Engaging human-robot interactions in healthcare for children and/or the elderly
Social robots are often deployed with 'special' user groups such as children and elderly people. Developing and evaluating robot behaviours for these user groups is a challenge as a proper understanding of their cognitive and social abilities is needed. Depending on the task, children for example need to be engaged and encouraged in a different way than adults do. What are effective robot behaviours and strategies to engage children and/or elderly people? How can these robot behaviours be evaluated in a proper way?

Career prospects

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or university with an AI department. Other graduates work for companies interested in cognitive design and research. Examples of companies looking for AI experts with this specialisation: Philips, Siemens, Honda, Mercedes, Google. Some students have even gone on to start their own companies.

Job positions

Examples of jobs that a graduate of the specialisation in Robot Cognition could get:
- PhD Researcher on Cognitive-Affective Modelling for Social Robots
- PhD Researcher on Automatic analysis of human group behaviour in the presence of robots
- PhD Researcher on Automatic analysis of affective quality of conversations in human-robot interaction
- Advisor and innovation manager in the healthcare industry
- Social robotics and affective computing for robots expressing emotions
- Developer of control algorithms for using optic flow in drones
- Advisor for start-up company on developing new uses for tactile displays
- Team member in design of emotion recognition and training for autistic children

Internship

Half of your second year consists of an internship, giving you plenty of hands-on experience. We encourage students to do this internship abroad, although this is not mandatory. We do have connections with companies abroad, for example in China, Finland and the United States.

See the website http://www.ru.nl/masters/ai/robot

Read less
Understanding naturally intelligent systems, building artificially intelligent systems, and improving the interactions between humans and artificial systems. Read more

Overview

Understanding naturally intelligent systems, building artificially intelligent systems, and improving the interactions between humans and artificial systems.

As humans, we may be intrigued by the complexity of any daily activity. How do we perceive, act, decide, and remember? On the one hand, if we understand how our own intelligence works, we can use this knowledge to make computers smarter. On the other hand, by making computers behave more like humans, we learn more about how our own cognition works.

The AI Master’s programme at Radboud University has a distinctly cognitive focus. This cognitive focus leads to a highly interdisciplinary programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

See the website http://www.ru.nl/masters/ai

Scientific and practical applications

Slowly the human brain has been revealing its mystery to the scientific community. Now that we are actually able to model and stimulate aspects of cognition, AI researchers have gained a deeper understanding of cognition. At the world-renowned Donders Institute, the Max Planck Institute and various other leading research centres, we train our students to become excellent researchers in this area.

At Radboud University we also teach students how to develop practical applications that will become the next generation of products, apps, therapies and services. Our department has been awarded several prizes for its pioneering role in bringing innovations from science to society, e.g. in Assistive Technology for people with disabilities. You’ll be taught the skills needed to conduct and steer such innovation processes. Many Master’s research projects have both a scientific and a practical component.

Specialisations

Computational modelling is the central methodology taught and used in this programme. Depending on the area of study, the computational models can range from behavioural models of millions of individuals interacting on the web, to functional models of human or robot decision-making, to models of individual or networks of artificial neurons. At Radboud University we offer the following three specialisations (on campus simply known as Computation, Robot and Web):

- Computation in Neural and Artificial Systems
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans.

- Robot Cognition
Understand all aspects of Human-Robot interaction: the programming that coordinates a robot’s actions with human action as well the human appreciation and trust in the robot.

- Web and Language Interaction
Learn how to build the intelligence used to power the future of the Web.

Research project and Internship

To finalise your AI master's programme, you have the choice of either an Internship (18EC) and Research Project (30EC) or a single larger Extended Research Project (48EC). During the internship you have the chance to acquire additional AI relevant skills either at a research lab or at a company. During the Research Projects phase, you get to put what you have learned during your master's programme into practice. You can perform your research work in the AI department, at other research departments at the University (e.g. the Behaviour Science Institute or Donders Institute) or at an external company (such as Philips or TNO). You are also encouraged to go abroad for your internship and/or research project (previously students have gone to Stanford University in California and Aldebaran Robotics in Paris). To help you decide on a thesis topic, there is an annual Thesis Fair where academics and companies present possible project ideas.

Job opportunities

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or a university with an AI department. Other graduates have started their own companies or work for companies interested in cognitive design and research.

Find out how to apply here http://www.ru.nl/masters/ai

Meet Radboud University

- Information for international students
Radboud University would like to meet you in your country (http://www.ru.nl/meetus) in order to give all the information you need and to answer any questions you might have about studying in the Netherlands. In the next few months, an advisor of Radboud University will be attending fairs in various countries, always accompanied by a current or former student.
Furthermore, we understand if you would like to see the Radboud Campus and the city of Nijmegen, which is why we organise an Master's Open Day for international students (http://www.ru.nl/openday) which will take place on 5 March 2016.

- Information for Dutch students
Radboud University offers students in the Netherlands plenty of opportunities to get more information on your programme of choice, or get answers to any questions you might have and more. Apart from a Master's Evening and a Master's Day, we also organise Orientation Days and a Master’s Afternoon for HBO students.

