• Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University College London Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
Swansea University Featured Masters Courses
"human" AND "biology"×
0 miles

Masters Degrees (Human Biology)

We have 486 Masters Degrees (Human Biology)

  • "human" AND "biology" ×
  • clear all
Showing 1 to 15 of 486
Order by 
Translating fundamental biomedical discoveries into applied clinical practice and public health issues. Human Biology is the only specialisation in the Netherlands that combines fundamental human biology with clinical studies. Read more

Translating fundamental biomedical discoveries into applied clinical practice and public health issues

Human Biology is the only specialisation in the Netherlands that combines fundamental human biology with clinical studies. It provides you with an extensive biological knowledge, and experience in working with animal and patient samples. In this way you’ll be trained to bridge the gap between early biomedical research results and clinical practice.

This wouldn’t be possible within the walls of the Faculty of Science. That’s why there’s an extensive collaboration between the Faculty of Science and the Radboud university medical center in the field of Human Biology. You’ll get the best of both worlds: a thorough background in for example molecular oncology, human genetics, physiology and metabolism as well as a clinical view on diseases. This is an excellent background for a medical researcher or a job at the interface of science and society, such as a consultant, policy officer or communications advisor in the area of food or health.

See the website http://www.ru.nl/masters/humanbiology

Why study Human Biology at Radboud University?

- It is the only programme in the Netherlands that bridges the gap between fundamental biomedical research and clinical treatments.

- You’ll get the opportunity to work together with researchers from the Radboud university medical center.

- Radboud biologists and clinicians stand out in the fields of animal and human physiology, human genetics and disease, and molecular and cellular clinical studies.

- Clinical Biology offers internships at multiple related research institutes, such as the Radboud Institute for Molecular Life Sciences (RIMLS), the Radboud Institute for Health Sciences (RIHS) and the Donders Institute for Brain, Cognition and Behaviour (DI).

- There are various opportunities to do an internship abroad thanks to our wide network of cooperating research groups.

Career prospects

After graduation, our students quickly take up positions as researchers in government departments, research organisations and medical or pharmaceutical companies. However, many of our graduates also apply their academic background to societal issues, for example as a communications or policy officer. In general, clinical biologists end up as a:

- Researcher in a hospital or a university

- Researcher in a company, either a large or a start-up company

- Supervisor of clinical trials

- Consultant in the area of health or food

- Policy officer in the area of health or food

- Communications officer at a hospital or a governmental organisation, like RIVM

- Teacher in biology or medical biology

PhD positions at Radboud University

Each year, Radboudumc offers PhD positions in this field of research. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- From human biology to clinical treatment

Human Biology at Radboud University connects fundamental biological research to clinical treatments. The courses will provide you with a solid background in human physiology and molecular biology, which you’ll apply in developing clinically-oriented research questions. As there’s an extensive collaboration between the Faculty of Science and the Radboud university medical center, you’ll become familiar with both perspectives.

- Biomaterials

In your internships you’ll work with biomaterials, such as patient and animal samples. This means you’ll apply your biological knowledge to real-life situations. Clinical biologists do not work with patients or clinical treatments directly.

- Three focus areas

This Master’s specialisation focuses on three main topics:

- Molecular Mechanisms of Novel Therapeutics

Which molecular mechanisms lead to cancer? And how can these be translated into clinical practice? These are key questions in the specialisation in Human Biology. For example, we’ll dive into the functioning of epigenetics (heritable modifications of chromosomes without altering the nucleotide sequence), transcription factors, tumour suppressors and immunotherapy.

- Human Genetics and Physiology

This part is about how new developments and discoveries in genetic and molecular fields can help individual patients to improve functionality, independence and quality of life. You’ll study genetic pathways and the functionality of individual organs, organ systems, regulatory mechanisms, and individuals as a whole, in an integrative way.

- Metabolism, Transport and Mobility

The energy balance in our body is one of the most important factors in health and disease. We’ll teach you how energy and metabolites are integrated into the larger cellular networks for metabolism, transport and motility.

See the website http://www.ru.nl/masters/humanbiology



Read less
The University of Worcester welcomes applications to undertake research towards MPhil and PhD degrees in Human Biology. Research at Worcester has grown significantly in the last 10 years as the University itself has expanded. Read more
The University of Worcester welcomes applications to undertake research towards MPhil and PhD degrees in Human Biology.

Research at Worcester has grown significantly in the last 10 years as the University itself has expanded. As a research student you will join a vibrant student community in our Research School and become part of our dynamic research environment.

You will have the opportunity to be supervised by leading researchers in your field and take advantage of our rich Researcher Development programme which will help you to develop the skills and knowledge you need to complete your research degree but also enhance the skills you will need in any future career.

Read less
Passion for the human system. Is your passion linked to the human system? Are you interested in the workings of the brain, or would you be the one that bridges the different understandings of fundamental biological processes and health & disease in humans? Your choice might be Medical Biology!. Read more

Passion for the human system

Is your passion linked to the human system? Are you interested in the workings of the brain, or would you be the one that bridges the different understandings of fundamental biological processes and health & disease in humans? Your choice might be Medical Biology!

Where studying Biology starts with a fascination for life, Medical Biology shares this trait and specifies it towards the human system. The Master's in Medical Biology in Nijmegen focuses strongly on molecular and cellular life processes at the cutting edge of fundamental biology and medical scientific research.

Our programme is unique because it is a combination of fundamental research and the translation of its findings into clinical applications. This is facilitated by our close cooperation with the University Medical Centre.

