• Anglia Ruskin University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
University of Manchester Featured Masters Courses
FindA University Ltd Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Glasgow Featured Masters Courses
"human" AND "biology"×
0 miles

Masters Degrees (Human Biology)

We have 474 Masters Degrees (Human Biology)

  • "human" AND "biology" ×
  • clear all
Showing 1 to 15 of 474
Order by 
Translating fundamental biomedical discoveries into applied clinical practice and public health issues. Human Biology is the only specialisation in the Netherlands that combines fundamental human biology with clinical studies. Read more

Translating fundamental biomedical discoveries into applied clinical practice and public health issues

Human Biology is the only specialisation in the Netherlands that combines fundamental human biology with clinical studies. It provides you with an extensive biological knowledge, and experience in working with animal and patient samples. In this way you’ll be trained to bridge the gap between early biomedical research results and clinical practice.

This wouldn’t be possible within the walls of the Faculty of Science. That’s why there’s an extensive collaboration between the Faculty of Science and the Radboud university medical center in the field of Human Biology. You’ll get the best of both worlds: a thorough background in for example molecular oncology, human genetics, physiology and metabolism as well as a clinical view on diseases. This is an excellent background for a medical researcher or a job at the interface of science and society, such as a consultant, policy officer or communications advisor in the area of food or health.

See the website http://www.ru.nl/masters/humanbiology

Why study Human Biology at Radboud University?

- It is the only programme in the Netherlands that bridges the gap between fundamental biomedical research and clinical treatments.

- You’ll get the opportunity to work together with researchers from the Radboud university medical center.

- Radboud biologists and clinicians stand out in the fields of animal and human physiology, human genetics and disease, and molecular and cellular clinical studies.

- Clinical Biology offers internships at multiple related research institutes, such as the Radboud Institute for Molecular Life Sciences (RIMLS), the Radboud Institute for Health Sciences (RIHS) and the Donders Institute for Brain, Cognition and Behaviour (DI).

- There are various opportunities to do an internship abroad thanks to our wide network of cooperating research groups.

Career prospects

After graduation, our students quickly take up positions as researchers in government departments, research organisations and medical or pharmaceutical companies. However, many of our graduates also apply their academic background to societal issues, for example as a communications or policy officer. In general, clinical biologists end up as a:

- Researcher in a hospital or a university

- Researcher in a company, either a large or a start-up company

- Supervisor of clinical trials

- Consultant in the area of health or food

- Policy officer in the area of health or food

- Communications officer at a hospital or a governmental organisation, like RIVM

- Teacher in biology or medical biology

PhD positions at Radboud University

Each year, Radboudumc offers PhD positions in this field of research. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- From human biology to clinical treatment

Human Biology at Radboud University connects fundamental biological research to clinical treatments. The courses will provide you with a solid background in human physiology and molecular biology, which you’ll apply in developing clinically-oriented research questions. As there’s an extensive collaboration between the Faculty of Science and the Radboud university medical center, you’ll become familiar with both perspectives.

- Biomaterials

In your internships you’ll work with biomaterials, such as patient and animal samples. This means you’ll apply your biological knowledge to real-life situations. Clinical biologists do not work with patients or clinical treatments directly.

- Three focus areas

This Master’s specialisation focuses on three main topics:

- Molecular Mechanisms of Novel Therapeutics

Which molecular mechanisms lead to cancer? And how can these be translated into clinical practice? These are key questions in the specialisation in Human Biology. For example, we’ll dive into the functioning of epigenetics (heritable modifications of chromosomes without altering the nucleotide sequence), transcription factors, tumour suppressors and immunotherapy.

- Human Genetics and Physiology

This part is about how new developments and discoveries in genetic and molecular fields can help individual patients to improve functionality, independence and quality of life. You’ll study genetic pathways and the functionality of individual organs, organ systems, regulatory mechanisms, and individuals as a whole, in an integrative way.

- Metabolism, Transport and Mobility

The energy balance in our body is one of the most important factors in health and disease. We’ll teach you how energy and metabolites are integrated into the larger cellular networks for metabolism, transport and motility.

See the website http://www.ru.nl/masters/humanbiology



Read less
The University of Worcester welcomes applications to undertake research towards MPhil and PhD degrees in Human Biology. Research at Worcester has grown significantly in the last 10 years as the University itself has expanded. Read more
The University of Worcester welcomes applications to undertake research towards MPhil and PhD degrees in Human Biology.

Research at Worcester has grown significantly in the last 10 years as the University itself has expanded. As a research student you will join a vibrant student community in our Research School and become part of our dynamic research environment.

You will have the opportunity to be supervised by leading researchers in your field and take advantage of our rich Researcher Development programme which will help you to develop the skills and knowledge you need to complete your research degree but also enhance the skills you will need in any future career.

Read less
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. Read more
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. It also provides a sound educational background so that you can go on to lead academic oral biology programmes within dental schools.

Why study Oral Biology at Dundee?

This course is specifically designed for individuals who wish to pursue career pathways in academic oral biology, with a focus, though not exclusively, on developing individuals who can deliver and, more importantly, lead oral biology courses within dental schools.

