• University of Bristol Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
University of Warwick Featured Masters Courses
Cranfield University Featured Masters Courses
University of Leeds Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"hospital" AND "engineeri…×
0 miles

Masters Degrees (Hospital Engineering)

We have 94 Masters Degrees (Hospital Engineering)

  • "hospital" AND "engineering" ×
  • clear all
Showing 1 to 15 of 94
Order by 
What's the Master of Biomedical Engineering about? . The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering. Read more

What's the Master of Biomedical Engineering about? 

The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering:

  • Biomechanics
  • Biomaterials
  • Medical sensors and signal processing
  • Medical imaging
  • Tissue engineering

The teaching curriculum builds upon the top-class research conducted by the staff, most of whom are members of the Leuven Medical Technology Centre. This network facilitates industrial fellowships for our students and enables students to complete design projects and Master’s theses in collaboration with industry leaders and internationally recognized research labs.

Biomedical engineers are educated to integrate engineering and basic medical knowledge. This competence is obtained through coursework, practical exercises, interactive sessions, a design project and a Master’s thesis project.

Structure

Three courses provide students with basic medical knowledge on anatomy and functions of the human body. The core of the programme consists of biomedical engineering courses that cover the entire range of contemporary biomedical engineering: biomechanics, biomaterials, medical imaging, biosensors, biosignal processing, medical device design and regulatory affairs.

The elective courses have been grouped in four clusters: biomechanics and tissue engineering, medical devices, information acquisition systems, and Information processing software. These clusters allow the students to deepen their knowledge in one particular area of biomedical engineering by selecting courses from one cluster, while at the same time allowing other students to obtain a broad overview on the field of biomedical engineering by selecting courses from multiple clusters.

Students can opt for an internship which can take place in a Belgian company or in a medical technology centre abroad. 

Through the general interest courses, the student has the opportunity to broaden his/her views beyond biomedical engineering. These include courses on management, on communication (e.g. engineering vocabulary in foreign languages), and on the socio-economic and ethical aspects of medical technology.

A design project and a Master’s thesis familiarize the student with the daily practice of a biomedical engineer.

International

The Faculty of Engineering Science at KU Leuven is involved in several Erasmus exchange programmes. For the Master of Science in Biomedical Engineering, this means that the student can complete one or two semesters abroad, at a number of selected universities.

An industrial fellowship is possible for three or six credits either between the Bachelor’s and the Master’s programme, or between the two phases of the Master’s programme. Students are also encouraged to consider the fellowship and short courses offered by BEST (Board of European Students of Technology) or through the ATHENS programme.

You can find more information on this topic on the website of the Faculty.

Strengths

The programme responds to a societal need, which translates into an industrial opportunity.

Evaluation of the programme demonstrates that the objectives and goals are being achieved. The mix of mandatory and elective courses allows the student to become a generalist in Biomedical Engineering, but also to become a specialist in one topic; industry representatives report that graduates master a high level of skills, are flexible and integrate well in the companies.

Company visits expose all BME students to industry. Further industrial experience is available to all students.

Our international staff (mostly PhD students) actively supports the courses taught in English, contributing to the international exposure of the programme.

The Master’s programme is situated in a context of strong research groups in the field of biomedical engineering. All professors incorporate research topics in their courses.

Most alumni have found a job within three months after graduation.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Career perspectives

Biomedical engineering is a rapidly growing sector, evidenced by an increase in the number of jobs and businesses. The Master of Science in Biomedical Engineering was created to respond to increased needs for healthcare in our society. These needs stem from an ageing population and the systemic challenge to provide more and better care with less manpower and in a cost-effective way. Industry, government, hospitals and social insurance companies require engineers with specialised training in the multidisciplinary domain of biomedical engineering.

As a biomedical engineer, you'll play a role in the design and production of state-of-the-art biomedical devices and/or medical information technology processes and procedures. You will be able to understand medical needs and translate them into engineering requirements. In addition, you will be able to design medical devices and procedures that can effectively solve problems through their integration in clinical practice. For that purpose, you'll complete the programme with knowledge of anatomy, physiology and human biotechnology and mastery of biomedical technology in areas such as biomechanics, biomaterials, tissue engineering, bio-instrumentation and medical information systems. The programme will help strengthen your creativity, prepare you for life-long learning, and train you how to formalise your knowledge for efficient re-use.

Careers await you in the medical device industry R&D engineering, or as a production or certification specialist. Perhaps you'll end up with a hospital career (technical department), or one in government. The broad technological background that is essential in biomedical engineering also makes you attractive to conventional industrial sectors. Or you can continue your education by pursuing a PhD in biomedical engineering; each year, several places are available thanks to the rapid innovation taking place in biomedical engineering and the increasing portfolio of approved research projects in universities worldwide.



Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more

The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

Why this programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
  • The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
  • This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
  • The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
  • You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

  • Applications of biomedical engineering
  • Biological fluid mechanics
  • Cellular biophysics
  • Energy in biological systems
  • Medical imaging
  • Statistics for biomedical engineering
  • MSc project.

Optional courses

  • Advanced imaging and therapy
  • Applied engineering mechanics
  • Bioinformatics and systems biology
  • Biomechanics
  • Biosensors and diagnostics
  • Microscopy and optics
  • Nanofabrication
  • Rehabilitation engineering
  • Scaffolds and tissues
  • Signal processing of bio-signatures
  • Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.



Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more

The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

Why This Programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
  • The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
  • This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
  • The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
  • You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

  • Applications of biomedical engineering
  • Biological fluid mechanics
  • Cellular biophysics
  • Energy in biological systems
  • Medical imaging
  • Statistics for biomedical engineering
  • MSc project.