Read less
Robots have the potential to revolutionise society and the economy, working for us, beside us, and interacting with us. This EPSRC-sponsored programme will produce graduates with the technical skills and industry awareness to create an innovation pipeline from academic research to global markets. Read more

Research profile

Robots have the potential to revolutionise society and the economy, working for us, beside us, and interacting with us. This EPSRC-sponsored programme will produce graduates with the technical skills and industry awareness to create an innovation pipeline from academic research to global markets.

The robotics and autonomous systems area has been highlighted by the UK Government in 2013 as one of the eight Great Technologies that underpin the UK's Industrial Strategy for jobs and growth. Key application areas include manufacturing, assistive and medical robots, offshore energy, environmental monitoring, search and rescue, defence, and support for the ageing population.

The University of Edinburgh and Heriot-Watt University are jointly offering this innovative four-year PhD training programme, which combines a strong general grounding in current theory, methods and applications with flexibility for individualised study and a specialised PhD project.

Robotics and autonomous systems are increasingly studied beyond the range of classical engineering. Today robots represent one of the main areas of application of computer science and provide challenges for mathematics and natural science.

It is impossible to imagine transportation, warehousing, safety systems, space and marine exploration, prosthetics, and many other areas of industry, technology and science without robots. Robots are used in theoretical biology and the neurosciences as a model of behaviour.

Areas of interest specific to the center include: movement control, planning, decision making, bio- and neurorobotics, human-robot interaction, healthcare applications, robot soccer, neuroprosthetics, underwater robotics, bipedal walking, service robots, robotic co-workers, computer vision, speech processing, computer animation realistic simulations, and machine learning.

Training and support

Our four-year PhD programme combines Masters level coursework and project work with independent PhD-level research.

In the first year, you will undertake four or five masters level courses, spread throughout robotics, machine learning, computational neuroscience, computer architectures, statistics, optimization, sensorics, dynamics, mechanics, image processing, signal processing, modelling, animation, artificial intelligence, and related areas. You will also undertake a significant introductory research project. (Students with previous masters-level work in these areas may request to take less courses and a larger project.)

At the end of the first year, successful students will be awarded an MSc by Research by the University of Edinburgh. From this basis, the subsequent three years will be spent developing and pursuing a PhD research project, under the close supervision of your primary and secondary supervisors. The PhD will be awarded jointly by the University of Edinburgh and the Heriot-Watt University.

You will have opportunities for three to six month internships with leading companies in your area, and to participate in our industrial engagement programme, exchanging ideas and challenges with our sponsor companies.

Throughout your studies, you will participate in our regular programmes of seminars, short talks and brainstorming sessions, and benefit from our pastoral mentoring schemes.

Our user partners in industry include companies working in offshore energy, environmental monitoring, defence, assisted living, transport, advanced manufacturing and education. They will provide the real world context for research, as well as opportunities for reciprocal secondments, internships and involvement in our industrial engagement programme.

The School of Informatics holds a Silver Athena SWAN award, in recognition of our commitment to advance the representation of women in science, mathematics, engineering and technology. The School is deploying a range of strategies to help female staff and students of all stages in their careers and we seek regular feedback from our research community on our performance.

Facilities

You will have access to the outstanding facilities in the Edinburgh Robotarium, a national facility for research into robot interaction, supporting the research of more than 50 world-leading investigators from 17 cross-disciplinary research groups.

Research groups at the Edinburgh Robotarium include humanoid movement control, underwater, land and airborne autonomous vehicles, human robot interaction, bio- and neuro-robotics, and planning and decision making in multirobot scenarios.

In addition, our research groups contain a diverse range of compute clusters for compute and data-intensive work, including a large cluster hosted by the Edinburgh Compute and Data Facility.

Career opportunities

Our aim is to produce innovation-ready graduates who are skilled in the principles of technical and commercial disruption and who understand how finance and organisation realise new products in start-up, SME and corporate situations.

We intend for our graduates to become leaders in the globally emerging market for autonomous and robotic systems that reduce risk, reduce cost, increase profit and protect the environment. This vision is shared by our industrial supporters, whose support for our internship programme indicates their strong desire to find highly qualified new employees.

Our component research groups already have excellent track-records in post-graduation destinations, including the research labs of industry-leading companies, and post-doctoral research positions in top tier universities.

Read less
A University of Hertfordshire research degree is an internationally recognised degree signifying high levels of achievement in research. Read more
A University of Hertfordshire research degree is an internationally recognised degree signifying high levels of achievement in research. It develops extensive subject expertise and independent research skills which are honed over an extended period, depending on the level of the award. You would undertake a substantial, original research project for the duration of the degree, under the supervision and guidance of two or more academic members of staff. Your supervisory team provides guidance both in the selection of a research topic and in the conduct of the research. You are also supported by attendance at postgraduate seminar series to develop subject specific knowledge and research skills relevant to your field of research. The degree is assessed solely on the basis of the final research output, in the form of a substantial written thesis which must be "defended" in a viva. During the course of the degree, you would be given opportunities to present your work at major conferences and in refereed research publications.

Why choose this course?

-An internationally recognised research qualification
-Developing advanced subject expertise at postgraduate level
-Develop research skills through practice and extensive research experience
-Employers are looking for high calibre graduates with advanced skills who can demonstrate independence through research

Careers

Graduates with this degree will be able to demonstrate to employers a highly-valued ability to work independently on a substantial and challenging original project and to maintain that focus over an extended period, and will have developed much sought after, highly refined research skills.

