• Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Durham University Featured Masters Courses
King’s College London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Cranfield University Featured Masters Courses
Aberdeen University Featured Masters Courses
"home" AND "automation"×
0 miles

Masters Degrees (Home Automation)

We have 27 Masters Degrees (Home Automation)

  • "home" AND "automation" ×
  • clear all
Showing 1 to 15 of 27
Order by 
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_energy_ren.pdf
This track of the Master of Science in Electrical Engineering aims to form graduates with a comprehensive scientific and technological background on electrical power systems. It builds on basic disciplines (covering digital signal processing, electromagnetic compatibility and engineering electromagnetics, measurements and diagnosis techniques, power electronics and electrical drives, design of electrical machines and apparatus, etc.) and provides solid skills in the areas of electrical energy and renewable sources, electrical systems in transportation, design and automation of electrical systems. Graduates will be highly employable in the sectors of generation, transmission, distribution and utilization of electrical energy; manufacturing of electrical machines and power electronics equipment; industrial automation; design, production and operation of electrical systems for transportation (rail, automotive, aerospace and marine); companies operating on the electricity market.
The programme is taught in English.

Subjects

Measurement Oriented Digital Signal Processing, Electric Power Systems, Science And Technology of Electrical Materials, Power Electronics, Applied Statistics, Electromagnetic Compatibility, Electrical Switching Apparatus (or other offered courses), Construction and Design of Electrical Machines, Electric Systems for Transportation, Reliability Engineering and Quality Control, Electrical Drives

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Read more
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Gain advanced theoretical and practical knowledge from our world-leading experts in interactive and intelligent robotics, and graduate ready to pursue an exciting career in anything from home automation to deep sea or space exploration. You’ll also have the opportunity to gain invaluable industry experience and cultivate professional contacts on an integral work placement.

Key features

-Enhance your employability and grow your professional network with an optional integral work placement. You can choose to work in the UK, or overseas in countries including France, Germany or Japan.
-Get up-to-date with the latest developments in artificial life and intelligence, adaptive behaviour, information visualisation, neural computation and dynamic systems, as well as remote access and monitoring systems. Our seminars series with speakers from industry and academia gives you the opportunity to keep ahead in this fast moving field.
-Give yourself the edge. Our programme distinguishes itself from other robotics masters programmes, in the UK and abroad, by ensuring a deeper theoretical and practical knowledge of interactive and intelligent robotics.
-Expand your skills with first-class facilities including 3D rapid prototyping systems, in-house PCB design and assembly tools, and our award winning Plymouth Humanoid robots.
-Get expert training from members of the Marine and Industrial Dynamic Analysis (MIDAS) research group and the Centre for Robotics and Neural Systems (CRNS).
-Become a professional in your field – this programme is accredited by the Institution of Engineering and Technology (IET).
-Benefit by combining disciplines that are traditionally taught separately. You’ll graduate ready with the expertise and joined-up knowledge to design and develop fully integrated mechanical, electronic, control and computing systems.

Course details

On this programme you’ll gain a solid and broad understanding of the latest developments and issues in robotics. You’ll build theoretical and practical knowledge of control and design as well as covering the interface between real-world devices, autonomous processing and evaluation of acquired information. You’ll investigate user interaction and intelligent decision-making and immerse yourself in an innovative project inspired by the latest developments in technology and society. You’ll have access to a robotics club and to a seminar series so that you can keep up-to-date with advances in the industry and academia.

Core modules
-ROCO503 Sensors and Actuators
-BPIE500 Masters Stage 1 Placement Preparation
-PROJ509 MSc Project
-AINT511 Topics in Advanced Intelligent Robotics
-MECH533 Robotics and Control
-SOFT561 Robot Software Engineering
-AINT513 Robotic Visual Perception and Autonomy
-AINT512 Science and Technology of Human-Robot Interaction