See the website http://www.ru.nl/masters/medicalbiology

Specialisations within the Master's in Medical Biology

At the beginning of the first year, all students follow an orientation course before they choose one of the three Master's specialisations:

- Human Biology

- Medical Epigenomics

- Neuroscience

- Science in Society

- Science, Management and Innovation

Career prospects

This programme provides you with the qualifications you need to start working on your PhD and in the field of communication, business and management or education. Medical biologists often continue their research careers in universities, research institutes, pharmaceutical companies and public health authorities. On graduation, our students quickly take up positions as researchers or analysts in government departments, research organisations and medical or pharmaceutical companies.

What medical biologists do:

- Researchers at universities or in companies

- Supervisors of clinical trials

- Consultants

- Lecturers

- Teachers

Where medical biologists work:

- Research/education

- Health care

- Business services

- Industry

- Government

- Trade

Our approach to this field

The Master's programme has a strong emphasis on research, especially during the first year, but allows you to broaden your horizons towards the fields of Management, Communication and Education during the second year. This way, you have the opportunity to experience whether these specialisations might suit you when you start looking for a job.

- Research trains students for fundamental and applied research. This specialisation is required for people pursuing a PhD position or a position in industrial or institutional research.

- Science, Management and Innovation prepares students for a management position as an academic professional. It prepares students for a career in science related business and administration and for innovation and enterprise from an academic perspective.

- Science in Society trains students in the direction of science communication, which prepares them for a career in communication research, applications and media.

- Education prepares students to become a (first degree) teacher (this variant is only available in Dutch).

Our research in this field

Experts

Education is closely linked to on-going research within the:

- Institute for Water and Wetlands Research;

- Institute of Neuroscience;

- Nijmegen Centre for Molecular Life Sciences.

Nijmegen's biologists are experts in the fields of animal physiology at system level as well as at cellular and molecular level. But they also are top researchers in the fields of human health, disease and development.

- Personal tutor

The programme offers you many opportunities to follow your own interests under the guidance of a personal tutor. Each time you start a research internship you will select a research group and be allocated a supervisor. Together you will decide which research to carry out and the specialisations and subject choices that most effectively support it. In practice you will be occupied for four days a week with your own research and one day will be devoted to lectures.

- The Nijmegen approach

The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the working, exploring and studying people that you will meet there. No wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

See the website http://www.ru.nl/masters/medicalbiology



Read less
In the first semester of the programme, graduates from a range of backgrounds are brought up-to-speed on core knowledge in engineering, biology and research practice. Read more

In the first semester of the programme, graduates from a range of backgrounds are brought up-to-speed on core knowledge in engineering, biology and research practice.

This is followed by specialist modules in the second semester on human movement analysis, prostheses, implants, physiological measurements and rehabilitation, as well as numerous computer methods applied across the discipline.

The course makes use of different approaches to teaching, including traditional lectures and tutorials, off-site visits to museums and hospitals, and lab work (particularly in the Human Movement and Instrumentation modules).

The core lecturing team is supplemented by leading figures from hospitals and industry.

Programme structure

This programme is studied full-time over one academic year and part-time over two academic years. It consists of eight taught modules and a research project.

All modules are taught on the University main campus, with the exception of visits to the health care industry (e.g. commercial companies and NHS hospitals).

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The course aims:

  • To educate engineering, physical science, life science, medical and paramedical graduates in the broad base of knowledge required for a Biomedical Engineering career in industry, healthcare or research in the United Kingdom, Europe and the rest of the world
  • To underpin the knowledge base with a wide range of practical sessions including laboratory/experimental work and applied visits to expert health care facilities and biomedical engineering industry
  • To develop skills in critical review and evaluation of the current approaches in biomedical engineering
  • To build on these through an MSc research project in which further experimental, analytical, computational, and/or design skills will be acquired

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • Demonstrate breadth and depth of awareness and understanding of issues at the forefront of Biomedical Engineering
  • Demonstrate broad knowledge in Human Biology, Instrumentation, Biomechanics, and Professional and Research skills
  • Demonstrate specialist knowledge in Implants, Motion analysis and rehabilitation, and Medical signals
  • Understand how to apply engineering principles to conceptually challenging (bio)medical problems
  • Appreciate the limitations in the current understanding of clinical problems and inherent in adopted solutions
  • Understand routes/requirements for personal development in biomedical engineering including state registration
  • Understand key elements of the concept of ethics and patient-professional relationships, recognise, analyse and respond to the complex ethical issues

Intellectual / cognitive skills

  • Evaluate a wide range of applied engineering and clinical measurement and assessment tools
  • Design and implement a personal research project; this includes an ability to accurately assess/report on own/others work with justification and relate them to existing knowledge structures and methodologies, showing insight and understanding of alternative points of view
  • Carry out such research in a flexible, effective and productive manner, optimising use of available support, supervisory and equipment resources, demonstrating understanding of the complex underlying issues
  • Apply appropriate theory and quantitative methods to analyse problems

Professional practical skills

  • Make effective and accurate use of referencing across a range of different types of sources in line with standard conventions
  • Use/ apply basic and applied instrumentation hardware and software
  • Correctly use anthropometric measurement equipment and interpret results in the clinical context
  • Use/apply fundamental statistical analysis tools
  • Use advanced movement analysis hardware and software and interpret results in the clinical context
  • Use advanced finite element packages and other engineering software for computer simulation
  • Program in a high-level programming language and use built-in functions to tackle a range of problems
  • Use further specialist skills (laboratory-experimental, analytical, and computational) developed through the personal research project

Key / transferable skills

  • Identify, select, plan for, use and evaluate ICT applications and strategies to enhance the achievement of aims and desired outcomes
  • Undertake independent review, and research and development projects
  • Communicate effectively between engineering, scientific and clinical disciplines
  • Prepare relevant, clear project reports and presentations, selecting and adapting the appropriate format and style to convey information, attitudes and ideas to an appropriate standard and in such a way as to enhance understanding and engagement by academic/ professional audiences

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. Read more
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. It also provides a sound educational background so that you can go on to lead academic oral biology programmes within dental schools.