Teaching methods

Research degrees are not taught programmes, however, programmes of supporting studies are a key element. Research in the School of Computer Science is focused upon three core areas of the discipline: algorithms (which includes high performance architectures, languages and compilers, machine learning and theoretical computer science); neural and biological computation (which includes neuro- and systems biology, associative memory, data analysis and genetic regulatory networks) and adaptive systems (which includes artificial intelligence, artificial life, social and emotional developmental robotics, and human-robot interaction). In addition, the School promotes innovative research in the development and use of educational technology.

Read less
Taking BEng (Hons) Robotics to the next level, this MEng course digs deeper into the robotic technologies that are shaping today and tomorrow. Read more
Taking BEng (Hons) Robotics to the next level, this MEng course digs deeper into the robotic technologies that are shaping today and tomorrow. Providing an extra year of insight and training, your learning will be informed by robotics research pushing boundaries worldwide led by our very own teaching staff. You’ll build technical and managerial skills that you can put into practice daily, through a final group project that will set your course for success when you graduate.

You will experience learning that meets the highest standard academic requirements set by The Institution of Engineering and Technology (IET). You will draw on unique opportunities to engage in world-class robotics research, and in a variety of activities. You’ll capitalise on the opportunity to take a work placement in your second or third year, putting your robotics skills into action in the real world. You will take the fastest route to Chartered Engineer status.

Key features

-Benefit from outstanding teaching: in the 2016 National Student Survey 93 per cent of our final year students said that “The course is intellectually stimulating”.*
-Immerse yourself in a degree accredited by the Institution for Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer (CEng).
-Keep pace with the fast-moving world of robotics, on a course that cuts a path through the latest research across technologies and disciplines.
-Take the fastest route to Chartered Engineer status.
-Experience learning that meets the highest standard academic requirements set by The Institution of Engineering and Technology (IET).
-Undertake a major robotics design and implementation in your final project, showcasing your technical and managerial skills. Develop your technical content, legal and business skills as well as team working and project planning.
-Capitalise on the opportunity to take a work placement in your second or third year, putting your robotics skills into action in the real world.
-Rise to the challenge as part of the Plymouth Humanoids team, battling it out in a variety of international robot competitions.
-Develop professional writing skills as well as strengthening your technical design skills.
-Refine your professional project management skills, with dedicated professional support from staff across the entire final year on every different aspect of your project.
-Work alongside internationally-renowned staff in a leading service and cognitive robotics research environment.
-Draw on unique opportunities to engage in world-class robotics research, and in a variety of activities (for example, in the humanoid robot football, Federation of International Robot-soccer Association (FIRA) competition).

Course details

Year 1
In your first year you'll learn through doing, developing your knowledge and practical problem solving skills in our dedicated robotics and communications laboratories. From analogue and digital electronics to engineering mathematics, you'll build up the essential foundations of robotics. Group project work will also help you develop your communication skills and you'll learn structured design procedures for hardware and software all brought together in an integrating robotics project.

Core modules
-ELEC143 Embedded Software in Context
-BPIE112 Stage 1 Electrical/Robotics Placement Preparation
-ELEC141 Analogue Electronics
-ELEC142 Digital Electronics
-ELEC144 Electrical Principles and Machines
-MATH187 Engineering Mathematics

Optional modules
-ELEC137PP Electronic Design and Build
-ROCO103PP Robot Design and Build

Year 2
Throughout your second year, you'll develop a greater understanding of underlying engineering principles and circuit design methods. Again there's an emphasis on team-work, with the opportunity to do both group and individual presentations of your projects. You'll use industrial standard software tools for design and simulation, data monitoring and control, all valuable preparation for your final year individual project or for a placement year.

Core modules
-MATH237 Engineering Mathematics and Statistics
-ROCO222 Introduction to Sensors and Actuators
-BPIE212 Stage 2 Electrical/Robotics Placement Preparation
-ROCO224 Introduction to Robotics
-ROCO218 Control Engineering
-ELEC240 Embedded Systems
-ELEC241 Real Time Systems

Optional placement year
Your optional work placement experience gives opportunities to put theory into practice, grow your understanding of robotics in the real world and showcase your growing expertise. We can help you find industrial placement opportunities in the UK, France, Germany or even Japan. Placements will complement your studies with on-the-ground experience and could lead to final year sponsorship. Many of our graduates are offered permanent jobs with their placement company.

Core modules
-BPIE332 Electrical Industrial Placement

Year 4
This is when your skills, expertise and know how come into their own. Through your individual project you'll consolidate your knowledge, explore and evaluate new technologies and showcase your potential. You'll demonstrate your communication skills in an oral and written presentation of your project. Refining the independent learning skills you've developed throughout the course, you'll build a proactive, imaginative and dynamic approach to learning, vital for your future robotics career.

Core modules
-ROCO318 Mobile and Humanoid Robots
-PROJ324 Individual Project
-ELEC351 Advanced Embedded Programming
-AINT308 Machine Vision and Behavioural Computing

Optional modules
-ELEC345 High Speed Communications
-AINT351 Machine Learning

Final year
The MEng includes additional technical modules and a large interdisciplinary design project. There is also the possibility of continuing your studies to MSc level in the same academic year.