Optional courses

  • Advanced imaging and therapy
  • Applied engineering mechanics
  • Bioinformatics and systems biology
  • Biomechanics
  • Biosensors and diagnostics
  • Microscopy and optics
  • Nanofabrication
  • Rehabilitation engineering
  • Scaffolds and tissues
  • Signal processing of bio-signatures
  • Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.



Read less
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Read more

This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Students gain an understanding of bioengineering principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

About this degree

Students study in detail the engineering and physics principles that underpin modern medicine, and learn to apply their knowledge to established and emerging technologies in medical imaging and patient monitoring. The programme covers the engineering applications across the diagnosis and measurement of the human body and its physiology, as well as the electronic and computational skills needed to apply this theory in practice.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered.

A Postgraduate Certificate (60 credits) is offered.

Core modules

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Imaging with Ionising Radiation
  • MRI and Biomedical Optics
  • Ultrasound in Medicine
  • Medical Electronics and Control
  • Clinical Practice
  • Medical Device Enterprise Scenario

Optional modules

Students choose one of the following:

  • Applications of Biomedical Engineering
  • Materials and Engineering for Orthopaedic Devices
  • Computing in Medicine
  • Programming Foundations for Medical Image Analysis

Dissertation/report

All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a written report of 10,000 words, a poster and an oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, practicals, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework, the dissertation and an oral examination.

Further information on modules and degree structure is available on the department website: Physics and Engineering in Medicine: Biomedical Engineering and Medical Imaging MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates from the Biomedical Engineering and Medical Imaging stream of the MSc programme have obtained employment with a wide range of employers in health care, industry and academia sectors.

Employability

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the UCL Hospitals Trust, as well as undertaking industrial contract research and technology transfer.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development, as well as new biomedical engineering facilities at the Royal Free Hospital and Royal National Orthopaedic Hospital in Stanmore.



Read less
Overview. The MSc in Biomedical Engineering at Keele is a multidisciplinary course that will prepare you for an exciting career across a wide range of areas of engineering in medicine, be that in academic or industrial research, the medical devices sector or in the clinical arena. Read more

Overview

The MSc in Biomedical Engineering at Keele is a multidisciplinary course that will prepare you for an exciting career across a wide range of areas of engineering in medicine, be that in academic or industrial research, the medical devices sector or in the clinical arena. The course is professionally accredited and suitable for people with both engineering and life science backgrounds, including medicine and subjects allied to medicine.

Course Director: Dr Ed Chadwick ()

Studying Biomedical Engineering at Keele

The course will cover the fundamentals of engineering in medicine, introduce you to the latest developments in medical technology, and expose you to the challenges of working with patients through clinical visits. Learning and teaching methods include lectures and demonstrations from medical and engineering specialists, practical classes using state-of-the-art facilities and seminars with leading national and international researchers.

Graduate destinations for our students could include: delivering non-clinical services and technology management in a hospital; designing, developing and manufacturing medical devices in the private sector; working for a governmental regulatory agency for healthcare services and products; undertaking further postgraduate study and research (PhD); pursuing a university-based, academic research career; or providing technical consultancy for marketing departments.

See the website https://www.keele.ac.uk/pgtcourses/biomed/

Course Accreditation by Professional Body

The course is accredited by the Institute for Physics and Engineering in Medicine, whose aims are to ensure that graduates of accredited programmes are equipped with the knowledge and skills for the biomedical engineering workplace, be that in industry, healthcare or academic environments. Accreditation gives you confidence that the course meets strict suitability and quality criteria for providing Masters-level education in this field.‌‌‌

About the department

Delivered through the Keele School of Medicine and the Research Institute for Science and Technology in Medicine (ISTM), the course dates as far back as 1999, when it was established in partnership with Biomedical Engineering and Medical Physics at the University Hospital. Most teaching now takes place in the Guy Hilton Research Centre, a dedicated research facility located on the hospital campus. The medical school is one of the top-ranked in the UK, and the research institute has an international reputation for world-leading research.

The centre was opened in 2006 and offers state-of-the-art equipment for translational research including newly-developed diagnostic instruments, advanced imaging modalities and additive manufacturing facilities. Its location adjacent to the university hospital ensures that students experience real-world patient care and the role that technology plays in that. Students also have access to advanced equipment for physiological measurement, motion analysis and functional assessment in other hospital and campus-based laboratories. The School embraces specialists working in UHNM and RJAH Orthopaedic Hospital Oswestry, covering key medical and surgical subspecialties.

The course runs alongside its sister course, the MSc in Cell and Tissue Engineering, and an EPSRC and MRC-funded Centre for Doctoral Training, ensuring a stimulating academic environment for students and many opportunities for engaging with further study and research.

Course Aims

The aim of the course is to provide multidisciplinary Masters level postgraduate training in Biomedical Engineering to prepare students for future employment in healthcare, industrial and academic environments. This involves building on existing undergraduate knowledge in basic science or engineering and applying it to core principles and current issues in medicine and healthcare.

Specifically, the objectives of the course are to:

- provide postgraduate-level education leading to professional careers in biomedical engineering in industry, academia and a wide range of healthcare establishments such as medical organisations, medical research institutions and hospitals;

- provide an opportunity for in-depth research into specialist and novel areas of biomedical and clinical engineering;

- expose students to practical work in a hospital environment with hands-on knowledge of patient care involving technological developments at the forefront of the field;

- introduce students to exciting new fields such as regenerative medicine and novel technologies for physiological monitoring and diagnostics.

Teaching and Learning Methods

The course is taught through subject-centred lectures and seminars, supported by tutorials and practical exercises. Collaborative learning and student-centred learning are also adopted giving widespread opportunity for group work and individual assignments. Students are required to conduct extensive independent study, and this is supported by full access to two libraries, online journal access and a suite of dedicated computers for exclusive use by MSc students on the course. In addition, students are supported by the guidance of a personal tutor within the department, as well as having access to university-wide support services. This includes English language support where appropriate.