Why study Oral Biology at Dundee?

This course is specifically designed for individuals who wish to pursue career pathways in academic oral biology, with a focus, though not exclusively, on developing individuals who can deliver and, more importantly, lead oral biology courses within dental schools.

Oral Biology is a significant subject area that is integral to undergraduate and postgraduate dental training worldwide. The scope of Oral Biology includes a range of basic and applied sciences that underpin the practise of dentistry. These subjects include: oral and dental anatomy; craniofacial and dental development; oral physiology; oral neuroscience; oral microbiology. These subjects will be integrated with the relevant disease processes, for example, craniofacial anomalies, dental caries and tooth surface loss.

What's so good about studying Oral Biology at Dundee?

This programme focuses on the research and education experience of the staff in the Dental School in Dundee. Such expertise lies in the fields of craniofacial development and anomalies; pain and jaw muscle control; salivary physiology; cancer biology; microbiology; cariology and tooth surface loss.

In addition it makes use of the extensive resources available for postgraduate programmes: extensive histological collections; virtual microscopy; oral physiology facilities; cell biology and dental materials laboratories.

Who should study this course?

The MSc in Oral Biology is for graduates who wish to pursue a career in academic oral biology. The course will be of particular interest for those wishing to establish themselves as oral biology teachers, innovators and course leaders within a dental school.

Teaching and Assessment

The Dental School is well placed to deliver such a course with an established staff of teaching and research active within oral biology, and its related fields, an in-house e-learning technologist and substantial links to the Centre for Medical Education in the School of Medicine. There will be an opportunity for students to exit with a PGCert in Oral Biology after successful completion of modules 1 -4 or a Diploma in Oral Biology after successful completion of modules 1 - 7.

How you will be taught

The programme will be delivered via a blend of methodologies including: face-to-face lectures / seminars / tutorials; on-line learning; directed and self- directed practical work; self-directed study; journal clubs.
What you will study

The MSc will be taught full-time over one year (September to August). Semester one (Modules 1 – 4) and Semester 2A, 2B (Modules 5 – 8) will provide participants with wide ranging, in-depth knowledge of oral biology, together with focused training in research (lab-base, dissertation or e- Learning) and its associated methodology. The MSc course is built largely on new modules (5) supported by 2 modules run conjointly with the Centre for Medical Education within the Medical School. All modules are compulsory:

Semester 1:

Module 1: Academic skills 1: principles of learning and teaching (15 credits)
Module 2: Cranio-facial development and anomalies (15 credits)
Module 3: Dental and periodontal tissues, development and structure (20 credits)
Module 4: Oral mucosa and disorders (10 credits)

Semesters 2A and 2B

Module 5a: Academic skills 2a: principles of assessment (15 credits)
Module 5b: Academic Skills 2b:educational skills
Module 6: Neuroscience (20 credits)
Module 7: Oral environment and endemic oral disease (20 credits)
Module 8: Project (60 credits)

The project is designed to encourage students to further develop their skills. This could take the form of a supervised laboratory research project, a literature based dissertation or an educational project. The educational project would be based around the development of an innovative learning resource utilising the experience of the dental school learning technologist.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Careers

The MSc Oral Biology is aimed at dental or science graduates who are either early in their careers or wish to establish themselves as oral biologists within dental schools. Oral Biology is a recognised discipline in many dental schools worldwide. Graduates will have gained sufficient knowledge and skills to enable them to be teachers, innovators and educational leaders in the field. In addition, successful graduates will be well placed to undertake further postgraduate study at PhD level. In some cases, this may possible within the existing research environments within the Dental School, the wider College of Medicine Dentistry and Nursing and the Centre for Anatomy and Human Identification of the University of Dundee.

Read less
Biomedical engineers work at the interface of engineering, biology, and medicine, combining their engineering expertise with an understanding of human biology and medical needs to make the world a healthier place. Read more

Biomedical engineers work at the interface of engineering, biology, and medicine, combining their engineering expertise with an understanding of human biology and medical needs to make the world a healthier place.

This masters course will equip you with the specialist knowledge, expertise and skills to integrate biology and medicine with engineering to solve problems related to living systems.

Introducing your degree

The MSc Biomedical Engineering is designed for engineering, and physical science graduates who want to specialise in this vibrant area of engineering. There is high demand for biomedical engineers, and this masters has been developed with our graduates’ employability in mind.

Overview

During this course, you will learn the fundamental scientific and technical aspects of biomedical engineering, alongside developing your knowledge of the relevant aspects of human biology in health and disease. This interdisciplinary course draws on expertise from leading departments within the University of Southampton, brought together through the Institute for Life SciencesEngineering and the EnvironmentMedicineHealth SciencesNatural and Environmental Sciences, and Electronics and Computer Science.

If you choose to, you will be able to specialise in your chosen area of biomedical engineering through themed areas of application: musculoskeletal, cardiovascular, imaging, diagnostic systems and audiology.

The course will enable you to thrive in an environment where teams from range of disciplines have work together efficiently. To help you succeed as biomedical engineer, the course features ‘problem-driven’ seminars, site and hospital visits, workshops and training sessions by experts from industry and national laboratories. This combination of advanced engineering, industrial experience and research enables our graduates to make a significant contribution to the development and translation of biomedical technology in both industry and academia.

You will develop the skills to apply advanced engineering in an interdisciplinary environment working in teams of physicians, scientists, engineers, business people and other professionals to monitor, restore and enhance normal body function, abilities and outcomes. You will also enhance your understanding of the ethical, safety and societal implications of developing medical technologies. 