Oral Biology is a significant subject area that is integral to undergraduate and postgraduate dental training worldwide. The scope of Oral Biology includes a range of basic and applied sciences that underpin the practise of dentistry. These subjects include: oral and dental anatomy; craniofacial and dental development; oral physiology; oral neuroscience; oral microbiology. These subjects will be integrated with the relevant disease processes, for example, craniofacial anomalies, dental caries and tooth surface loss.

What's so good about studying Oral Biology at Dundee?

This programme focuses on the research and education experience of the staff in the Dental School in Dundee. Such expertise lies in the fields of craniofacial development and anomalies; pain and jaw muscle control; salivary physiology; cancer biology; microbiology; cariology and tooth surface loss.

In addition it makes use of the extensive resources available for postgraduate programmes: extensive histological collections; virtual microscopy; oral physiology facilities; cell biology and dental materials laboratories.

Who should study this course?

The MSc in Oral Biology is for graduates who wish to pursue a career in academic oral biology. The course will be of particular interest for those wishing to establish themselves as oral biology teachers, innovators and course leaders within a dental school.

Teaching and Assessment

The Dental School is well placed to deliver such a course with an established staff of teaching and research active within oral biology, and its related fields, an in-house e-learning technologist and substantial links to the Centre for Medical Education in the School of Medicine. There will be an opportunity for students to exit with a PGCert in Oral Biology after successful completion of modules 1 -4 or a Diploma in Oral Biology after successful completion of modules 1 - 7.

How you will be taught

The programme will be delivered via a blend of methodologies including: face-to-face lectures / seminars / tutorials; on-line learning; directed and self- directed practical work; self-directed study; journal clubs.
What you will study

The MSc will be taught full-time over one year (September to August). Semester one (Modules 1 – 4) and Semester 2A, 2B (Modules 5 – 8) will provide participants with wide ranging, in-depth knowledge of oral biology, together with focused training in research (lab-base, dissertation or e- Learning) and its associated methodology. The MSc course is built largely on new modules (5) supported by 2 modules run conjointly with the Centre for Medical Education within the Medical School. All modules are compulsory:

Semester 1:

Module 1: Academic skills 1: principles of learning and teaching (15 credits)
Module 2: Cranio-facial development and anomalies (15 credits)
Module 3: Dental and periodontal tissues, development and structure (20 credits)
Module 4: Oral mucosa and disorders (10 credits)

Semesters 2A and 2B

Module 5a: Academic skills 2a: principles of assessment (15 credits)
Module 5b: Academic Skills 2b:educational skills
Module 6: Neuroscience (20 credits)
Module 7: Oral environment and endemic oral disease (20 credits)
Module 8: Project (60 credits)

The project is designed to encourage students to further develop their skills. This could take the form of a supervised laboratory research project, a literature based dissertation or an educational project. The educational project would be based around the development of an innovative learning resource utilising the experience of the dental school learning technologist.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Careers

The MSc Oral Biology is aimed at dental or science graduates who are either early in their careers or wish to establish themselves as oral biologists within dental schools. Oral Biology is a recognised discipline in many dental schools worldwide. Graduates will have gained sufficient knowledge and skills to enable them to be teachers, innovators and educational leaders in the field. In addition, successful graduates will be well placed to undertake further postgraduate study at PhD level. In some cases, this may possible within the existing research environments within the Dental School, the wider College of Medicine Dentistry and Nursing and the Centre for Anatomy and Human Identification of the University of Dundee.

Read less
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. Read more
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. It seeks to create, advance and apply computer/software-based solutions to solve formal and practical problems arising from the management and analysis of very large biological data sets. Applications include genome sequence analysis such as the human genome, the human microbiome, analysis of genetic variation within populations and analysis of gene expression patterns.

As part of the MSc course, you will carry out a three month research project in a research group in UCC or in an external university, research institute or industry. The programming and data handling skills that you will develop, along with your exposure to an interdisciplinary research environment, will be very attractive to employers. Graduates from the MSc will have a variety of career options including working in a research group in a university or research institute, industrial research, or pursuing a PhD.

Visit the website: http://www.ucc.ie/en/ckr33/

Course Detail

This MSc course will provide theoretical education along with practical training to students who already have a BSc in a biological/life science, computer science, mathematics, statistics, engineering or a related degree.

The course has four different streams for biology, mathematics, statistics and computer science graduates. Graduates of related disciplines, such as engineering, physics, medicine, will be enrolled in the most appropriate stream. This allows graduates from different backgrounds to increase their knowledge and skills in areas in which they have not previously studied, with particular emphasis on hands-on expertise relevant to bioinformatics:

- Data analysis: basic statistical concepts, probability, multivariate analysis methods
- Programming/computing: hands-on Linux skills, basic computing skills and databases, computer system organisation, analysis of simple data structures and algorithms, programming concepts and practice, web applications programming
- Bioinformatics: homology searches, sequence alignment, motifs, phylogenetics, protein folding and structure prediction
- Systems biology: genome sequencing projects and genome analysis, functional genomics, metabolome modelling, regulatory networks, interactome, enzymes and pathways
- Mathematical modelling and simulation: use of discrete mathematics for bioinformatics such as graphs and trees, simulation of biosystems
- Research skills: individual research project, involving a placement within the university or in external research institutes, universities or industry.