Assessment

Modules will be assessed by a mixture of assessment methods, including lab reports, essays, and presentations, and final examination. This ensures the development of a range of transferrable employability skills such as time management and planning, written and verbal communication and numeracy as well as technical and subject-specific knowledge. The project dissertation forms a major component of the student’s assessed work.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/



Read less
If you have ever spent some time in hospital, you are probably unaware that you were the beneficiary of medical devices that have been designed and developed by Medical Engineering Designers. Read more

If you have ever spent some time in hospital, you are probably unaware that you were the beneficiary of medical devices that have been designed and developed by Medical Engineering Designers. Everything from the bed you lie on to the MRI scanner that shows your insides on a screen, to the blood pressure monitor, to the scalpel that cuts your skin is known as a Medical Device and will have had input from Medical Engineering Designers. Even if you have a blood pressure monitor at home, this is still a medical device and will have been designed by a Medical Engineering Designer. The aim of the MSc in Medical Engineering Design is to convert you into a Medical Engineering Designer so that you can work in this highly regulated design discipline.

The course is run by the School of Medicine (https://www.keele.ac.uk/medicine/) in collaboration with the Research Institute for Science and Technology in Medicine (https://www.keele.ac.uk/istm/).

Teaching takes place at the Guy Hilton Research Centre, a dedicated research facility located on the Royal Stoke University Hospital site, and also at the main University Campus. The School of Medicine is one of the top-ranked in the UK, and the research institute has an international reputation for world-leading research (https://www.keele.ac.uk/istm/newsandevents/istmnews2015/istmrefratingsmar2014.php) in medical engineering and healthcare technologies.

The Guy Hilton Research Centre offers state-of-the-art laboratories housing equipment for translational research including newly-developed diagnostic instruments, advanced imaging modalities and additive manufacturing facilities. Its location adjacent to the University Hospital ensures that students experience real-world patient care and the role that technology plays. Students also have access to advanced equipment for physiological measurement, motion analysis and functional assessment in other hospital and campus-based laboratories.

The School embraces specialists working in Royal Stoke University Hospital, County Hospital in Stafford and specialist Robert Jones and Agnes Hunt Orthopaedic Hospital in Oswestry. You therefore have the opportunity to specialise in any of the varied clinical disciplines offered at these hospitals.

Download the MSc Medical Engineering Design Leaflet (https://www.keele.ac.uk/media/keeleuniversity/fachealth/fachealthmed/postgraduate/MSc%20in%20Medical%20Engineering%20Design%20web.pdf)

The School also runs MSc courses in Biomedical Engineering (https://www.keele.ac.uk/pgtcourses/biomed/) and in Cell and Tissue Engineering (https://www.keele.ac.uk/pgtcourses/biomed/), and an EPSRC and MRC-funded Centre for Doctoral Training, ensuring a stimulating academic environment for students and many opportunities for engaging with further study and research.

As a postgraduate student at Keele not only will you be joining a vibrant undergraduate community you will also be part of Keele's celebrated postgraduate family (the first student union dedicated to postgraduate students in the country). For more information on postgraduate life at Keele follow this link to the Keele Postgraduate Association (the link is http://www.kpa.org.uk).

Between March and September 2017 the University will be holding a number of Postgraduate Open Afternoons (https://www.keele.ac.uk/visiting/postgraduateopenafternoons/) to give prospective students the opportunity to visit the campus and learn more about Keele and postgraduate life in general. Please visit the Postgraduate Open Afternoons web page for more information.

Entry requirements:

Because this is a “conversion” course you need not have an engineering degree to apply. You must have a STEM (Science, Technology, Engineering or Mathematics) based degree, but that could be anything from Biomedical Science, through Forensic Science, to Computer Science. Of course, if you have an engineering degree you can still apply.

We welcome applications with a first or second-class degree (or equivalent) in a STEM (Science, Technology, Engineering or Mathematics) discipline. We also welcome enquiries from people with other professional qualifications acceptable to the University.

We recommend applicants discuss their first degree with the course tutor before applying to ensure that this course meets personal aspirations.

For international applicants, an English language IELTS score of 6.5 is required.



Read less
The Engineering faculties of the Universiteit Gent and Vrije Universiteit Brussel organize the interuniversitary Master of Biomedical Engineering and this in a close collaboration with the Medical faculties of both universities. Read more

About the programme

The Engineering faculties of the Universiteit Gent and Vrije Universiteit Brussel organize the interuniversitary Master of Biomedical Engineering and this in a close collaboration with the Medical faculties of both universities. As a result of recent evolutions towards internationalization, we also offer a complete English master program in biomedical engineering. Both the Dutch and English masters are two-year programs and lead to a joint degree from UGent and VUB. Students study either in Ghent or in Brussels upon their own choice.

Tackle complex problems in biology, medicine and health sciences

Biomedical Engineering is a branch of Engineering where students acquire knowledge and skills which can be applied to tackle complex problems in biology, medicine and health sciences. The biomedical engineer herein strives towards a solution in balance with technological, economical and ethical constraints.

Learning outcomes

Graduated students master the fundamentals of current biomedical engineering and have a thorough knowledge of the basic concepts and an overview of the main applications in various fields of biomedical engineering (medical imaging, medical signal processing, medical physics, medical device technology, tissue engineering, biomaterials...). The graduated student has acquired the necessary research skills which allow him or her to independently analyze and solve a problem, and recognizes the importance of permanent learning in a continuously evolving domain.

Work in multidsciplinary teams:
The biomedical engineer is trained to work in multidisciplinary teams (influx of students with different bachelor backgrounds, lecturers from various faculties and scientific domains, multi-disciplinary projects) and has the required communication skills.