Core modules
-ROCO503 Sensors and Actuators
-ROCO504 Advanced Robot Design
-PROJ515 MEng Project
-AINT512 Science and Technology of Human-Robot Interaction

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Read more
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Robotics is increasingly prominent in a variety of sectors, from manufacturing and health to remote exploration of hostile environments such as space and the deep sea, and as autonomous and semi-autonomous systems that interact with people physically and socially.

This programme exposes you to a wide range of advanced engineering and computer science concepts, with the opportunity to carry out a practical robot project at the Bristol Robotics Laboratory, one of the UK's most comprehensive robotics innovation facilities and a leading centre of robotics research.

The programme is jointly awarded and jointly delivered by the University of Bristol and the University of the West of England, both based in Bristol, and therefore draws on the combined expertise, facilities and resources of the two universities. The Bristol Robotics Laboratory is a collaborative research partnership between the two universities with a vision to transform robotics by pioneering advances in autonomous robot systems that can behave intelligently with minimal human supervision.

Programme structure

Your course will cover the following core subjects:
-Robotics systems
-Robotic fundamentals
-Intelligent adaptive systems
-Robotics research preparation
-Image processing and computer vision
-Technology and context of robotics and autonomous systems
-Bio-inspired artificial intelligence

Typically you will be able to select from the following optional subjects:
-Computational neuroscience
-Uncertainty modelling for intelligent systems
-Introduction to artificial intelligence
-Learning in autonomous systems
-Design verification
-Animation production
-Advanced DSP and FPGA implementation
-Statistical pattern recognition
-Control theory
-Advanced techniques in multidisciplinary design
-Advanced dynamics
-Virtual product development
-Biomechanics
-Sensory ecology
-Transport modelling
-Electromechanical systems integration
-Advanced control and dynamics

Please note that your choice of optional units will be dependent on your academic background, agreement with the programme director and timetable availability.

Dissertation
During your second semester, you will start working on a substantial piece of research work that will make up one third of the overall MSc. It is possible to work on this project at Bristol Robotics Laboratory or in conjunction with one of our many industrial partners. Within the Bristol Robotics Laboratory, there are a number of themes from which projects may be chosen, including:
-Aerial robots
-Assisted living
-Bioenergy and self-sustainable systems
-Biomimetics and neuro-robotics
-Medical robotics
-Nonlinear robotics
-Robot vision
-Safe human-robot interaction
-Self-reparing robotic systems
-Smart automation
-Soft robotics
-Swarm robotics
-Tactile robotics
-Unconventional computation in robots
-Verification and validation for safety in robots

Further information is available from the Faculty of Engineering.

NB: Teaching for this programme is delivered at both the University of Bristol and the University of the West of England campuses. Students attending the programme will be given free transport passes to travel between the two universities.

Careers

Robotics is a huge field spanning areas such as electronics, mechanics, software engineering, mathematics, physics, chemistry, psychology and biology. Career opportunities include: automotive industry, aerospace industry, advanced manufacturing, deep sea exploration, space exploration, food manufacture, pharmaceutical production and industrial quality control.

Read less
This MSc forms the second year of the dual Master's degree of the European Institute of Innovation and Technology (EIT). The programme offers an advanced ICT engineering education together with a business minor focused on innovation and entrepreneurship. Read more
This MSc forms the second year of the dual Master's degree of the European Institute of Innovation and Technology (EIT). The programme offers an advanced ICT engineering education together with a business minor focused on innovation and entrepreneurship. Students will spend their first year at one of the EIT's partner universities in Europe, and can elect to spend their second year at UCL.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/ict-innovation-msc

Key Information

- Application dates
All applicants:
Open: 5 October 2015
Close: 15 February 2016
Fees note: UK/EU full-time fee available on request from the department

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Good
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

The thematic core foundations together with modules on Innovation and Entrepreneurship will be taught during the first year. In the second year at UCL, the programme focuses on the two thesis projects and on specialised taught modules. Students at UCL will choose either Human Computer Interaction and Design (HCID) or Digital Media Technology (DMT) as their major specialisation.

This two year dual masters degree has an overall credit value of 120 ECTS.

Students take modules to the value of 60 ECTS (150 Credits) in their second year at UCL, consisting of four taught modules (60 credits), a minor thesis (15 credits) and a master's thesis (75 credits).

- Core Modules
Technical Major: Human-Computer Interaction and Design:
Ergonomics for Design
Affective Interaction
Minor Thesis on Innovation and Entrepreneurship
Master's Thesis

Technical Major: Digital Media Technology:
Virtual Environments
Advanced Modelling, Rendering and Animation
Computational Photography and Capture
Minor Thesis on Innovation and Entrepreneurship
Master's Thesis

- Options
Technical Major: Human-Computer Interaction and Design:
Affective Computing and Human-robot Interaction
Societechnical Systems: IT and the Future of Work
Interfaces and Interactivity
Qualitative Research Methods
Virtual Environments

Technical Major: Digital Media Technology:
Machine Vision
Geometry of Images
Image Processing
Computational Modelling for Biomedical Imaging
Acquisition and Processing of 3D Geometry
Multimedia Systems
Network and Application Programming
Interaction Design
Professional Practice

- Dissertation/report
All MSc students undertake a minor thesis and a master's thesis, in collaboration with an external partner. For the master's thesis, students will spend at least two months in the external partner's environment.