Optional modules
-BPIE502 Electrical/Robotics Masters Industrial Placement

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. Read more

Mission and goals

The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. She/he may take on full responsibility for designing, installing, testing and maintaining complex machines and systems. The goal of the Automation and Control Engineering programme is to provide the graduate with a strong background in fundamental scientific disciplines, such as mathematics and physics, in classical engineering fields, such as thermodynamics, mechanics, electric drives, automatic control, and in the disciplines of the information and telecommunication technology, like computer science, electronics, communication networks. Thanks to the interdisciplinary nature of her/his background, the graduate has all the necessary skills to design or manage systems resulting from the integration of highly diverse components and technologies. This flexibility both in the attitude and in the competences is a significant asset of the Automation and Control Engineer, in view of the large variety of possible applications, of the continuous and rapid evolution of the technologies, as well as of the dynamics of the job market.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Career opportunities

Automation and Control Engineering offers challenging and fulfilling careers for engineering technologists in design, research and development, and technical support, in many fields where automation and control are of paramount importance, such as: (a) industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems; (b) process industry (pulp and paper, energy production and conversion, chemical and petrochemical industry, etc.); (c) transportation systems (ground, marine and aerospace), concerning both the development of vehicles (cars, boats, helicopters, aircrafts, satellites), and the design, management and control of infrastructures; (d) transportation and distribution networks; (e) food industry; (f) electrical appliances and domotics; (g) environmental resources.

Typical companies where the automation and control engineers may operate include those producing and selling automation systems (both hardware and software); companies that use automated production plants or that manage highly complex services; engineering and consulting firms that design and project complex, economically challenging and technologically advanced plants and systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Automation_Engineering.pdf
This programme aims at providing the graduates with sound engineering skills to design, develop, implement and manage automation systems for manufacturing plants, industrial processes, mechatronic devices, distribution networks and environmental systems. Graduates have a strong background in the classical engineering fields and in the information and telecommunication technology. The interdisciplinary nature of this programme provides the graduates with all the skills to design/manage systems resulting from the integration of highly diverse technologies.
Graduates will have wide employment opportunities in many fields: industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems, process industry, transportation systems, transportation and distribution networks, food industry, electrical appliances, home automation and environmental resources.
The programme is taught in English.

Subjects

The mandatory courses are:
- Advanced and multivariable control
- Automation and control laboratory
- Computer aided manufacturing
- Dynamics of electrical machines and drives
- Dynamics of mechanical systems
- Model identification and data analysis
- Software engineering

Among the optional courses:
- Automation and control in vehicles
- Automation of energy systems
- Control of industrial robots
- Production systems control
- Safety in automation systems
- Thesis and final exam

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This course allows you to plan your own taught programme to match your interests and experience by selecting modules from a diverse range of option modules from a diverse range offered by the biosciences masters course in the in the Faculty of Science and Technology, with the advice of the Course Leader. Read more
This course allows you to plan your own taught programme to match your interests and experience by selecting modules from a diverse range of option modules from a diverse range offered by the biosciences masters course in the in the Faculty of Science and Technology, with the advice of the Course Leader. For example, you could combine modules on microbiology and molecular biology or those on haematology and clinical chemistry.

Alternatively, you can combine basic science with study of the communication or commercialisation of science. We also offer the opportunity to consider the increasing role of automation in diagnostic laboratories. Those studying part time are free to develop their module choices as they progress.

Whatever the combination, you will be able to expand your understanding of human diseases, their investigation and therapy, and develop your competence in the design and execution of a laboratory-based project.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-POSTGRADUATE PROJECT
-POSTGRADUATE RESEARCH METHODS