Through your research project you have a further opportunity to integrate your engineering skills with an understanding of the complexity of biological systems, enabling you to work successfully at the intersection of science, medicine and mathematics to solve biological and medical problems. Example research projects may include the design and performance evaluation of new devices to replace joints, or the development of new imaging methods to study bone or lung diseases.

View the specification document for this course

Career Opportunities

Many biomedical engineers work in research, either in academia or industry, along with medical scientists, to develop and evaluate systems and products such as artificial organs, prostheses, instrumentation, and diagnostic, health management and care delivery systems.

Biomedical engineers may design devices used in various medical procedures and develop imaging systems and devices for observing and controlling body functions.

Biomedical engineers therefore make careers in academia, industry, healthcare and clinical medicine, as well as government.



Read less
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. Read more
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. It seeks to create, advance and apply computer/software-based solutions to solve formal and practical problems arising from the management and analysis of very large biological data sets. Applications include genome sequence analysis such as the human genome, the human microbiome, analysis of genetic variation within populations and analysis of gene expression patterns.

As part of the MSc course, you will carry out a three month research project in a research group in UCC or in an external university, research institute or industry. The programming and data handling skills that you will develop, along with your exposure to an interdisciplinary research environment, will be very attractive to employers. Graduates from the MSc will have a variety of career options including working in a research group in a university or research institute, industrial research, or pursuing a PhD.

Visit the website: http://www.ucc.ie/en/ckr33/

Course Detail

This MSc course will provide theoretical education along with practical training to students who already have a BSc in a biological/life science, computer science, mathematics, statistics, engineering or a related degree.

The course has four different streams for biology, mathematics, statistics and computer science graduates. Graduates of related disciplines, such as engineering, physics, medicine, will be enrolled in the most appropriate stream. This allows graduates from different backgrounds to increase their knowledge and skills in areas in which they have not previously studied, with particular emphasis on hands-on expertise relevant to bioinformatics:

- Data analysis: basic statistical concepts, probability, multivariate analysis methods
- Programming/computing: hands-on Linux skills, basic computing skills and databases, computer system organisation, analysis of simple data structures and algorithms, programming concepts and practice, web applications programming
- Bioinformatics: homology searches, sequence alignment, motifs, phylogenetics, protein folding and structure prediction
- Systems biology: genome sequencing projects and genome analysis, functional genomics, metabolome modelling, regulatory networks, interactome, enzymes and pathways
- Mathematical modelling and simulation: use of discrete mathematics for bioinformatics such as graphs and trees, simulation of biosystems
- Research skills: individual research project, involving a placement within the university or in external research institutes, universities or industry.

Format

Full-time students must complete 12 taught modules and undertake a research project. Part-time students complete about six taught modules in each academic year and undertake the project in the second academic year. Each taught module consists of approximately 20 one-hour lectures (roughly two lectures per week over one academic term), as well as approximately 10 hours of practicals or tutorials (roughly one one-hour practical or tutorial per week over one academic term), although the exact amount of lectures, practicals and tutorials varies between individual modules.

Assessment

There are exams for most of the taught modules in May of each of the two academic years, while certain modules may also have a continuous assessment element. The research project starts in June and finishes towards the end of September. Part-time students will carry out their research project during the summer of their second academic year.

Careers

Graduates of this course offer a unique set of interdisciplinary skills making them highly attractive to employers at universities, research centres and in industry. Many research institutes have dedicated bioinformatics groups, while many 'wet biology' research groups employ bioinformaticians to help with data analyses and other bioinformatics problems. Industries employing bioinformaticians include the pharmaceutical industry, agricultural and biotechnology companies. For biology graduates returning to 'wet lab' biology after completing the MSc course, your newly acquired skills will be extremely useful. Non-biology graduates seeking non-biology positions will also find that having acquired interdisciplinary skills is of great benefit in getting a job.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. Read more
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. The course will provide you with a truly interdisciplinary educational experience by combining advanced discipline-specific training with core scientific research, technical expertise and business skills.

Visit the website: http://www.ucc.ie/en/ckr44/

Course Details

A distinctive feature of the MSc in Molecular Cell Biology with Bioinnovation is that you will receive formal innovation and technology commercialisation training through modules from the College of Business and Law at UCC.

With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will select projects with internationally-renowned research groups from the Schools of Biochemistry, Microbiology and Department of Anatomy/Neuroscience, following the completion of discipline-specific modules.

You will not only possess excellent research and technical skills on graduation but also the necessary business development and commercialisation skills for life science innovation.

Format

The course will consist of lectures, tutorials, hands-on workshops and a research dissertation based on individual research.

Core Scientific Modules (25 credits)

- Cell and Molecular Biology
- Human Molecular Genetics and Genetic Engineering Techniques
- Biological and Clinical Perspectives of Human Disease

Scientific Skills-Development Modules (10 credits)

- Biotechniques
- Scientific Communication of Current Topics in Molecular Cell Biology Core Business Modules (10 credits)
- Marketing for High Technology Entrepreneurs
- Technology and Business Planning

Elective modules (5 credits)

- Creativity and Opportunity Recognition
- Innovation Finance
- Intellectual Property Law for High-Tech Entrepreneurs

Research Project (40 credits)

You will select a project offered by internationally-renowned research groups from the Schools of Biochemistry and Cell Biology, Microbiology and Anatomy/Neuroscience. With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will complete a six month project based on individual research in one of these themes and compile the results into an MSc dissertation on completion.

You will gain invaluable hands-on, practical experience in experimental design, implementation and data interpretation and develop a wide array of transferable skills, including written and verbal communication; data recording, analysis and presentation; critical evaluation of published material; learning to work collaboratively and independently as well as project and time-management.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page04.html#molecular

Assessment

Taught modules are examined by formal written examination and continuous assessment. The research dissertation for the six-month research project must be submitted by the end of the first academic year of registration for examination by internal and external examiners.