Format

Full-time students must complete 12 taught modules and undertake a research project. Part-time students complete about six taught modules in each academic year and undertake the project in the second academic year. Each taught module consists of approximately 20 one-hour lectures (roughly two lectures per week over one academic term), as well as approximately 10 hours of practicals or tutorials (roughly one one-hour practical or tutorial per week over one academic term), although the exact amount of lectures, practicals and tutorials varies between individual modules.

Assessment

There are exams for most of the taught modules in May of each of the two academic years, while certain modules may also have a continuous assessment element. The research project starts in June and finishes towards the end of September. Part-time students will carry out their research project during the summer of their second academic year.

Careers

Graduates of this course offer a unique set of interdisciplinary skills making them highly attractive to employers at universities, research centres and in industry. Many research institutes have dedicated bioinformatics groups, while many 'wet biology' research groups employ bioinformaticians to help with data analyses and other bioinformatics problems. Industries employing bioinformaticians include the pharmaceutical industry, agricultural and biotechnology companies. For biology graduates returning to 'wet lab' biology after completing the MSc course, your newly acquired skills will be extremely useful. Non-biology graduates seeking non-biology positions will also find that having acquired interdisciplinary skills is of great benefit in getting a job.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. Read more
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. The course will provide you with a truly interdisciplinary educational experience by combining advanced discipline-specific training with core scientific research, technical expertise and business skills.

Visit the website: http://www.ucc.ie/en/ckr44/

Course Details

A distinctive feature of the MSc in Molecular Cell Biology with Bioinnovation is that you will receive formal innovation and technology commercialisation training through modules from the College of Business and Law at UCC.

With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will select projects with internationally-renowned research groups from the Schools of Biochemistry, Microbiology and Department of Anatomy/Neuroscience, following the completion of discipline-specific modules.

You will not only possess excellent research and technical skills on graduation but also the necessary business development and commercialisation skills for life science innovation.

Format

The course will consist of lectures, tutorials, hands-on workshops and a research dissertation based on individual research.

Core Scientific Modules (25 credits)

- Cell and Molecular Biology
- Human Molecular Genetics and Genetic Engineering Techniques
- Biological and Clinical Perspectives of Human Disease

Scientific Skills-Development Modules (10 credits)

- Biotechniques
- Scientific Communication of Current Topics in Molecular Cell Biology Core Business Modules (10 credits)
- Marketing for High Technology Entrepreneurs
- Technology and Business Planning

Elective modules (5 credits)

- Creativity and Opportunity Recognition
- Innovation Finance
- Intellectual Property Law for High-Tech Entrepreneurs

Research Project (40 credits)

You will select a project offered by internationally-renowned research groups from the Schools of Biochemistry and Cell Biology, Microbiology and Anatomy/Neuroscience. With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will complete a six month project based on individual research in one of these themes and compile the results into an MSc dissertation on completion.

You will gain invaluable hands-on, practical experience in experimental design, implementation and data interpretation and develop a wide array of transferable skills, including written and verbal communication; data recording, analysis and presentation; critical evaluation of published material; learning to work collaboratively and independently as well as project and time-management.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page04.html#molecular

Assessment

Taught modules are examined by formal written examination and continuous assessment. The research dissertation for the six-month research project must be submitted by the end of the first academic year of registration for examination by internal and external examiners.

Careers

You will be ideally positioned to enter into a PhD after graduation, but could also pursue a number of career paths including: technology transfer officer within higher education institutions and national agencies, R&D project manager, commercialisation manager within a life science start-up, or development manager within the pharmaceutical sector. The course will also equip you with the skills required to develop your own start-up venture.

A first destination surveys from 2012 - 2014 have revealed that 100% of our graduates are in employment or further education within one-year of completing the MSc in Molecular Cell Biology with Bioinnovation.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
In the first semester of the programme, graduates from a range of backgrounds are brought up-to-speed on core knowledge in engineering, biology and research practice. Read more

In the first semester of the programme, graduates from a range of backgrounds are brought up-to-speed on core knowledge in engineering, biology and research practice.

This is followed by specialist modules in the second semester on human movement analysis, prostheses, implants, physiological measurements and rehabilitation, as well as numerous computer methods applied across the discipline.

The course makes use of different approaches to teaching, including traditional lectures and tutorials, off-site visits to museums and hospitals, and lab work (particularly in the Human Movement and Instrumentation modules).

The core lecturing team is supplemented by leading figures from hospitals and industry.

Programme structure

This programme is studied full-time over one academic year and part-time over two academic years. It consists of eight taught modules and a research project.

All modules are taught on the University main campus, with the exception of visits to the health care industry (e.g. commercial companies and NHS hospitals).