Teaching and Learning

The programme is delivered through a combination of lectures, discussions, practical sessions, case studies, problem-based learning and project work. Assessment is through coursework assignments, unseen examinations and the two thesis projects.

Further information on modules and degree structure available on the department web site ICT Innovation MSc http://www.cs.ucl.ac.uk/admissions/msc_ict_innovation/

Funding

Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

- Brown Family Bursary - NOW CLOSED FOR 2015/16 ENTRY
Value: £15,000 (1 year)
Eligibility: UK students
Criteria: Based on both academic merit and financial need

- Computer Science Excellence Scholarships
Value: £4,000 (1)
Eligibility: UK, EU students
Criteria:

More scholarships are listed on the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships

Careers

Graduates of this programme will have the key skills in innovation and entrepreneurship necessary for the international market, together with a solid foundation in the technical topics that drive the modern technological economy.

Why study this degree at UCL?

The EIT Digital Master School is a European initiative designed to turn Europe into a global leader in ICT innovation, fostering a partnership between leading companies, research centres and technical universities in Europe.

The school offers two-year programmes where you can choose two universities in two different European institutes to build a curriculum of your choice based on your skills and interest. We offer double degrees, which combine technical competence with a set of skills in innovation and entrepreneurship. While you get an excellent theoretical education, you also get the opportunity to work with leading European research institutes and leading business partners.

Student / staff ratios › 200 staff including 120 postdocs › 650 taught students › 175 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
This programme is suitable for students with a relevant degree who wish to develop key skills in innovation and entrepreneurship together with an advanced education in ICT engineering, for a future career or further study in this field.

The admission procedure for the EIT ICT Labs Master's programme is organised centrally from Sweden by the KTH Admissions Office. Please read the admission requirements and application instructions before sending your documents. For further details of how to apply please visit http://www.eitictlabs.masterschool.eu/programme/application-admission/application-instructions.
Please note that applications after the deadline may be accepted. Late applications will be processed subject to time, availability and resources.

Read less
The School conducts high-quality significant national and international research and offers excellent opportunities for graduate studies, successfully combining modern engineering and technology with the exciting field of digital media. Read more
The School conducts high-quality significant national and international research and offers excellent opportunities for graduate studies, successfully combining modern engineering and technology with the exciting field of digital media. The digital media group has interests in many areas of interactive multimedia and digital film and animation.

Visit the website https://www.kent.ac.uk/courses/postgraduate/264/digital-arts

About the School of Engineering and Digital Arts

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research (http://www.eda.kent.ac.uk/research/default.aspx) that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

The digital media group has interests in many areas of interactive multimedia and digital film and animation.

There is particular strength in web design and development, including e-commerce, e-learning, e-health; and the group has substantial experience in interaction design (eg, Usability and accessibility), social computing (eg, Social networking, computer mediated communication), mobile technology (eg, iPhone), virtual worlds (eg, Second Life) and video games. In the area of time-based media, the group has substantial interest in digital film capture and editing, and manipulation on to fully animated 3D modelling techniques as used in games and feature films.

Research Themes:
- E-Learning Technology (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=1)

- Medical Multimedia Applications and Telemedicine (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=2)

- Human Computer Interaction and Social Computing (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=3)

- Computer Animation and Digital Visual Effects (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=4)

- Mobile Application Design and Development (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=25)

- Digital Arts (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=26)

Research areas

- Intelligent Interactions

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Read more
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Gain advanced theoretical and practical knowledge from our world-leading experts in interactive and intelligent robotics, and graduate ready to pursue an exciting career in anything from home automation to deep sea or space exploration. You’ll also have the opportunity to gain invaluable industry experience and cultivate professional contacts on an integral work placement.

Key features

-Enhance your employability and grow your professional network with an optional integral work placement. You can choose to work in the UK, or overseas in countries including France, Germany or Japan.
-Get up-to-date with the latest developments in artificial life and intelligence, adaptive behaviour, information visualisation, neural computation and dynamic systems, as well as remote access and monitoring systems. Our seminars series with speakers from industry and academia gives you the opportunity to keep ahead in this fast moving field.
-Give yourself the edge. Our programme distinguishes itself from other robotics masters programmes, in the UK and abroad, by ensuring a deeper theoretical and practical knowledge of interactive and intelligent robotics.
-Expand your skills with first-class facilities including 3D rapid prototyping systems, in-house PCB design and assembly tools, and our award winning Plymouth Humanoid robots.
-Get expert training from members of the Marine and Industrial Dynamic Analysis (MIDAS) research group and the Centre for Robotics and Neural Systems (CRNS).
-Become a professional in your field – this programme is accredited by the Institution of Engineering and Technology (IET).
-Benefit by combining disciplines that are traditionally taught separately. You’ll graduate ready with the expertise and joined-up knowledge to design and develop fully integrated mechanical, electronic, control and computing systems.