Awareness of ethical and socio-medical aspects:
The biomedical engineer is aware of the ethical and socio-economic aspects of biomedical engineering and healthcare, and of the social responsibility of a master in engineering.

Career possibilities:
In this master's course, knowledge and skills in all fields in biomedical engineering will be given, so when you finished the Master's programme, you can be employed as generalist, and you will also be specialised in one particular field of biomedical engineering.

As a student, you are able to select any field within biomedical engineering. You will be trained to work in interdisciplinary project teams, composed of engineers and medical specialists. To prepare further for interdisciplinary teams, students and scholars are treated as equals. To train for working in a European setting, you will get knowledge in the health care situation in several countries in Europe, and you will be trained in cultural differences between European countries.

In summary, the goal of this course is to acquire the ability to:
- work in interdisciplinary (engineering – medical) teams
- work in international and thus intercultural (European) teams
- communicate effectively with experts in (bio)medicine and technology
- perform fundamental research in Biomedical Engineering.
- design innovative devices to improve diagnostics and treatment of patients
- follow a post-Master’s training in Biomedical Engineering
- perform a PhD study
- train continuously (life-long-learning)

Curriculum

Available on http://www.vub.ac.be/en/study/biomedical-engineering/programme

The programme consists of 120 credits, evenly distributed over 4 semesters of each 12 weeks. The specific part of the master involves six basic courses for a total of 30 credits (Quantitative cell biology, Modelling of Physiological Systems, From Genome to Organism, Biomechanics, Bio-electronics and Biomaterials) and 42 credits dedicated to specialist courses in biomedical engineering (Biomedical Imaging, Neuromodulation and Imaging, Medical Physics, Medical Equipment, Biomedical Product Development, Artificial Organs: Technology and Design, Health Care Organization and Informatics, Human and Environment, Safety and Regulations* and Seminars: Innovations in Biomedical Engineering). The programme is further complemented with a master thesis (24 credits) and elective courses for a total of 24 credits.

Internships and Project Work

Students are encouraged to do an internship with a company or hospital in Belgium or abroad during the summer holiday period. Internships can be valorised in the curriculum, with an internship of 4 weeks accounting for an elective course of 3 credits, and an internship of minimally 6 weeks accounting for 6 credits. A maximum of 6 credits is allowed. In addition, students can opt for the elective 3 credit course “Multidisciplinary Biomedical Project” during which they can work on an assignment or a project.

Read less
Overview. Located within a European Centre of Excellence for Tissue engineering, and based on Keele’s University’s local hospital campus at the Guy Hilton Research Centre, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. Read more

Overview

Located within a European Centre of Excellence for Tissue engineering, and based on Keele’s University’s local hospital campus at the Guy Hilton Research Centre, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. The research centre is also an EPSRC Doctoral Training Centre for Regenerative Medicine, an Arthritis UK Centre and a UK Regenerative Medicine Platform Research Hub. This multidisciplinary environment enables close interaction with leading academics and clinicians involved in cutting-edge, and clinically transformative research.

Course Director: Dr Adam Sharples ()

Studying Cell and Tissue Engineering at Keele

Our MSc Cell and Tissue Engineering programme has tracked alongside the strongly emergent global Regenerative Medicine industry and will prepare you for an exciting future within a range of medical engineering areas, be that in academic or industrial research, medical materials, devices, or therapeutics sectors, or in the clinical arena. The modular structure to the course enables flexibility and personalisation to suit your career aspirations, build upon strengths and interests and develop new understanding in key topics.

Graduate destinations for our students could include: undertaking further postgraduate study and research (PhD); pursuing a university-based, academic research career; providing technical consultancy for marketing and sales departments within industry; working within biomedical, biomaterials, therapeutic, life science and regenerative medicine industries or working for a governmental regulatory agency for healthcare services and products.

See the website https://www.keele.ac.uk/pgtcourses/cellandtissueengineering/

‌‌The course provides support from the basics of human anatomy and physiology, through to development of novel nanotechnologies for healthcare. Due to the teaching and research involvement of clinical and academic staff within the department, there are exciting opportunities to be exposed to current clinical challenges and state-of-the-art developments. Clinical visits and specialist seminars are offered and students will be able to select dissertation projects that span fundamental research to clinical translation of technologies – a truly ‘bench to bedside’ approach.

Learning and teaching methods include lectures and demonstrations from medical and engineering specialists, practical classes using state-of-the-art facilities and seminars with leading national and international researchers. Full-time study will see the course completed in 12 months; part-time study will allow you to complete it over two years.

About the department

Delivered through the Keele School of Medicine and the Research Institute for Science and Technology in Medicine (ISTM), the course dates as far back as 1999, when it was established in partnership with Biomedical Engineering and Medical Physics at the University Hospital. Most teaching now takes place in the Guy Hilton Research Centre, a dedicated research facility located on the hospital campus. The medical school is one of the top-ranked in the UK, and the research institute has an international reputation for world-leading research.

The centre was opened in 2006 and offers state-of-the-art equipment for translational research including newly-developed diagnostic instruments, advanced imaging modalities and additive manufacturing facilities. Its location adjacent to the university hospital ensures that students experience real-world patient care and the role that technology plays in that. Students also have access to advanced equipment for physiological measurement, motion analysis and functional assessment in other hospital and campus-based laboratories. The School embraces specialists working in UHNM and RJAH Orthopaedic Hospital Oswestry, covering key medical and surgical subspecialties.

The course runs alongside its sister course, the MSc in Biomedical Engineering, and an EPSRC-MRC funded Centre for Doctoral Training, ensuring a stimulating academic environment for students and many opportunities for engaging with further study and research.