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The course aims:

  • To educate engineering, physical science, life science, medical and paramedical graduates in the broad base of knowledge required for a Biomedical Engineering career in industry, healthcare or research in the United Kingdom, Europe and the rest of the world
  • To underpin the knowledge base with a wide range of practical sessions including laboratory/experimental work and applied visits to expert health care facilities and biomedical engineering industry
  • To develop skills in critical review and evaluation of the current approaches in biomedical engineering
  • To build on these through an MSc research project in which further experimental, analytical, computational, and/or design skills will be acquired

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • Demonstrate breadth and depth of awareness and understanding of issues at the forefront of Biomedical Engineering
  • Demonstrate broad knowledge in Human Biology, Instrumentation, Biomechanics, and Professional and Research skills
  • Demonstrate specialist knowledge in Implants, Motion analysis and rehabilitation, and Medical signals
  • Understand how to apply engineering principles to conceptually challenging (bio)medical problems
  • Appreciate the limitations in the current understanding of clinical problems and inherent in adopted solutions
  • Understand routes/requirements for personal development in biomedical engineering including state registration
  • Understand key elements of the concept of ethics and patient-professional relationships, recognise, analyse and respond to the complex ethical issues

Intellectual / cognitive skills

  • Evaluate a wide range of applied engineering and clinical measurement and assessment tools
  • Design and implement a personal research project; this includes an ability to accurately assess/report on own/others work with justification and relate them to existing knowledge structures and methodologies, showing insight and understanding of alternative points of view
  • Carry out such research in a flexible, effective and productive manner, optimising use of available support, supervisory and equipment resources, demonstrating understanding of the complex underlying issues
  • Apply appropriate theory and quantitative methods to analyse problems

Professional practical skills

  • Make effective and accurate use of referencing across a range of different types of sources in line with standard conventions
  • Use/ apply basic and applied instrumentation hardware and software
  • Correctly use anthropometric measurement equipment and interpret results in the clinical context
  • Use/apply fundamental statistical analysis tools
  • Use advanced movement analysis hardware and software and interpret results in the clinical context
  • Use advanced finite element packages and other engineering software for computer simulation
  • Program in a high-level programming language and use built-in functions to tackle a range of problems
  • Use further specialist skills (laboratory-experimental, analytical, and computational) developed through the personal research project

Key / transferable skills

  • Identify, select, plan for, use and evaluate ICT applications and strategies to enhance the achievement of aims and desired outcomes
  • Undertake independent review, and research and development projects
  • Communicate effectively between engineering, scientific and clinical disciplines
  • Prepare relevant, clear project reports and presentations, selecting and adapting the appropriate format and style to convey information, attitudes and ideas to an appropriate standard and in such a way as to enhance understanding and engagement by academic/ professional audiences

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The Graduate Diploma in Education (Secondary Education) offers an opportunity for graduates from a variety of backgrounds to obtain a teaching qualification that is accredited nationally and recognised internationally. Read more
The Graduate Diploma in Education (Secondary Education) offers an opportunity for graduates from a variety of backgrounds to obtain a teaching qualification that is accredited nationally and recognised internationally.

This course enables those with approved qualifications to become certified secondary teachers. As secondary school teachers are usually employed to teach more than one school subject, it is a requirement of the course that you undertake both a major and minor area of study. Your major teaching area is based on the content of your bachelor degree. Your minor teaching area will be a curriculum area that you have studied to a lesser degree and/or an area where you have gained professional experience.

Major Teaching Specialisations

The major teaching area qualifies you to teach lower secondary school and upper-secondary school students.

Major subject specialisations include:

-The Arts (Design, Drama, Media Studies, Visual Arts)
-English
-Languages (Chinese and Japanese)
-Mathematics
-Science (Biology, Chemistry, Earth and Environmental Science, Human Biology, Physics, )
-Social Sciences (Economics, Geography, History, Politics and Law).

Minor Teaching Specialisations

The minor teaching area qualifies you to teach lower secondary school students up to year 10.

Minor subject specialisations include:

-The Arts (Visual Arts, Drama, Media Studies, Design)
-English
-Languages (Chinese and Japanese)
-Mathematics
-Science (Human Biology, Biology, Physics, Chemistry, Earth and Environmental Science)
-Social Sciences (History, Geography, Politics and Law, Economics).

This course is not suitable for qualified teachers wishing to change their qualification and/or subject specialisations.

Professional recognition

This course is recognised both nationally and internationally.

Career opportunities

Teaching at any level is a rewarding and interesting career. The Western Australian Department of Education and Training, as a matter of policy, employs teaching graduates from each institution in Western Australia. Many Curtin graduates are also employed by the Catholic education system and independent schools in Western Australia.

Credit for previous study

Applications for credit for recognised learning (CRL) are assessed on an individual basis.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
What is the Master of Molecular Biology all about?.  This programme, commonly referred to as the Internuniversity Programme in Molecular Biology (IPMB), is jointly organised by. Read more

What is the Master of Molecular Biology all about?

 This programme, commonly referred to as the Internuniversity Programme in Molecular Biology (IPMB), is jointly organised by

  • KU Leuven
  • Vrije Universiteit Brussel
  • Universiteit Antwerpen

IPMB is endorsed and supported as an international programme by the Flemish Interuniversity Council (VLIR-UDC). Although originally designed to meet the needs of students from developing countries, the programme also welcomes non-traditional and reorienting student seeking to enter the fascinating world of molecular biology. Erasmus-Socrates students studying at one of the organising universities for one or two semesters are also most welcome to attend classes and acquire laboratory skills.

Students are awarded a joint degree from the participating institutions. 