Careers

You will be ideally positioned to enter into a PhD after graduation, but could also pursue a number of career paths including: technology transfer officer within higher education institutions and national agencies, R&D project manager, commercialisation manager within a life science start-up, or development manager within the pharmaceutical sector. The course will also equip you with the skills required to develop your own start-up venture.

A first destination surveys from 2012 - 2014 have revealed that 100% of our graduates are in employment or further education within one-year of completing the MSc in Molecular Cell Biology with Bioinnovation.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Evolutionary theory has radically altered our understanding of human life. The Human Evolution and Behaviour MSc at UCL is designed to provide students with a solid practical and theoretical grounding in issues relevant to the evolution of humans and non-human primates. Read more

Evolutionary theory has radically altered our understanding of human life. The Human Evolution and Behaviour MSc at UCL is designed to provide students with a solid practical and theoretical grounding in issues relevant to the evolution of humans and non-human primates.

About this degree

Students develop the ability to generate, assess and synthesise empirical evidence and hypotheses related to human evolution and behaviour. They gain subject-specific skills, such as measuring skeletal material, interpreting and generating data related to human ecology, reproduction and genetics, and generating behavioural data of humans and non-human primates through observation.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), three optional modules (45 credits), and a research dissertation (90 credits).

Core modules

Students choose two of the first three modules in the list below. Postgraduate Methods/Statistics I is compulsory for all students.

  • Human Behavioural Ecology
  • Primate Socioecology
  • Palaeoanthropology
  • Postgraduate Methods/Statistics 1 (term one)*

Optional modules

Students choose three of the following optional modules:

  • Advanced Human Evolution
  • Archaeology of Hunter-Gatherers from the Emergence of Modern Humans
  • Archaeology of Human Evolution in Africa
  • Primate Socioecology
  • Evolution of Human Brain, Cognition and Language
  • Evolution of Human Cumulative Culture
  • Evolution of the Human Brain and Behaviour
  • Primate Evolution
  • Variation and Evolution of the Human Skull
  • Advanced Statistics
  • Practical Ethnographic and Documentary Filmmaking

Dissertation/report

All MSc students undertake an independent research project which culminates in a 15,000-word dissertation.

Teaching and learning

The programme is delivered through a combination of lectures including weekly two-hour departmental seminars, and occasional attendance at non-departmental seminars. Assessment is through take-home examination, essays, lab-books, practical tests, and presentation. The dissertation is assessed by a project presentation and the thesis.

Further information on modules and degree structure is available on the department website: Human Evolution and Behaviour MSc

Careers

Many graduates are successful in entering fully funded doctoral programmes based on their training and achievements on the programme. Our graduates also go not o work in the media (TV, radio , publishing), in NGOs (community development, nature conservation), government organisations (national statistics, health programmes), in zoos and museums (overseeing collections, co-ordination research), or become school teachers. Moreover, numerous alumni have become notable academics in their own right, teaching as permanent staff in universities across the globe.

Recent career destinations for this degree

  • Archaeological Research Assistant, The Cyprus Institute
  • Business Director, CEB
  • Freelance Consultant, A Piece of Pie
  • PGCE Secondary Science - Specialised in Biology and Psychology, University of Exeter
  • Civil Servant, Ministry of Defence (MoD)

Employability

Graduates of the programme will be trained in the fundamentals of scientific inquiry including hypothesis generation, data collection and statistical analysis, data synthesis and reporting of results. Additionally, they acquire advanced training in computer-based quantitative methods, presentation techniques, and the public understanding of science. Students will also gain skills specific to their dissertation research that can include behavioural observation techniques, field data collection, computer modelling, and advanced shape analysis.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Anthropology was the first in the UK to integrate biological and social anthropology with material culture into a broad-based conception of the discipline. It is one of the largest anthropology departments in the UK in terms of both staff and research student numbers, offering an exceptional breadth of expertise. Our excellent results in 2008 Research Assessment Exercise and 2014 Research Excellence Framework identify us as the leading broad-based anthropology department in the UK. Students are encouraged to take full advantage of the wider anthropological community in London and the department's strong links with European universities and international institutions.

Our results in the 2008 Research Assessment Exercise and 2014 Research Excellence Framework show that we are the leading broad-based anthropology department in the UK. 

Students are encouraged to take full advantage of the wider anthropological community in London and the department's strong links with European universities and international institutions.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Anthropology

68% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The MSc Forensic Anthropology is designed to equip students with the skills necessary for the analysis and identification of human skeletal remains. Read more
The MSc Forensic Anthropology is designed to equip students with the skills necessary for the analysis and identification of human skeletal remains. The one-year degree is uniquely designed for students who already hold a degree in a relevant biomedical science and wish to pursue further study in Forensic Anthropology.

Why study Forensic Anthropology at Dundee?

Forensic anthropology is the analysis of human remains for the medico-legal purpose of establishing identity. The discipline has adopted a pivotal role in UK and International investigations in cases of inter-personal violence and homicide, repatriation, mass disasters and war crimes.

Our course provides you with training in dedicated laboratory areas with exclusive access to the unique skeletal collections in the Centre for Anatomy and Human Identfication (CAHID). The programme offers a unique mix of theoretical subject matter combined with hands on practical experience which is delivered by case active academic staff who are world leaders in the field.

Centre for Anatomy and Human Identification

This course is taught within Centre for Anatomy and Human Identification (CAHID). The award winning staff of CAHID are amongst the most experienced in the UK in the fields of human identification, forensic anthropology, cranio-facial reconstruction and the study of the human body. The Centre is regularly contacted for advice and input in high-profile forensic cases both at home and abroad. The cases in which staff have involvement are reflected in much of the research undertaken by the Centre, enabling it to maintain a high profile within the forensic community.