Course Aims

The aim of the course is to provide multidisciplinary Masters level postgraduate training in Cell and Tissue Engineering to prepare students for future employment in healthcare, industrial and academic environments. This involves building on existing undergraduate knowledge in basic science or engineering and applying it to core principles and current issues in medicine and healthcare.

Specifically, the objectives of the course are to:

- provide postgraduate-level education leading to professional careers in Cell and Tissue Engineering in industry, academia and a wide range of healthcare establishments such as medical organisations, medical research institutions and hospitals;

- provide an opportunity for in-depth research into specialist and novel areas of Biomaterials, and Cell and Tissue Engineering;

- expose students to the clinically translational environment within an active medical research environment with hands-on practical ability and supporting knowledge of up-to-date technological developments at the forefront of the field;

- introduce students to exciting new fields such as regenerative medicine, nanotechnology and novel devices for physiological monitoring and diagnostics.

Teaching and Learning Methods

The course is taught through subject-centred lectures and seminars, supported by tutorials and practical exercises. Collaborative learning and student-centred learning are also adopted giving widespread opportunity for group work and individual assignments. Students are required to conduct extensive independent study, and this is supported by full access to two libraries, online journal access and a suite of dedicated computers for exclusive use by MSc students on the course. In addition, students are supported by the guidance of a personal tutor within the department, as well as having access to university-wide support services. This includes English language support where appropriate.

Assessment

Modules will be assessed by a mixture of assessment methods, including lab reports, essays, and presentations, and final examination. This ensures the development of a range of transferrable employability skills such as time management and planning, written and verbal communication and numeracy as well as technical and subject-specific knowledge. The project dissertation forms a major component of the student’s assessed work.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/



Read less
Biomedical engineers work at the interface of engineering, biology, and medicine, combining their engineering expertise with an understanding of human biology and medical needs to make the world a healthier place. Read more

Biomedical engineers work at the interface of engineering, biology, and medicine, combining their engineering expertise with an understanding of human biology and medical needs to make the world a healthier place.

This masters course will equip you with the specialist knowledge, expertise and skills to integrate biology and medicine with engineering to solve problems related to living systems.

Introducing your degree

The MSc Biomedical Engineering is designed for engineering, and physical science graduates who want to specialise in this vibrant area of engineering. There is high demand for biomedical engineers, and this masters has been developed with our graduates’ employability in mind.

Overview

During this course, you will learn the fundamental scientific and technical aspects of biomedical engineering, alongside developing your knowledge of the relevant aspects of human biology in health and disease. This interdisciplinary course draws on expertise from leading departments within the University of Southampton, brought together through the Institute for Life SciencesEngineering and the EnvironmentMedicineHealth SciencesNatural and Environmental Sciences, and Electronics and Computer Science.

If you choose to, you will be able to specialise in your chosen area of biomedical engineering through themed areas of application: musculoskeletal, cardiovascular, imaging, diagnostic systems and audiology.

The course will enable you to thrive in an environment where teams from range of disciplines have work together efficiently. To help you succeed as biomedical engineer, the course features ‘problem-driven’ seminars, site and hospital visits, workshops and training sessions by experts from industry and national laboratories. This combination of advanced engineering, industrial experience and research enables our graduates to make a significant contribution to the development and translation of biomedical technology in both industry and academia.

You will develop the skills to apply advanced engineering in an interdisciplinary environment working in teams of physicians, scientists, engineers, business people and other professionals to monitor, restore and enhance normal body function, abilities and outcomes. You will also enhance your understanding of the ethical, safety and societal implications of developing medical technologies. 

Through your research project you have a further opportunity to integrate your engineering skills with an understanding of the complexity of biological systems, enabling you to work successfully at the intersection of science, medicine and mathematics to solve biological and medical problems. Example research projects may include the design and performance evaluation of new devices to replace joints, or the development of new imaging methods to study bone or lung diseases.

View the specification document for this course

Career Opportunities

Many biomedical engineers work in research, either in academia or industry, along with medical scientists, to develop and evaluate systems and products such as artificial organs, prostheses, instrumentation, and diagnostic, health management and care delivery systems.

Biomedical engineers may design devices used in various medical procedures and develop imaging systems and devices for observing and controlling body functions.

Biomedical engineers therefore make careers in academia, industry, healthcare and clinical medicine, as well as government.



Read less
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. Read more
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. The Cardiff Institute of Tissue Engineering & Repair (CITER) MSc in Tissue Engineering aims to provide graduates from life sciences and clinical backgrounds with an advanced knowledge, understanding and skills in the science and practice of tissue engineering; from theoretical science, through to research translation and clinical application. The Programme provides in-depth training in this branch of biomedical science, including stem cell biology, biomaterials and tissue/organ engineering. The MSc offers a balanced combination of theory and practice; and can serve either as preparation for a PhD or as a self-contained advanced qualification in its own right. The MSc in Tissue Engineering is both lecture- and laboratory-based, and includes a number of opportunities to visit relevant clinical settings and local industrial partners. Graduates from this Programme will have a broad spectrum of knowledge and a variety of skills, making them highly attractive both to potential employers and research establishments.

Distinctive features of this course include:

• The first course of its kind in the UK, created in response to demand in the field of tissue engineering for interdisciplinary teaching.

• Excellent clinical, academic and research facilities.

• High probability of further research study and careers in tissue engineering and repair, relevant to the CITER MSc remit.

• Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.

• Opportunity to join a vibrant postgraduate community.

Structure

The CITER MSc Programme commences in September each year with Stage 1, a 6-month, taught component.

Stage 1 is taught almost entirely at a small group teaching level, supported by laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics and local companies involved in producing tissue engineering and repair therapies. Modules are assessed by various written assignments, presentations and formal examinations.