Structure

The IPMB is organised over two academic years. In view of the diverse background of its students, the first year consists of in-depth courses covering the most important topics in molecular biology. By the end of the first year, you will have obtained the level of knowledge required to take succesfully part in the advanced, specialisation courses of the second year.

Intensive laboratory training will prepare you to embark on the preparation of your thesis, which you will complete in the second year along with four advanced courses followed by three specialisation courses in the field of either human health, animal production or plant production. Much attention is also paid to the preparation and writing of the thesis, which is an original research project completed under the guidance of a supervisor and defended in public.

Objectives

The Master of Molecular Biology (Interuniversity Molecular Biology - IPMB) programme is intended to offer theoretical and practical training to young scientists from developing countries, who are involved in education/research in human medicine, animal production or plant production.

This programme is designed to train these students to become capable, critical and self-reliant scientists who are able to apply the knowledge acquired to contribute to the further development of their country through their involvement in education, research and policymaking.

IPMB graduates will be able to ensure that the potential offered by molecular biology and biotechnology in terms of human and veterinary medicine and animal and plant production, find due application in their country.

Although originally conceived to meet the needs of students from developing countries, the programme offers an excellent opportunity for all students, including non-traditional and reorienting students, to study molecular biology in an international context.

Students are expected to:

  • have developed an advanced knowledge of fundamental sciences;
  • have developed an in-depth insight into biological processes;
  • have developed an in-depth insight into the functioning of living organisms in all their forms;
  • have developed a critical mind allowing them to appraise scientific and social aspects of applied molecular biology;
  • be capable of analysing and/or summarising and critically reflecting on scientific literature;
  • be capable of detecting and analysing problems and of proposing solutions to solve them;
  • be able to contribute, through molecular biological research, to solving problems faced by developing countries;
  • be able to operate as a member of a team;
  • be able to report, both orally and in writing;
  • be able to contribute to efforts to set up nationwide and international cooperation (South-South, South-North);
  • be able to operate in nationwide and international networks;
  • be able to disseminate the acquired knowledge in their country and region through their activities in education and research and through peer reviewed publications;
  • have developed skills to act as reliable advisors for local policymakers by making proposals for the further development of molecular biology in education and research, and, as such, to contribute to the further development of their country and improve the living conditions of the populations in the South;
  • be trained to a level sufficient to beginning a doctoral programme (PhD).

Career path

IPMB graduates find employment in universities, hospitals, private and governmental research laboratories and patenting bureaus, as lecturers, consultants and advisors to policy makers, among other careers. Many graduates go on to begin PhD programmes in Belgium or abroad. Students from developing countries can apply for a VLIR-UOS sandwich PhD scholarship. Flemish students can apply for a PhD scholarship of VLIR-UOS to make a PhD on developmental relevant topics.



Read less
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. Read more
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. We offer many opportunities for you to explore medically relevant research in the School of Biological Sciences including hospital-based sessions through our collaboration with local cancer specialists and clinicians.

An important and exciting part of your programme is an extensive independent research project, based in one of our academic research groups using advanced laboratories facilities and bioinformatics tools. There are also opportunities for research projects to take place within an industrial or clinical setting.

Throughout the course, you develop your knowledge in the essential areas of molecular and cellular biology which complement your specialist modules in cancer biology. You gain expertise in areas including:
-Specific cancer types (including breast, prostate, pancreatic and colon cancer)
-Clinical aspects of cancer
-Emerging trends in cancer research

You are also trained in modern research methods and approaches which will develop your skills in complex biological data analysis and specific techniques in cancer research.

Within our School of Biological Sciences, two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you will learn from and work alongside our expert staff as you undertake your own research.

Our expert staff

We have a very strong research team in the area of cancer biology, who are well placed to deliver the specialist teaching on this course.

The team includes the course leader Professor Elena Klenova (molecular oncology and cancer biomarkers), Dr Ralf Zwacka (apoptotic and survival signalling in cancer), Dr Greg Brooke (steroid hormone receptor signalling in cancer), Dr Metodi Metodiev (clinical proteomics and bioinformatics), Dr Pradeepa Madapura (cancer epigenetics), Dr Vladimir Teif (computational and systems biology), Professor Nelson Fernandez (tumour immunology) and Dr Filippo Prischi (structural biology and biophysics of novel drug targets).

External experts also input to your teaching, including guest speakers from hospitals and research institutions, who deliver classes both on-campus and within the hospital environment.

As one of the largest schools at Essex, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching, and you benefit from our academics’ wide range of expertise and research.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Study in an open and friendly department, with shared staff-student social spaces
-Carry out your research project in shared lab space, alongside PhD students and researchers engaged in cutting-edge cancer research
-Learn to use state-of-the-art research facilities, including an advanced microscopy suite, proteomics laboratory, cell culture, bioinformatics and genomics facilities, modern molecular biology laboratories, and protein structure analysis

Your future

Graduates who are skilled in the research methods embedded into your course are in demand from the biotechnology and biomedical research industries in this area of the UK and beyond.

Many of our Masters students progress to study for a PhD, and there are many opportunities within our school leading to a career in science.