Option modules
-ADVANCED CANCER BIOLOGY
-ADVANCES IN CELLULAR PATHOLOGY
-AUTOMATION IN BIOMEDICAL SCIENCES
-CELL SIGNALLING AND GENETICS
-CELLULAR HAEMATOLOGY
-CLINICAL ASPECTS OF MICROBIAL PHYSIOLOGY AND CHEMOTHERAPY
-CLINICAL ENDOCRINOLOGY AND METABOLISM
-COMMUNICATING SCIENCE
-CONCEPTS AND PRINCIPLES OF HUMAN NUTRITION
-DIAGNOSTIC CELLULAR PATHOLOGY
-DIAGNOSTIC CLINICAL BIOCHEMISTRY
-EXTENDED POSTGRADUATE PROJECT
-IMMUNOHAEMATOLOGY AND HAEMOSTASIS
-IMMUNOPATHOLOGY
-IMMUNOTHERAPY
-INFECTIOUS DISEASES AND PUBLIC HEALTH
-MOLECULAR AND CELLULAR THERAPEUTICS
-MOLECULAR BIOINFORMATICS
-MOLECULAR SCIENCE AND DIAGNOSTICS
-PRINCIPLES OF MOLECULAR MEDICINE
-PRINCIPLES OF PHARMACOLOGY AND DRUG DISCOVERY
-REGENERATIVE MEDICINE
-SCIENCE, TECHNOLOGY AND COMMERCIALISATION
-SYSTEMS BIOLOGY

Associated careers

You will develop a range of transferable skills that will enhance your employment prospects and your research opportunities in the UK or overseas. This course has a diverse intake pf both full and part-time home/EU students range from recent graduates top those working in diagnostic laboratories who wish to gain additional qualification while our international students often have experience in biomedical science laboratories and following completion of their studies will return to their home countries pursue promotion or research opportunities.

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS). However students interested in gaining professional registration should consider our Applied Biomedical Science MSc.

Read less
The Advanced Manufacturing Systems MSc course is designed to address the challenges of modern manufacturing and enterprise systems. Read more

About the course

The Advanced Manufacturing Systems MSc course is designed to address the challenges of modern manufacturing and enterprise systems. It covers a breadth of subjects that enable candidates to appreciate and deal with complexities of modern industrial environments.

The location for this course:
Brunel’s main campus in Uxbridge, West London, where the course is offered as a 1-year full-time, or 3-to-5 years distance learning programme.

The programme has been designed after extensive consultation with industry and is suitable for:
Recent engineering and technology graduates who have decided to move into manufacturing and related disciplines.
Established manufacturing engineers working in industry and faced with the challenge of new areas of responsibility.
Managers and designers working in manufacturing organisations who need to invest in their personal career development.
Professionals from engineering, technology or appropriate business backgrounds working in advisory, consultancy or research roles, who need to familiarise themselves with advanced manufacturing systems.

Aims

Demonstrate how the technological and human resources of manufacturing are organised to make products in the most competitive way.
Provide a thorough knowledge of the potential and limitations of new manufacturing technologies.
Illustrate the essential role of the human resource and its effective integration into the manufacturing system.
Give the sound theoretical underpinning necessary to exploit the potential of modern manufacturing systems.
Fit management and strategic theories into the realities of modern manufacturing by demonstrating a positive applications approach.
Encourage work on real industrial problems, giving confidence in the ideas underlying manufacturing and the practicalities of implementing these ideas.

Course Content

Modes of Study

1 Year Full-Time:
The taught element of the course (September to April) includes eight modules
delivery will be by a combination of lectures, tutorials and group/seminar work
a further four months (May to September) is spent undertaking the dissertation.

3-5 Years Distance Learning:
The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University - instead, you follow a structured programme of self-study at home or at work. Students are supplied with a study pack in the form of text books and CD-ROMs which are supported by e-learning web based lecture materials.

You can take between three and five years to complete the course, it is entirely up to you how long you take but usually the minimum is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

Compulsory modules

Systems Modelling and Simulation
Manufacturing Systems, Design and Economics
Sustainable Design and Manufacture
Advanced Manufacturing Measurement
Robotics and Manufacturing Automation
Computer Aided Engineering 1
Dissertation

Optional modules (choose two modules)

Design of Mechatronics Systems (full-time students only)
Project Management
Quality Management and Reliability
Logistics and Global Supply Chain Management (distance learning only)
Managing People and Organisations (distance learning only)

Special Features

From Brunel University
The top graduate (highest grade in the same year) from the course will be considered for a full or partial scholarship to cover tuition fees (normally three years) for the candidate to pursue research in the same area for PhD.