On completing Stage 1, students undertake a 5-month, laboratory-based research project within the CITER network, between April-September (Stage 2). Projects are chosen by students from topics supplied by academic supervisors within CITER. Previous student projects have been in research areas such as embryonic or mesenchymal stem cell biology; cartilage, bone, skin or oral tissue repair; fibrosis; and biomaterials and drug delivery. Stage 2 culminates in the submission of an MSc Dissertation, based on MSc Project findings.

Core modules:

Cellular & Molecular Biology
Tissue Engineering From Concept To Clinical Practice
Research Methods
Stem Cells and Regenerative Medicine
Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics, such as orthopaedics, nephrology and dermatology, and local companies involved in producing tissue engineering and repair therapies.

This Programme is based within the School of Dentistry and taught by academic staff from across Cardiff University and by external speakers.

All taught modules within the Programme are compulsory and students are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study. Dissertation topics are normally chosen by the students from a list of options proposed by CITER academic staff in areas relevant to the MSc in Tissue Engineering.

Assessment

The 4 taught Modules within the Programme are assessed through in-course assessments, including:

Extended essays.
Oral presentations.
Poster presentations.
Statistical assignments.
Critical appraisals.
Dissertation (no more than 20,000 words).

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments.

Since its introduction in 2006, 95% of our MSc graduates have progressed onto career paths highly relevant to the CITER MSc remit. These include PhDs within CITER and at other UK, EU and USA Universities, Graduate-Entry Medicine, Specialist Registrar Training, Teaching, and positions in Industry and Clinical Laboratory settings.

Placements

You will have the opportunity to attend clinical attachments, in areas such as orthopaedics, nephrology and dermatology. Furthermore, you will also have the opportunity to visit local companies involved in producing tissue engineering and repair therapies for clinical use. These include Cell Therapy Ltd., Reneuron plc, Biomonde Ltd., and MBI Wales Ltd.

Read less
Mechanical engineering combines scientific principles, mathematics, and realisation to design, develop and implement innovative solutions to contemporary problems. Read more

Mechanical engineering combines scientific principles, mathematics, and realisation to design, develop and implement innovative solutions to contemporary problems. This programme will enhance your skills and provide you with advanced subject knowledge to accelerate your engineering career.

From designing replacement hip joints and hospital MRI scanners, to developing autonomous vehicles and monitoring the structural health of offshore windfarms, mechanical engineering contributes greatly to contemporary life and is central to the innovation carried out in many industries.

Accredited by the Institution of Mechanical Engineers (IMechE), our MSc Mechanical Engineering programme comprises of advanced topics in mechanical engineering and industry linked project work. You will benefit from the teaching of some of the world’s experts in their fields, a state-of-the-art working environment, and networking opportunities to enhance your career prospects.

Over the course of the year, you will study six taught modules and also undertake a major individual project. These will provide you with advanced knowledge while allowing you to develop your specialist skills, which will enable you to take advantage of the many senior engineering and technology employment opportunities available at home and abroad. You will become familiar with stress analysis, finite element analyses and modelling; renewables including wind, tidal and hydro-power; mechanisms and mechanical design; control and self-learning systems; and systems analysis, among other topics. At the same time, you will develop capabilities that are highly valued by employers more generally, such as problem-solving, analytical skills and team-working abilities.

A major element of the programme is a dissertation project during which you will undertake independent research and receive one-to-one supervision from an academic specialist, and possibly be working with one of our industry partners. During this project, you will bring together everything that you have learnt and apply it to an advanced individual project. This will allow you to practise your skills and demonstrate your professional competences, thereby improving your employability. These projects have led to employment for many graduates and recent examples include:

  • Control design for a mobile robot used for nuclear decommissioning tasks
  • Fire resistance of FRP-concrete columns
  • Wave powered eddy current heat generator for seawater desalination technologies
  • Improved solar thermal systems

Additional to the dissertation project, you will also complete an industry linked project. This exciting project will both challenge you and allow you to apply your abilities to real-world problems. You will gain experience of working in real professional environments, while gaining and developing highly employable skills, such as communications, team-working and project management.

Course Structure

You will study a range of modules as part of your course, some examples of which are listed below.

Core

Information contained on the website with respect to modules is correct at the time of publication, but changes may be necessary, for example as a result of student feedback, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes, and new research.

Assessment

Engineering is more than just theory and, as a result, you will experience labs/practical sessions, workshops and group tutorials, alongside lectures. This contact is with academic staff that are internationally recognised and work alongside global companies.

In addition, our technicians and admin support team are very approachable and have many years of experience in helping students achieve success.

Assessment varies between modules, allowing students to demonstrate their capabilities in a range of ways. Typically you can expect assignments such as coursework, presentations and formal examinations.

Community

As a department, we prioritise delivering high-quality, rigorous programmes that prepare and equip our graduates for a rewarding career. The Department provides an interdisciplinary approach that reflects the dynamic nature of professional engineering.

Our Department is an internationally recognised leader in research and innovation and, as such, you will join a thriving and supportive academic community. Staff and students alike will welcome and support you both academically and socially.

You will be encouraged throughout your programme in a friendly, vibrant environment that is conducive to excellent research and learning.

Career

Our MSc in Mechanical Engineering is designed to support your career ambitions and progression. By enabling you to develop your technical and professional skills to an advanced level, and allowing you to apply what you have previously learnt to real-world problems, this programme equips you with the knowledge and experience for a range of engineering careers, and will put you ahead of the competition.

There is a wide range of sectors where mechanical engineering is relevant, and starting salaries are highly competitive. Roles include:

  • Mechanical Engineer
  • Production Engineer
  • Aerospace Engineer
  • Automotive Engineer
  • Manufacturing Engineer
  • Technical Team Leader, Manager or Director
  • Engineering Consultant

In addition, studying at Masters level will further enhance your prospects, opening up opportunities to progress further in your career.