We work with our University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Advanced Cancer Biology
-Practical Skills in Cancer Research
-Gene Technology and Synthetic Biology
-Protein Technologies
-Professional Skills and the Business of Molecular Medicine
-Cancer Biology (optional)
-Research Project: MSc Cancer Biology
-Genomics (optional)
-Cell Signalling (optional)
-Molecular Medicine and Biotechnology (optional)
-Human Molecular Genetics (optional)
-Molecular and Developmental Immunology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)

Read less
Taught by expert researchers, this innovative MSc combines evolutionary anthropology, focusing on the behaviour of human and non-human primates, with evolutionary, developmental and cognitive psychology. Read more
Taught by expert researchers, this innovative MSc combines evolutionary anthropology, focusing on the behaviour of human and non-human primates, with evolutionary, developmental and cognitive psychology.

You gain an interdisciplinary understanding of the origins and functions of human behaviour and can select from a range of advanced topics such as evolutionary anthropology, primatology, human behaviour, cognitive psychology, developmental psychology and intergroup relationships.

The programme places a strong emphasis on critical thinking and understanding of both the broad fields and the specialisms within. Core to the programme is the development of research methods, culminating in a piece of original research, written up in the form of a publication-ready journal article. The MSc in Evolution and Human Behaviour is a perfect foundation for PhD research: it provides theoretical background, discipline specific knowledge and advanced, quantitative research methods.

Visit the website https://www.kent.ac.uk/courses/postgraduate/190/evolution-and-human-behaviour

Why study with us?

- A unique, interdisciplinary, combination of Evolutionary Anthropology and Psychology.

- Taught by expert, active researchers in evolutionary approaches to understanding behaviour.

- Select from a range of advanced topics such as Evolutionary Anthropology, Primatology, Human Behaviour, Developmental Psychology & Cognitive Neuroscience.

- Perfect foundation for future PhD research: theoretical background, discipline-specific knowledge and advanced research methods.

- For students with an undergraduate degree in anthropology, psychology, biology or a related discipline.

- A research component that results in a publication-ready journal article.

Course structure

The programme places a strong emphasis on critical thinking and understanding of both the broad field and the specialisms within. Core to the programme is the development of research methods, culminating in a piece of original research, written up in the form of a publication ready journal article.

Modules

Please note that modules are subject to change. Please contact the School for more detailed information on availability.

SE992 - Advanced Topics in Evolutionary Anthropology (15 credits)
SP801 - Statistics and Methodology (40 credits)
SE993 - Advanced Topics in Primate Behaviour (15 credits)
SE994 - Advanced Topics in HUman Behaviour (15 credits)
SP844 - Advanced Topics in Group Processes (20 credits)
SP851 - Advanced Topics in Cognitive Development (20 credits)
SP856 - Groups and Teams in Organisations (15 credits)
SP827 - Current Issues in Cognitive Psychology and Neuropsychology (40 credits)
SP842 - Advanced Developmental Social Psychology (20 credits)
SE855 - Research Project (Evolution & Human Behaviour) (60 credits)

Assessment

Assessment is by computing tests, unseen examinations, coursework and a project report.

Programme aims

This programme aims to:

- provide the opportunity for advanced study of human behaviour from an evolutionary perspective, combining approaches from both evolutionary anthropology and evolutionary psychology

- provide teaching that is informed by current research and scholarship and that requires you to engage with aspects of work at the frontiers of knowledge

- help you to develop research skills and transferable skills in preparation for entering academic or other careers as an evolutionary scientist

- enable you to manage your own learning and to carry out independent research

- help you develop general critical, analytic and problem-solving skills that can be applied in a wide range of settings.

Careers

As a School recognised for its excellence in research we are one of the partners in the South East Doctoral Training Centre, which is recognised by the Economic and Social Research Council (ESRC). This relationship ensures that successful completion of our courses is sufficient preparation for research in the various fields of social anthropology. Many of our students go on to do PhD research. Others use their Master’s qualification in employment ranging from research in government departments to teaching to consultancy work overseas.

Higher degrees in anthropology create opportunities in many employment sectors including academia, the civil service and non-governmental organisations through work in areas such as human rights, journalism, documentary film making, environmental conservation and international finance. An anthropology degree also develops interpersonal and intercultural skills, which make our graduates highly desirable in any profession that involves working with people from diverse backgrounds and cultures.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research. Read more

About the course

This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Integrated Mammalian Biology; Practical Cell Biology; Practical Developmental Genetics; Cancer Biology; Modelling Human Diseases; Epithelia in Health and Disease.