The Centre was awarded a prestigious Queen's Anniversary Prize for Higher Education in November 2013. Presented in recognition of 'world class excellence', the Queen's Anniversary Prizes are among the most highly-regarded awards for the UK's universities and colleges.

Top 10 reasons to study Forensic Anthropology at Dundee

Only institution in the UK to offer a career progression pathway in Forensic Anthropology
Opportunity to review forensic case work undertaken by CAHID staff
Teaching by world leading forensic practitioners
Access to several unique skeletal collections
Opportunity to act as an expert witness in simulated courtroom exercises
We teach and train towards RAI accreditation standards following the approved Forensic Anthropology curriculum
Multidisciplinary approach with excellent links across subject boundaries
Access to cases from CAHID's virtual anthropology communication service
Regular programme of seminars delivered by invited speakers from the UK and abroad
Diversity of career opportunities – our graduates work in a variety of related fields

Teaching & Assessment

This course is taught by a team based in the Centre for Anatomy and Human Identification (CAHID). Specialist teaching is undertaken by case-active forensic practitioners. The cases in which our staff have involvement are reflected in much of the research undertaken by the Centre, enabling it to maintain a high profile within the forensic community. In turn, this research feeds into our teaching.

The course starts in September each year and lasts for 12 months on a full time basis.

How you will be taught

The programme will be taught through a combination of face-to-face lectures and on-line learning resources as well as a large practical involving direct examination of the adult human skeleton.

Course Structure

This is a one year full time taught Masters programme in which all modules are compulsory. The research dissertation can be in the form of original laboratory research in an area pertinent to anatomy and forensic anthropology.

- Forensic Osteology (20 Credits)
- Peri and Post mortem processes (20 credits)
- Disaster Victim Identification (DVI) training (20 credits)
- Research Methods (20 credits)
- Forensic Human Identification (20 credits)
- Forensic Science and the Law (20 credits)
- Developmental Juvenile Osteology (20 credits)
- Research Project (60 credits)

How you will be assessed

Assessments will take the form of in-course essays, paper appraisal and presentation exercises in addition to final degree examinations and MSc research dissertation.

Careers

There is a significant requirement for anatomically-trained forensic anthropologists who are competent in dealing with both soft and hard tissues in order to fulfil the requirements of DVI deployment. This course will greatly increase the professional employment characteristics of any student undertaking it who seeks a career in forensic anthropology, forensic osteology or DVI.

Where are our graduates now?

Previous graduates in Forensic Anthropology have progressed to become teachers and researchers in the field with some going on to provide their skills and services on both the national and international forensic front.

Some of our graduates have gone on to pursue careers in biomedical research, scene of crime analysis, forensic science, human biology and osteological research.

Many have chosen to enter a degree in medicine or dentistry and have found that the skills they have acquired in Forensic Anthropology stand them in good stead, particularly with regards to radiology, paediatrics, gerontology and orthopaedics.

Read less
Biological Anthropology is the study of evolution and variation in human populations and of the interactions between human biology and environment. Read more
Biological Anthropology is the study of evolution and variation in human populations and of the interactions between human biology and environment. This combines our international reputation for anthropology, archaeology and biology, specifically including studies in primatology, evolutionary anthropology, human osteology, zooarchaeology, but also (paeleo-) ecology and behaviour.

This exciting course gives a core grounding in human evolution, primate behaviour and ecology, the origins of human behaviour and how hominines adapted to their environment, as well as human and animal skeletal analysis. Ultimately this course offers a uniquely wide range of suitable project topics that can prepare you for a career in a variety of aligned fields.

Core units:

Human Evolution
Human Functional Anatomy
Primate Behaviour & Ecology
Principles & Methods in Zooarchaeology
Research Project

Optional units (choose one of):
Principles & Methods in Human Osteology
Techniques of Archaeological Recovery & Recording

And one of:
Archaeology of Human Remains
Bodies of Evidence - Skeletal Changes Before & After Death
Humans, Animals & Diet

Read less
The. MSc programme in Parasitology and Pathogen Biology. is designed for students seeking training in parasite-borne infectious diseases that severely undermine. Read more

The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare).

Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

The course will be run entirely by research active and will offer students the opportunity to gain experience in internationally competitive laboratories.

PROGRAMME CONTENT

The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare). Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

Students undertaking this MSc course will study the folling modules:

- Foundation for Research in the Biosciences 20CATS

- Fundamental Parasitology & Advanced Skills 20CATS

- Advanced Parasitology I 20CATS

- Advanced Parasitology II 20CATS

- Bio-Entrepreneurship & Advanced Skills 20CATS

- Literature Review 20CATS

- Research Project 60CATS

CAREER PROSPECTS

It is anticipated that the skills set and knowledge acquired will equip participants with a comprehensive academic and methodological repertoire to undertake careers in agriculture, plant science, animal and human health, pharmaceutica, academia and food security, underpinning the transdisciplinary nature of the programme.

Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability, while innovative leadership and executive programmes alongside sterling integration with business experts helps our students gain key leadership positions both nationally and internationally.

WHY QUEEN'S?

The MSc programme embraces the One Health approach to these infectious diseases, with strong recognition of the interplay between health and disease at the dynamic interface between humans, animals and the environment.

In addition to embedded generic skills training, students will have the opportunity to acquire subject-specific skills training, e.g. molecular biology techniques, diagnostics, epidemiology (human, animal and plant diseases), drug/vaccine development, pathogen management/control, host-parasite interaction, immunobiology, drug resistance and the potential impact of climate change on parasites and their vectors.