Alternatively, our programme will provide you with the skills, knowledge, and experience to take up further study at PhD level and begin a career in research, exploring innovative, cutting-edge areas of the engineering discipline.



Read less
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. Read more
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. The Cardiff Institute of Tissue Engineering & Repair (CITER) MSc in Tissue Engineering aims to provide graduates from life sciences and clinical backgrounds with an advanced knowledge, understanding and skills in the science and practice of tissue engineering; from theoretical science, through to research translation and clinical application. The Programme provides in-depth training in this branch of biomedical science, including stem cell biology, biomaterials and tissue/organ engineering. The MSc offers a balanced combination of theory and practice; and can serve either as preparation for a PhD or as a self-contained advanced qualification in its own right. The MSc in Tissue Engineering is both lecture- and laboratory-based, and includes a number of opportunities to visit relevant clinical settings and local industrial partners. Graduates from this Programme will have a broad spectrum of knowledge and a variety of skills, making them highly attractive both to potential employers and research establishments.

Distinctive features of this course include:

• The first course of its kind in the UK, created in response to demand in the field of tissue engineering for interdisciplinary teaching.

• Excellent clinical, academic and research facilities.

• High probability of further research study and careers in tissue engineering and repair, relevant to the CITER MSc remit.

• Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.

• Opportunity to join a vibrant postgraduate community.

Course structure

The CITER MSc Programme commences in September each year with Stage 1, a 6-month, taught component.

Stage 1 is taught almost entirely at a small group teaching level, supported by laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics and local companies involved in producing tissue engineering and repair therapies. Modules are assessed by various written assignments, presentations and formal examinations.

On completing Stage 1, students undertake a 5-month, laboratory-based research project within the CITER network, between April-September (Stage 2). Projects are chosen by students from topics supplied by academic supervisors within CITER. Previous student projects have been in research areas such as embryonic or mesenchymal stem cell biology; cartilage, bone, skin or oral tissue repair; fibrosis; and biomaterials and drug delivery. Stage 2 culminates in the submission of an MSc Dissertation, based on MSc Project findings.

Core modules:

Cellular & Molecular Biology
Tissue Engineering From Concept To Clinical Practice
Research Methods
Stem Cells and Regenerative Medicine
Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics, such as orthopaedics, nephrology and dermatology, and local companies involved in producing tissue engineering and repair therapies.

This Programme is based within the School of Dentistry and taught by academic staff from across Cardiff University and by external speakers.

All taught modules within the Programme are compulsory and students are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study. Dissertation topics are normally chosen by the students from a list of options proposed by CITER academic staff in areas relevant to the MSc in Tissue Engineering.

Support

All Modules within the Programme make extensive use of Cardiff University’s Virtual Learning Environment (VLE) Blackboard, on which students will find course materials and links to related materials. Students will be supervised when undertaking their dissertation. Supervision will include scheduled regular meetings to discuss progress, provide advice and guidance; and provide written feedback on draft dissertation contents.

Feedback:

Students will receive written feedback on all assessments, in addition to oral feedback on assessed oral/poster presentations.

Assessment

The 4 taught Modules within the Programme are assessed through in-course assessments, including:

Extended essays.
Oral presentations.
Poster presentations.
Statistical assignments.
Critical appraisals.
Dissertation (no more than 20,000 words).

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments.

Since its introduction in 2006, 95% of our MSc graduates have progressed onto career paths highly relevant to the CITER MSc remit. These include PhDs within CITER and at other UK, EU and USA Universities, Graduate-Entry Medicine, Specialist Registrar Training, Teaching, and positions in Industry and Clinical Laboratory settings.

Read less
Students in the Biomedical Engineering (BME) Graduate Program are interested in cutting-edge, multidisciplinary biomedical research. Read more
Students in the Biomedical Engineering (BME) Graduate Program are interested in cutting-edge, multidisciplinary biomedical research. The BME Graduate Program enables graduate students to undertake MEng (Thesis), MSc, or PhD programs that intersect the fields of engineering, kinesiology, medicine, science and veterinary medicine.

The BME Graduate Program is jointly coordinated by the Schulich School of Engineering, Cumming School of Medicine and Faculty of Kinesiology, with additional participating faculty members from the Faculties of Science and Veterinary Medicine. The BME Graduate Program supports the University of Calgary’s Engineering Solutions for Health: Biomedical Engineering Research Strategy. By coordinating and consolidating complementary research and teaching programs across the University of Calgary and linking with health care facilities, the BME Graduate Program forms an integral part of a Canadian centre of excellence in BME graduate education and research.

The unique, multi-disciplinary, design of this program means our trainees have access to cutting edge research laboratories and equipment.

The BME Graduate Program was approved by The University of Calgary Board of Governors in 1997. It was initially funded by a three-year Whitaker Foundation Special Opportunity Award, part of a joint proposal with the University of Alberta. Provincially based activities continue to this day and are highlighted by the now University of Calgary-led Alberta BME Conference. This annual meeting now includes participation from the University of Lethbridge, as well as other western Canadian BME programs. The meeting attracts over 160 individuals and has been held every year since 2000 in Banff, Alberta.

While the BME Graduate Program is an established program supporting a diverse research community, it continues to evolve in response to new opportunities and changing needs of students and the biomedical community in Alberta. It is a key component of The University of Calgary’s Eyes High vision and supports both the university’s academic and research plans, particularly the strategic research theme of Engineering Healthcare Solutions.