Read less
Tissues in the human body have a defined structure in that their growth and differentiation have developed in specific ways to create a cellular architecture that supports their function. Read more
Tissues in the human body have a defined structure in that their growth and differentiation have developed in specific ways to create a cellular architecture that supports their function. Following this fundamental principle that ‘from structure comes function’ we can develop in vitro models that resemble elements of the anatomy and physiology of real human tissues. This can be achieved through our understanding of tissue development and morphology, and the application of innovative technologies to build mature, functional tissue equivalents. Such innovation often occurs at the interface between disciplines such as biological, chemistry, and engineering.
In my laboratory, we specialise in the development of novel approaches to culturing cells in vitro, to enhance cell viability, growth, and differentiation, to enable the creation of human tissue mimetics that can subsequently be used for basic research, drug screening, and the assessment of chemicals. Cell biology-based Master by Research projects are available in tissue engineering in various areas, notably: epithelial biology (for example, skin, oral mucosa, intestine); neural biology (for example, in vitro models of neurological disorders); and basic biological mechanisms involved in stem cell differentiation, tissue development and function in vitro. In other projects, we are also interested in developing new cell technologies to further improve the culture and differentiation of human tissues in vitro and invite applicants who are interested in working at the interface between biology and the physical sciences. The exact nature of the project will be determined in discussions with the applicant but will involve engineering human tissues in vitro and their development, characterisation, and application in areas consistent with our fields of interest. For further information about our research please visit my research staff profile https://www.dur.ac.uk/biosciences/about/schoolstaff/profile/?id=1016
Successful applicants will join a busy and productive research group. The Masters projects on offer provide excellent training in the development of non-animal in vitro technologies, cell biology, tissue specific anatomy/physiology, engineering human tissues, stem cell science and cell differentiation, and advanced cell technologies. Students will master a range of cutting edge techniques to advance their research programme, including advanced 3D cell culture, cell and molecular biology, tissue analysis, histology, cell-based assays, and imaging (advanced light and electron microscopy). Students will train to become a research scientist, develop ownership of their project, and become expert in their field of interest. The Department of Biosciences at Durham University has excellent research facilities and training support programme to prepare students for a successful career in scientific research.

APPLICATIONS ACCEPTED ALL YEAR ROUND

Read less
The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. Read more

MSc Biology

The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The biosciences aim to understand living systems and to help preserve biodiversity and our environment and simultaneously produce sufficient healthy and safe food.

Programme summary

Biological issues are at the forefront of the technological progress of modern society. They are central to global concerns about how we effect and are affected by our environment. Understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The MSc Biology allows students to get a broad overview of the latest developments in biology, ranging from genes to ecosystems. They learn to critically discuss the newest scientific developments in the biological sciences. Within their area of specialisation, students deepen their knowledge and skills in a certain subject. To prepare for a successful international career, we strongly encourage our students to complete part of their programme requirements abroad.

Specialisations

The MSc Biology offers nine specialisations:

Animal Adaptation and Behavioural Biology
This specialisation focuses mainly on subjects as adaptation, mechanisms involved in these adaptations and behaviour of animals.

Bio-interactions
In this specialisation, you obtain knowledge about interactions between organisms. You learn to understand and interpret interactions on different levels, from molecular to ecosystem level.

Molecular Ecology
In this specialisation, you learn to use molecular techniques to solve ecological questions. You will use, for example, molecular techniques to study the interaction between a virus and a plant.

Conservation and Systems Ecology
This specialisation focuses initially on fundamental processes that play a key role in ecology. You learn to interpret different relations, for example, the relation between chemical (or physical processes) and bioprocesses. Furthermore, you learn to analyse different ecosystems. You can use this knowledge to manage and conserve these ecological systems.

Evolution and Biodiversity
The systematics of biodiversity in an evolutionary perspective is the central focus of this specialisation. Subjects that will be addressed in this specialisation are: evolution, genetics, biosystematic research and taxonomic analysis.

Health and Disease
This specialisation focuses on regulatory mechanisms that have a central role in human and animal health.

Marine Biology
Choosing this specialisation means studying the complexity of the marine ecosystem. Moreover, you learn about the impacts of, for instance, fishery and recreation on this ecosystem or the interaction between different species in this system.

Molecular Development and Gene Regulation
This specialisation focuses on gene regulations and the different developmental mechanisms of organisms.

Plant Adaptation
This specialisation focuses on the adaptations that different plants gained in order to adjust to various conditions. You learn to understand the regulation processes in plants that underlie these adaptations.

Your future career

Many graduates from the MSc Biology study programme enter careers in fundamental and applied research or go on to become PhD students. Some find a position as communication officer, manager or policymaker. Compared with other Dutch universities, many biology graduates from Wageningen University find a position abroad.

Alumna Iris de Winter.
"I work as a PhD student at Wageningen University. In my research, I aim to understand the effect of human disturbance on the parasites prevalence in lemurs. I also look at the potential risks of the transmission of diseases and parasites from lemurs to humans, but also vice versa, from humans (and their livestock and pets) to wild lemur population. I alternate my fieldwork in Madagascar with parasite identification, analyses and writing manuscripts in the Netherlands. With this research, I hope to gain more insight in the factors that increase parasite prevalence in natural systems and hereby to improve the protection of both lemurs and their natural habitat."

Related programmes:
MSc Molecular Life Sciences
MSc Animal Sciences
MSc Plant Sciences
MSc Forest and Nature Conservation
MSc Biotechnology
MSc Plant Biotechnology
MSc Aquaculture and Marine Resource Management
MSc Organic Agriculture.

Read less
The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine. Read more
The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare).

Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

The course will be run entirely by research active and will offer students the opportunity to gain experience in internationally competitive laboratories.