In addition to the taught elements of the course, MSc students will undertake a research project working in research active laboratories (academic or industrial), or in the field, e.g. the impact of helminth infections on animal welfare, the economic impact of parasites on agriculture, the role of vectors in emerging diseases, the ecology of zoonotic diseases, the molecular basis of anthelmintic resistance, emerging technologies for drug discovery, the pathology of infection, parasite immunomodulation of the host.

The transferrable skill set and knowledge base acquired from the programme will equip students with a highly desirable qualification that is suited to those wishing to pursue careers in human health/infectious disease, animal health, veterinary medicine, animal/plant biology, pharmaceutical sciences and food security.



Read less
What is the Master of Molecular Biology all about?.  This programme, commonly referred to as the Internuniversity Programme in Molecular Biology (IPMB), is jointly organised by. Read more

What is the Master of Molecular Biology all about?

 This programme, commonly referred to as the Internuniversity Programme in Molecular Biology (IPMB), is jointly organised by

  • KU Leuven
  • Vrije Universiteit Brussel
  • Universiteit Antwerpen

IPMB is endorsed and supported as an international programme by the Flemish Interuniversity Council (VLIR-UDC). Although originally designed to meet the needs of students from developing countries, the programme also welcomes non-traditional and reorienting student seeking to enter the fascinating world of molecular biology. Erasmus-Socrates students studying at one of the organising universities for one or two semesters are also most welcome to attend classes and acquire laboratory skills.

Students are awarded a joint degree from the participating institutions. 

Structure

The IPMB is organised over two academic years. In view of the diverse background of its students, the first year consists of in-depth courses covering the most important topics in molecular biology. By the end of the first year, you will have obtained the level of knowledge required to take succesfully part in the advanced, specialisation courses of the second year.

Intensive laboratory training will prepare you to embark on the preparation of your thesis, which you will complete in the second year along with four advanced courses followed by three specialisation courses in the field of either human health, animal production or plant production. Much attention is also paid to the preparation and writing of the thesis, which is an original research project completed under the guidance of a supervisor and defended in public.

Objectives

The Master of Molecular Biology (Interuniversity Molecular Biology - IPMB) programme is intended to offer theoretical and practical training to young scientists from developing countries, who are involved in education/research in human medicine, animal production or plant production.

This programme is designed to train these students to become capable, critical and self-reliant scientists who are able to apply the knowledge acquired to contribute to the further development of their country through their involvement in education, research and policymaking.

IPMB graduates will be able to ensure that the potential offered by molecular biology and biotechnology in terms of human and veterinary medicine and animal and plant production, find due application in their country.

Although originally conceived to meet the needs of students from developing countries, the programme offers an excellent opportunity for all students, including non-traditional and reorienting students, to study molecular biology in an international context.

Students are expected to:

  • have developed an advanced knowledge of fundamental sciences;
  • have developed an in-depth insight into biological processes;
  • have developed an in-depth insight into the functioning of living organisms in all their forms;
  • have developed a critical mind allowing them to appraise scientific and social aspects of applied molecular biology;
  • be capable of analysing and/or summarising and critically reflecting on scientific literature;
  • be capable of detecting and analysing problems and of proposing solutions to solve them;
  • be able to contribute, through molecular biological research, to solving problems faced by developing countries;
  • be able to operate as a member of a team;
  • be able to report, both orally and in writing;
  • be able to contribute to efforts to set up nationwide and international cooperation (South-South, South-North);
  • be able to operate in nationwide and international networks;
  • be able to disseminate the acquired knowledge in their country and region through their activities in education and research and through peer reviewed publications;
  • have developed skills to act as reliable advisors for local policymakers by making proposals for the further development of molecular biology in education and research, and, as such, to contribute to the further development of their country and improve the living conditions of the populations in the South;
  • be trained to a level sufficient to beginning a doctoral programme (PhD).

Career path

IPMB graduates find employment in universities, hospitals, private and governmental research laboratories and patenting bureaus, as lecturers, consultants and advisors to policy makers, among other careers. Many graduates go on to begin PhD programmes in Belgium or abroad. Students from developing countries can apply for a VLIR-UOS sandwich PhD scholarship. Flemish students can apply for a PhD scholarship of VLIR-UOS to make a PhD on developmental relevant topics.



Read less
Taught by expert researchers, this innovative MSc combines evolutionary anthropology, focusing on the behaviour of human and non-human primates, with evolutionary, developmental and cognitive psychology. Read more
Taught by expert researchers, this innovative MSc combines evolutionary anthropology, focusing on the behaviour of human and non-human primates, with evolutionary, developmental and cognitive psychology.

You gain an interdisciplinary understanding of the origins and functions of human behaviour and can select from a range of advanced topics such as evolutionary anthropology, primatology, human behaviour, cognitive psychology, developmental psychology and intergroup relationships.

The programme places a strong emphasis on critical thinking and understanding of both the broad fields and the specialisms within. Core to the programme is the development of research methods, culminating in a piece of original research, written up in the form of a publication-ready journal article. The MSc in Evolution and Human Behaviour is a perfect foundation for PhD research: it provides theoretical background, discipline specific knowledge and advanced, quantitative research methods.

Visit the website https://www.kent.ac.uk/courses/postgraduate/190/evolution-and-human-behaviour

Why study with us?

- A unique, interdisciplinary, combination of Evolutionary Anthropology and Psychology.

- Taught by expert, active researchers in evolutionary approaches to understanding behaviour.

- Select from a range of advanced topics such as Evolutionary Anthropology, Primatology, Human Behaviour, Developmental Psychology & Cognitive Neuroscience.

- Perfect foundation for future PhD research: theoretical background, discipline-specific knowledge and advanced research methods.

- For students with an undergraduate degree in anthropology, psychology, biology or a related discipline.

- A research component that results in a publication-ready journal article.