Course details

On this programme you’ll gain a solid and broad understanding of the latest developments and issues in robotics. You’ll build theoretical and practical knowledge of control and design as well as covering the interface between real-world devices, autonomous processing and evaluation of acquired information. You’ll investigate user interaction and intelligent decision-making and immerse yourself in an innovative project inspired by the latest developments in technology and society. You’ll have access to a robotics club and to a seminar series so that you can keep up-to-date with advances in the industry and academia.

Core modules
-ROCO503 Sensors and Actuators
-BPIE500 Masters Stage 1 Placement Preparation
-PROJ509 MSc Project
-AINT511 Topics in Advanced Intelligent Robotics
-MECH533 Robotics and Control
-SOFT561 Robot Software Engineering
-AINT513 Robotic Visual Perception and Autonomy
-AINT512 Science and Technology of Human-Robot Interaction

Optional modules
-BPIE502 Electrical/Robotics Masters Industrial Placement

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The Computer Animation Master’s programme at Kent is oriented towards current industrial needs, technology and practice. It is designed to be a direct route into this high-profile, modern and creative industry, and has been developed jointly by the School and our industrial partner Framestore CFC. Read more
The Computer Animation Master’s programme at Kent is oriented towards current industrial needs, technology and practice. It is designed to be a direct route into this high-profile, modern and creative industry, and has been developed jointly by the School and our industrial partner Framestore CFC.

Develop your knowledge and understanding of the animation process, software tools, techniques and packages, and the technical aspects of working in a professional animation environment. The MSc programme offers invaluable experience of working to professional briefs and under expert supervision of professional animators to prepare you for a career in industry.

Competition is fierce in animation and visual effects and success depends on your concentration levels, constant practise and ability to grasp the essence and modern techniques of animation. Successful former students are now working in animation and animation layout roles for companies such as Sony Games and Framestore CFC on major titles in games, television and film.

Visit the website https://www.kent.ac.uk/courses/postgraduate/248/computer-animation

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting field of digital media. The School, which was established over 40 years ago, has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. We have a thriving student population studying for postgraduate degrees in a friendly, supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

This intensively taught postgraduate course lasts a full year. It takes place in a dedicated computer laboratory where you have your own seat and computer for the duration of the course. The course lectures and workshops, whether led by visiting professionals or staff, are all held in this room. Demonstrations and showing of films are by means of an HD projector. By the end of the year, the lab will be where you live as much as your accommodation.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL831 - Digital Visual Art set-up (15 credits)
EL832 - Animation Principles (15 credits)
EL833 - Visual Training (15 credits)
EL837 - Professional Group Work (15 credits)
EL863 - Advanced 3D Modelling (15 credits)
EL864 - Pre-Visualisation (15 credits)
EL865 - Action in Animation (15 credits)
EL866 - Acting in Animation (15 credits)
EL830 - Computer Animation Project (60 credits)

Assessment

Each module is assessed by practical assignments. The project work is assessed on the outcome of the project itself.

Programme aims

This programme aims to:

- enable you to develop your knowledge and understanding within the field of 3D computer animation, which will equip you to become a professional in the animation and visual effects industry

- produce professionally-trained animators who are highly skilled in using state-of-the-art 3D animation software for producing animated films

- provide you with proper academic guidance and welfare support

- create an atmosphere of co-operation and partnership between staff and students, and offer you an environment where you can develop your potential

- strengthen and expand opportunities for industrial collaboration with the School of Engineering and Digital Arts.

Research areas

- Intelligent Interactions

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build a long-term career in this important discipline.

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) has an excellent record of student employability (http://www.eda.kent.ac.uk/school/employability.aspx). We are committed to enhancing the employability of all our students, to equip you with the skills and knowledge to succeed in a competitive, fast-moving, knowledge-based economy.

Graduates who can show that they have developed transferable skills and valuable experience are better prepared to start their careers and are more attractive to potential employers.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. Read more
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. The School enjoys an international reputation for its work and prides itself in allowing students the freedom to realise their maximum potential.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

We undertake high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Visit the website https://www.kent.ac.uk/courses/postgraduate/262/electronic-engineering

Project opportunities

Some projects available for postgraduate research degrees (http://www.eda.kent.ac.uk/postgraduate/projects_funding/pgr_projects.aspx).

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The MSc in Surgical Science and Practice is a part-time, modular course completed in two to three years by surgical trainees. Read more
The MSc in Surgical Science and Practice is a part-time, modular course completed in two to three years by surgical trainees.

Delivered in collaboration with the Nuffield Department of Surgical Sciences (http://www.nds.ox.ac.uk/) it is designed to prepare senior surgical trainees for life as independent specialists by providing key skills and knowledge essential for modern practice, which are not fully represented or are omitted from most postgraduate training curricula. The course is unique as its part-time nature is designed to allow students to fit their study around work.

The MSc in Surgical Science and Practice provides a foundation in some of the most important additional life long skills which the future leaders of the profession need to acquire. Surgeons in the future will work as part of multi-disciplinary teams in complex organisations, and will need to adapt and develop new skills and roles throughout their professional lives. Thus the syllabus covers management skills, quality improvement, leadership, teamwork and patient safety, as well as an introduction to the principles of medical education and clinical research methods. The knowledge gained during this course will stand students in good stead throughout their careers.