PROGRAMME CONTENT
The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare). Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

Students undertaking this MSc course will study the folling modules:

- Foundation for Research in the Biosciences 20CATS
- Fundamental Parasitology & Advanced Skills 20CATS
- Advanced Parasitology I 20CATS
- Advanced Parasitology II 20CATS
- Bio-Entrepreneurship & Advanced Skills 20CATS
- Literature Review 20CATS
- Research Project 60CATS

CAREER PROSPECTS
It is anticipated that the skills set and knowledge acquired will equip participants with a comprehensive academic and methodological repertoire to undertake careers in agriculture, plant science, animal and human health, pharmaceutica, academia and food security, underpinning the transdisciplinary nature of the programme.

Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability, while innovative leadership and executive programmes alongside sterling integration with business experts helps our students gain key leadership positions both nationally and internationally.

WHY QUEEN'S?
The MSc programme embraces the One Health approach to these infectious diseases, with strong recognition of the interplay between health and disease at the dynamic interface between humans, animals and the environment.

In addition to embedded generic skills training, students will have the opportunity to acquire subject-specific skills training, e.g. molecular biology techniques, diagnostics, epidemiology (human, animal and plant diseases), drug/vaccine development, pathogen management/control, host-parasite interaction, immunobiology, drug resistance and the potential impact of climate change on parasites and their vectors.

In addition to the taught elements of the course, MSc students will undertake a research project working in research active laboratories (academic or industrial), or in the field, e.g. the impact of helminth infections on animal welfare, the economic impact of parasites on agriculture, the role of vectors in emerging diseases, the ecology of zoonotic diseases, the molecular basis of anthelmintic resistance, emerging technologies for drug discovery, the pathology of infection, parasite immunomodulation of the host.

The transferrable skill set and knowledge base acquired from the programme will equip students with a highly desirable qualification that is suited to those wishing to pursue careers in human health/infectious disease, animal health, veterinary medicine, animal/plant biology, pharmaceutical sciences and food security.

Read less
The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Read more

MSc Bioinformatics

The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Bioinformaticians apply information technology to store, retrieve and manipulate these data and employ statistical methods capable of analysing large amounts of biological data to predict gene functions and to demonstrate relationships between genes and proteins.

Programme summary

DNA contains information about life, but how is this information used? Biological data, such as DNA and RNA sequence information produced by next-generation sequencing techniques, is accumulating at an unprecedented rate. Life scientists increasingly use bioinformatics resources to address their specific research questions. Bioinformaticians bridge the gap between complex biological research questions and this complex data. Bioinformaticians use and develop computational tools to predict gene function(s) and to demonstrate and model relationships between genes, proteins and metabolites in biological systems. Bioinformatics is an interdisciplinary field that applies computational and statistical techniques to the classification, interpretation and integration of large-scale biological data sets. If different data types are joined then complex interactions in biological systems can be studied. The use of systems biology methods to study complex biological interactions offers a wealth of possibilities to understand various levels of aggregation and enables control of biological systems on different scales. Systems biology approaches are therefore quickly gaining importance in many disciplines of life sciences, such as in applied biotechnology where these methods are now used to develop strategies for improving production in fermentation. Other examples include bioconversion and enzymatic synthesis, and in the study of human metabolism and its alterations where systems biology methods are applied to understand a variety of complex human diseases, including metabolic syndromes and cancer. The Wageningen Master programme focuses on the practical application of bioinformatics and systems biology approaches in many areas of the Life Sciences. To ensure that students acquire a high level of understanding of modelling and computing principles, the students are trained in the fundamentals of database management, computer programming, structural and functional genomics, proteomics and systems biology methods. This training includes advanced elective courses in molecular biology and biostatistics.

Thesis tracks

Bioinformatics
The bioinformatics track focuses on the practical application of bioinformatics knowledge and skills in molecular life sciences. It aims at creating and using bioinformatics resources to address specific research questions. The knowledge and skills gained can be applied in many life science disciplines such as molecular & cell biology, biotechnology, (human) genetics, health & medicine and environmental & biobased technology.

Systems Biology
The systems biology track focuses on the study of the complex interactions in biological systems and on the emerging properties derived from these. Systems biology approaches to complex biological problems offer a wealth of possibilities to understand various levels of aggregation. It enables control of biological systems on completely different scales, ranging from the molecular cellular level to marine, plant, or animal ecosystems to a desired state. The knowledge and skills gained can be applied in many life science disciplines including molecular & cell biology, applied biotechnology, genetics, medicine and vaccine development, environmental and biobased technology.

Your future career

Bioinformatics and Systems Biology are new fast growing biology based interdisciplinary fields of research poorly served by the traditional curricula of Life Sciences. As demand has outpaced the supply of bioinformaticians, the first job after graduation is often a PhD project at a research institute or university. It is expected that five years after graduation, about one third will stay employed as a scientist at a university or research centre, while the others choose for careers at research-oriented pharmaceutical and biotechnological companies.

Alumnus Tom van den Bergh.
"It is sometimes difficult for doctors to diagnose genetic diseases caused by missense mutations. A missense mutation does not necessarily mean that you have the gene-associated disease and will become ill since not all missense mutations lead to appreciable protein changes." Tom created a database for Fabry’s disease for his final thesis. He wrote a computer programme that reads publications and stores all information about Fabry mutations in its database. Genetic researchers can, in turn, quickly access this database to determine if the mutation they found in a patient has already been addressed in literature and what the effects were.

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Biotechnology

Read less

Show 10 15 30 per page



Cookie Policy    X