Course structure

The programme places a strong emphasis on critical thinking and understanding of both the broad field and the specialisms within. Core to the programme is the development of research methods, culminating in a piece of original research, written up in the form of a publication ready journal article.

Modules

Please note that modules are subject to change. Please contact the School for more detailed information on availability.

SE992 - Advanced Topics in Evolutionary Anthropology (15 credits)
SP801 - Statistics and Methodology (40 credits)
SE993 - Advanced Topics in Primate Behaviour (15 credits)
SE994 - Advanced Topics in HUman Behaviour (15 credits)
SP844 - Advanced Topics in Group Processes (20 credits)
SP851 - Advanced Topics in Cognitive Development (20 credits)
SP856 - Groups and Teams in Organisations (15 credits)
SP827 - Current Issues in Cognitive Psychology and Neuropsychology (40 credits)
SP842 - Advanced Developmental Social Psychology (20 credits)
SE855 - Research Project (Evolution & Human Behaviour) (60 credits)

Assessment

Assessment is by computing tests, unseen examinations, coursework and a project report.

Programme aims

This programme aims to:

- provide the opportunity for advanced study of human behaviour from an evolutionary perspective, combining approaches from both evolutionary anthropology and evolutionary psychology

- provide teaching that is informed by current research and scholarship and that requires you to engage with aspects of work at the frontiers of knowledge

- help you to develop research skills and transferable skills in preparation for entering academic or other careers as an evolutionary scientist

- enable you to manage your own learning and to carry out independent research

- help you develop general critical, analytic and problem-solving skills that can be applied in a wide range of settings.

Careers

As a School recognised for its excellence in research we are one of the partners in the South East Doctoral Training Centre, which is recognised by the Economic and Social Research Council (ESRC). This relationship ensures that successful completion of our courses is sufficient preparation for research in the various fields of social anthropology. Many of our students go on to do PhD research. Others use their Master’s qualification in employment ranging from research in government departments to teaching to consultancy work overseas.

Higher degrees in anthropology create opportunities in many employment sectors including academia, the civil service and non-governmental organisations through work in areas such as human rights, journalism, documentary film making, environmental conservation and international finance. An anthropology degree also develops interpersonal and intercultural skills, which make our graduates highly desirable in any profession that involves working with people from diverse backgrounds and cultures.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Physician associates are increasingly important in the health care workforce, supporting doctors and medical teams to diagnose and manage a wide range of common and complex diseases. Read more

Physician associates are increasingly important in the health care workforce, supporting doctors and medical teams to diagnose and manage a wide range of common and complex diseases. This stimulating master’s course offers you the clinical skills and knowledge required to provide high quality care under the direct supervision of a doctor.

What the course offers

The physician associate (PA) is one of the newest allied medical professions and presents a unique and exciting route to clinical care for graduates. Physician associates play a key role working as part of a multi-disciplinary team alongside doctors, nurses and the wider health care team to deliver care to patients of all ages. As a physician associate you’ll take medical histories, perform clinical examinations, order and interpret test results, take part in clinical reasoning and diagnosis, and develop evidence-based patient management plans.

Working in partnership with local NHS Trusts, our experienced and dedicated academic staff will support you to achieve clinical learning and skills development. We’ll guide you as you gain the theoretical knowledge that underpins the physician associate role, and integrate this knowledge into your practice during your clinical placements.

Initially, you’ll focus on developing a thorough understanding of the academic knowledge that underpins the physician associate role. We’ll also support you to gain core clinical skills, developing your confidence and practical knowledge in the safe confines of our state-of-the-art Clinical Simulation Suites, before you’re exposed to primary and secondary care environments and practice through short placements.

In the second year, you’ll have longer clinical placements in these areas, as well as gain experience in emergency care, paediatrics, mental health, and obstetrics. As a graduate, you’ll have competence in the core clinical skills of the physician associate, and possess practical experience of health care procedures ready for a career in this demanding and rewarding profession.

Course Highlights:

  • This course offers the high-level of clinical knowledge and skills needed to achieve certification as a physician associate (PA) in the UK. To qualify to practice you’ll need to pass the National Certification Examination run by the Faculty of Physician Associates at the Royal College of Physicians (FPARCP) and enrol on the Physician Associate Managed Voluntary Register (PAMVR).
  • Developed in response to employer-led demand for the physician associate role in the Greater Manchester area, this course offers you the opportunity of qualify to work in medicine as part of a multi-professional team in just two years.
  • You don’t need prior experience in health care or health and social care qualifications to join this course – we also welcome applications from graduates in areas such as biology, chemistry, engineering, psychology and other social sciences so long as you have some prior higher education knowledge of human biology, and areas such as infectious disease, public health, molecular science or cell biology.
  • You’ll have access to facilities in the flagship £31 million Bolton One building, including our state-of-the-art Clinical Simulation Suites where you’ll be able to practice skills and develop knowledge using clinical equipment and simulators.

Key Features:

  • Our teaching team includes expert clinicians who are working in current practice in addition to supporting and teaching students on the course. This ensures your clinical learning is at the cutting edge of practice.
  • As well as in-class learning, simulated clinical experience and real-life clinical practice, this course includes time dedicated to supporting and preparing you for your first National Certification Examination.
  • Your highly-structured academic studies will be complemented by personalised work-based learning offered through placements in various clinical areas in primary and secondary care facilities.
  • Your Clinical Tutor will act as an advocate during your work-based placements, supporting you, your mentor and your assessors to agree on appropriate workplace activities that support your learning goals.
  • You’ll gain first hand clinical experience and have the opportunity to develop an invaluable network of professional contacts during your extensive time on clinical practice placements in Greater Manchester and Lancashire.


Read less

Show 10 15 30 per page



Cookie Policy    X