Areas of Biomedical Engineering

-Bioelectricity
-Biomechanics
-Cell and tissue engineering (or biomaterials)
-Imaging
-Bioinstrumentation
-Clinical engineering
-Rehabilitation engineering

The University of Calgary is recognized as a leader in the first four areas, and is actively growing expertise in bioinstrumentation. Bioelectricity, biomechanics, cell and tissue engineering (biomaterials) and imaging represent the current four themes of the BME Graduate Program.

BME research at the University of Calgary is carried out in numerous locations throughout engineering, kinesiology, medicine, science, and veterinary medicine. BME active university and hospital-based research centers and institutes include, the Alberta Children’s Hospital Research Institute, the Hotchkiss Brain Institute, the Libin Cardiovascular Institute of Alberta, the McCaig Institute for Bone and Joint Health, the Calgary Centre for Innovative Technology, the Experimental Imaging Centre, the Human Performance Laboratory, the Pharmaceutical Production Research Facility, the Seaman Family MR Research Centre, and the Sports Medicine Centre.

Read less
The programme is a full-time taught postgraduate degree course leading to the degree of MSc in Biomedical Engineering. Read more
The programme is a full-time taught postgraduate degree course leading to the degree of MSc in Biomedical Engineering. It has an international dimension, providing an important opportunity for postgraduate engineers to study the principles and state-of-the-art technologies in biomedical engineering with a particular emphasis on applications in advanced instrumentation for medicine and surgery.

Why study Biomedical Engineering at Dundee?

Biomedical engineers apply engineering principles and design methods to improve our understanding of living systems and to create new techniques and instruments in medicine and surgery.

The taught modules in this course expose students to the leading edge of modern medical and surgical technologies. The course also provides concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.

The research project allows students to work in a research area of their own particular interest, learning skills in presentation, critical thinking and problem-solving. Project topics are offered to students during the first semester of the course.

UK qualifications are recognised and respected throughout the world. The University of Dundee is one of the top UK universities, with a powerful research reputation, particularly in the medical and biomedical sciences. It has previously been named 'Scottish University of the Year' and short-listed for the Sunday Times 'UK University of the Year'.

Links with Universities in China:

This course can be taken in association with partner universities in China with part of the course taken at the home institution before coming to Dundee to complete your studies. For students from elsewhere it is possible to take the entire course at Dundee.

What's so good about Biomedical Engineering at Dundee?

The University of Dundee has had an active research programme in biomedical engineering for over 20 years.

The Biomedical Engineering group has a high international research standing with expertise in medical instrumentation, signal processing, biomaterials, tissue engineering, advanced design in minimally invasive surgery and rehabilitation engineering.

Research partnerships:

We have extensive links and research partnerships with clinicians at Ninewells Hospital (largest teaching hospital in Europe) and with world renowned scientists from the University's College of Life Sciences. The new Institute of Medical Science and Technology (IMSaT) at the University has been established as a multidisciplinary research 'hothouse' which seeks to commercialise and exploit advanced medical technologies leading to business opportunities.

This course has two start dates - September or January, and lasts for 12 months.

How you will be taught

The structure of the MSc course is divided into two parts. The taught modules expose students to the leading edge of modern biomedical and surgical technologies. The course gives concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.

The research project allows students to work in a research area of their own particular interest, learning skills in presentation, critical thinking and problem-solving. Project topics are offered to students towards at the beginning of second semester of the course.

What you will study

The course is divided into two parts:

Part I (60 Credits):

Bioinstrumentation (10 Credits)
Biomechanical Systems (20 Credits)
Biomaterials (20 credits)
Introduction to Medical Sciences (10 Credits)
Part II (120 Credits) has one taught module and a research project module. It starts at the beginning of the University of Dundee's Semester 2, which is in mid-January:

The taught module, Advanced Medical and Surgical Instrumentation (30 Credits), exposes students to the leading edge of modern medical and surgical technologies. It will also give concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.
The research project (90 Credits) will allow students to work in a research area of their own particular interest and to learn skills in presentation, critical thinking and problem-solving. Project topics will be offered to students before Part II of the course. We shall do our best to provide all students with a project of their choice.
The time spent in Dundee will also give students a valuable educational and cultural experience.

How you will be assessed

The course is assessed by coursework and examination, plus dissertation.

Careers

An MSc degree in Biomedical Engineering will prepare you for a challenging and rewarding career in one of many sectors: the rapidly growing medical technology industry, academic institutions, hospitals and government departments.

A wide range of employment possibilities exist including engineer, professor, research scientist, teacher, manager, salesperson or CEO.

The programme also provides the ideal academic grounding to undertake a PhD degree leading to a career in academic research.

Read less
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice. Read more

The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice.

You will encounter the latest technologies available to the process industries and will be exposed to a broad range of crucial operations. Hands-on exposure is our key to success.

The programme uses credit accumulation and offers advanced modules covering a broad range of modern process engineering, technical and management topics.

Core study areas include applied engineering practice, downstream processing, research and communication, applied heterogeneous catalysis and a research project.

The research project is conducted over two semesters and involves individual students working closely with a member of the academic staff on a topic of current interest. Recent examples, include water purification by advanced oxidation processes, affinity separation of metals, pesticides and organics from drinking water, biodiesel processing and liquid mixing in pharmaceutical reactors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Programme modules

Compulsory Modules

Semester 1:

- Applied Engineering Practice

- Downstream Processing

- Research and Communication

Semester 2:

- Applied Heterogeneous Catalysis

Semester 1 and 2:

- MSc Project

Optional Modules (select four)

Semester 1:

- Chemical Product Design

- Colloid Engineering and Nano-science

- Filtration

- Hazard Identification and Risk Management

Semester 2:

- Mixing of Fluids and Particles

- Advanced Computational Methods for Modelling

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities

The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research

The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects

The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/



Read less

Show 10 15 30 per page



Cookie Policy    X