Visit the website https://www.conted.ox.ac.uk/about/msc-in-surgical-science-and-practice

Programme details

The MSc in Surgical Science and Practice is organised around six compulsory modules, plus a work-based research project and dissertation. The programme is normally completed in two to three years. Students are full members of the University of Oxford and are matriculated as members of an Oxford college.

The course features a significant component of online and distance learning, as well as one week of intensive teaching in Oxford per module.

Modules:

- Becoming a Medical Educator
- Human Factors, Teamwork and Communication
- Introduction to Surgical Management and Leadership
- Quality Improvement Science and Systems Analysis
- Surgical Technology and Robotics
- The Practice of Evidence-Based Health Care (Surgery)

Each module takes place once a year, giving students the opportunity to individualise their patterns of study.

During the course there is an exceptional opportunity for an introduction, with hands-on experience, to leading edge modern surgical technology such as the Da Vinci robot. The programme also features lectures by staff from the Centre for Evidence Based Medicine based in the world-renowned Department of Primary Care Health Sciences.

Taught by global experts, the modules in this programme can also be taken as individual stand-alone courses.

Course aims

The overarching aim of the MSc in Surgical Science and Practice is to provide the next generation of surgeons with the tools to build and lead successful surgical units delivering safe, high quality, high reliability care.

By the end of the course candidates will be able to understand the following important principles:

- How to evaluate clinical research evidence critically and understand how it should be interpreted and applied to one’s own context and practice;

- How to design, conduct and evaluate teaching and training for postgraduate clinicians, and how to assess curricula and teaching programmes;

- Financial and quality management ideas, and methods for analysing and restructuring the systems in which surgeons work;

- A theoretical understanding of the use of modern surgical technology linked to baseline practical training in minimally invasive and robotic surgical techniques;

- The teamwork, leadership and communication skills required for effective and safe working in a modern surgical environment.

What will you gain from attending the programme?

At the end of the programme you will be able to:

- Critically appraise relevant clinical research and estimate its validity and relevance to your practice;

- Understand in principle how to design your own clinical research studies, and what expert support you need to be successful;

- Understand basic business and financial planning in the health care industry;

- Develop your own business plans and cases for your practice;

- Understand the principles of leading a team and how to foster an appropriate culture to promote good teamwork and communication;

- Analyse and improve systems of work within surgery using standard industrial quality improvement and human factors principles;

- Understand how to act as a mentor and trainer for postgraduate trainees, how to set up and run courses and curricula, and how to evaluate and improve trainee progress;

- Understand and have some experience of using up to the minute surgical technology which is likely to become important during your career.

Teaching methods

The class-based modules include a period of preparatory study, a week of intensive face-to-face lectures and tutorials, followed by a period for assignment work. Attendance at modules is a requirement for study. Some non-classroom activities are provided at facilities elsewhere in the University, including surgical simulators and operating theatres on the University's hospital sites. The course includes taught material on research skills.

The taught modules include group work, discussions, guest lectures, and interaction and feedback with tutors and lecturers. Practical work develops the student's knowledge and understanding of the subject. This includes supervised access to surgical simulators and robots as part of the Surgical Technology and Robotics module.

A virtual learning environment (VLE) provides extensive support between modules.

Resources available:

University of Oxford libraries, including:

- The Cairns Library at the John Radcliffe Hospital
- Radcliffe Science Library
- Rewley House Continuing Education Library
- Bodleian Libraries e-Resources

Plus facilities from the Department of Continuing Education, including:

- The Graduate School
- WebLearn virtual learning environment

Assessment methods

To complete the MSc, students will need to:

- Attend the six compulsory modules in Oxford, and undertake assessed written assignments for each module;
- Complete a dissertation on a topic selected by the candidate in consultation with the supervisor and approved by the Standing Committee.

Dissertation

The dissertation will be founded on a work-based research project that will build on the material studied in the taught modules. The dissertation should normally not exceed 15,000 words.

The project will normally be supervised by an academic supervisor from the University of Oxford, and an employer-based mentor.

Find out how to apply here - http://www.ox.ac.uk/admissions/graduate/applying-to-oxford

Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to drive IT robotics and automation education in the UK.

Degree information

The programme provides an overview of robotic and computational tools for robotics and autonomous systems as well as their main computational components: kinetic chains, sensing and awareness, control systems, mapping and navigation. Optional modules in machine learning, human-machine interfaces and computer vision help students grasp fields related to robotics more closely, while the project thesis allows students to focus on a specific research topic in depth.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), two elective modules (30 credits), and a dissertation/report (60 credits).

Core modules
-Robotic Control Theory and Systems
-Robotic Sensing, Manipulation and Interaction
-Robotic Systems Engineering
-Robotic Vision and Navigation

Optional modules
-Acquisition and Processing of 3D Geometry
-Affective Computing and Human-Robot Interaction
-Artificial Intelligence and Neural Computing
-Image Processing
-Inverse Problems in Imaging
-Machine Vision
-Mathematical Methods, Algorithmics and Implementations
-Probabilistic and Unsupervised Learning
-Research Methods and Reading
-Supervised Learning
-Other selected modules available within UCL Computer Science
-Students also choose two elective MSc modules from across UCL Computer Science, UCL Medical Physics & Biomedical Engineering, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning
Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercises.

Careers

Robotics is a growing field encompassing many technologies with applications across different industrial sectors, and spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MSc programme will have diverse job opportunities in the international marketplace with their knowledge of robotics and the underpinning computational and analytical fundamentals that are highly valued in the established and emerging economies. Students will also be well placed to undertake PhD studies in robotics and computational research specific to robotics but translational across different analytical disciplines or applied fields that will be influenced by new robotic technologies and capabilities.

Employability
This programme prepares students to enter a robotics-related industry or any other occupation requiring engineering or analytical skills. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in demand globally.

Why study this degree at UCL?

UCL was ranked first in the UK for computer science and informatics in the recent Research Excellence Framework (REF).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.

Read less
Launch yourself into the robotics research environment and develop the skills and confidence to conduct your own in-depth research project. Read more
Launch yourself into the robotics research environment and develop the skills and confidence to conduct your own in-depth research project. Gain current, advanced theoretical and practical knowledge from our world-leading experts in intelligent and interactive robotics. You’ll graduate ready for a future in the fast-moving world of personal and service robotics and with the skills to further your research to PhD level.

Key features

-Immerse yourself in an individual research project and learn how to communicate your motivation, methodology, and conclusions through a formal dissertation and summary paper.
-Get up-to-date with the latest developments in artificial life and intelligence, adaptive behaviour, information visualisation, neural computation and dynamic systems, as well as remote access and monitoring systems. Our seminars series with speakers from industry and academia gives you the opportunity to keep ahead in this fast moving field.
-Give yourself the edge. Our programme distinguishes itself from other robotics masters programmes, in the UK and abroad, by ensuring a deeper theoretical and practical knowledge of interactive and intelligent robotics.
-Expand your skills with first-class facilities including 3D rapid prototyping systems, in-house PCB design and assembly tools, and our award winning Plymouth Humanoid robots.
-Get expert training from members of the Marine and Industrial Dynamic Analysis (MIDAS) research group and the Centre for Robotics and Neural Systems (CRNS).
-Benefit by combining disciplines that are traditionally taught separately. You’ll graduate ready with the expertise and joined-up knowledge to design and develop fully integrated mechanical, electronic, control and computing systems.
-The taught elements of this programme are also delivered to students on Year 1 of the MSc Robotics Technology programme.

Course details

On this programme you’ll gain a solid and broad understanding of the latest developments and issues in robotics. You’ll build advanced theoretical and practical knowledge of control and design as well as covering the interface between real-world devices, autonomous processing and evaluation of acquired information. You’ll learn how to search, critically appraise and identify relevant research literature. You’ll also gain expertise in project management and personal effectiveness whilst immersing yourself in a substantial and innovative project inspired by the latest developments in technology and society. You’ll have access to a robotics club and to a seminar series so that you can keep up-to-date with advances in the industry and academia.

Core modules
-PROJ510 MRes Project

Optional modules
-ROCO503 Sensors and Actuators
-AINT511 Topics in Advanced Intelligent Robotics
-MECH533 Robotics and Control
-SOFT561 Robot Software Engineering
-AINT513 Robotic Visual Perception and Autonomy
-AINT512 Science and Technology of Human-Robot Interaction

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
An MSc-level conversion programme for those with first degrees in numerate disciplines (e.g. Maths, Physics, others with some mathematics to pre-university level should enquire). Read more
An MSc-level conversion programme for those with first degrees in numerate disciplines (e.g. Maths, Physics, others with some mathematics to pre-university level should enquire). The programme targets producing engineers with the knowledge and skills required for working in the communications industry on programmable hardware, in particular. There is a high demand for people to fill such roles in communications and test & measure equipment vendors, and in many smaller companies developing devices for the internet of things.

The huge growth of interconnected devices expected in the Internet of Things and the goals of flexible, high-speed wireless connections for 5G mobile networks and beyond, require programmable, embedded electronics to play a vital role. From the development of small, intelligence sensors to the design of large-scale network hardware that can be functionally adaptive in software-defined networking, there is a huge demand for advanced embedded electronics knowledge and skills in the communications sector.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1223/embedded-communications-engineering

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting field of digital media.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL829 - Embedded Real-Time Operating Systems (15 credits)
EL849 - Research Methods & Project Design (30 credits)
EL893 - Reconfigurable Architectures (15 credits)
EL896 - Computer and Microcontroller Architectures (15 credits)
EL822 - Communication Networks (15 credits)
EL827 - Signal & Communication Theory II (15 credits)
EL871 - Digital Signal Processing (DSP) (15 credits)
EL872 - Wireless/Mobile Communications (15 credits)
EL873 - Broadband Networks (15 credits)
EL890 - MSc Project (60 credits)

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

The programme targets producing engineers with the knowledge and skills required for working in the communications industry on programmable hardware, in particular. There is a high demand for people to fill such roles in communications and test & measure equipment vendors, and in many smaller companies developing devices for the internet of things.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less

Show 10 15 30 per page



Cookie Policy    X