Applicants who have had exceptional achievements such as wining national or International Scientific Olympiads or nationally or internationally recognised inventions can also apply for Full or Partial scholarships to cover their tuition fees whilst reading AMS.

http://www.brunel.ac.uk/study/postgraduate-fees-and-funding/funding

The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Manufacturing Systems MSc which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The course is accredited by the Institution of Mechanical Engineering (IMechE) and the Institution of Engineering and Technology (IET). This will provide a route to Chartered Engineer status in the UK, if you have a qualifying first degree. Please check with the relevant professional body.

Assessment

Assessment is by a combination of assignments and examinations.
Examinations can be taken either at Brunel University London or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council Offices) throughout the world that will provide invigilation services.
The cost of invigilation away from Brunel is your responsibility. The exams are held in May and September each year.

Read less
What is the Master in Electromechanical Engineering Technology all about?. Mechanical design and energy conversion are the cornerstones of this programme. Read more

What is the Master in Electromechanical Engineering Technology all about?

Mechanical design and energy conversion are the cornerstones of this programme. Mechanical design begins with an idea, which is then shaped in a graphical design and executed into a finished product through a choice of materials, simulation and production techniques. Energy conversion is aimed at all aspects of energy efficiency in this process and ranges from electrical controls and automation to thermal power plants, combustion engines, etc. 

You specialise in one of following options: 

  • Intelligent Manufacturing - The issues covered in this option include the latest production techniques, the way production systems operate and the intrinsic relationship between production and other business processes. 
  • Intelligent Mechanics - This option relates to designing, developing and optimizing automated mechanical machines. 
  • Intelligent Mobility - This application area is very diverse and deals with the sustainable, applying smart solutions. 
  • Clinical Engineering - This option gives insight in the domain of medical technology. Topics are surgical robotics and medical equipment in general.

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.

Objectives

This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to electromechanics. They have the necessary creativity to employ technological and scientific principles for the qualitative design, development and production of devices, machines and their individual parts, as well as for the optimization and automation of industrial processes. They are capable of conducting scientific research, in which they take into account economic conditions, managerial implications and ethical aspects. The students are trained to function in a team and take on responsibility.

Degree holders are able to apply the acquired scientific knowledge autonomously and in a broad social context. They possess the necessary organisational skills to hold executive positions.

Career paths

Depending on your interest, your engineering profile can range from technological expert to company manager.



Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in all aspects of plant engineering. - Guidance from practicing plant engineering experts in the field. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in all aspects of plant engineering
- Guidance from practicing plant engineering experts in the field
- Knowledge from the extensive experience of instructors, rather than from clinical information gained from books and college
- Improved career prospects and income
- An EIT Advanced Diploma of Plant Engineering

Start Date: September 18, 2017.

INTRODUCTION

This practical course avoids over emphasis on theory. This is rarely needed in the real industrial world where time is short and immediate results are required. Hard-hitting and useful know-how, are needed as minimum requirements. The instructors presenting this advanced diploma are highly experienced engineers from industry who have many years of real-life experience as Plant Engineers. The format of presentation - live, interactive distance learning with the use of remote labs means that you can hit the ground running and be of immediate benefit to your company or future employer.

WHO SHOULD ATTEND?

Anyone who wants to gain solid knowledge of the key elements of Plant Engineering to improve their work skills and to further their job prospects:

- Electrical Engineers who need an overall Plant Engineering appreciation
- Electricians
- Maintenance Engineers and Supervisors
- Automation and Process Engineers
- Design Engineers
- Project Managers
- Consulting Engineers
- Production Managers
- Chemical and Mechanical Engineers
- Instrument and Process Control Technicians

Even those who are highly experienced in Plant Engineering may find it useful to follow some of the topics to gain know-how in a very concentrated but practical format.

COURSE STRUCTURE

The course follows six engineering threads to provide you with maximum practical coverage in the field of Plant Engineering:

- Overview and where the Plant Engineer fits into the 21st century production sphere
- Engineering technologies in detail
- Skills for project, process, environmental and energy management
- Maintenance management
- Safety management; with corresponding legal knowledge
- Other necessary skills to master

The course is composed 19 modules. These modules cover a range of aspects to provide you with maximum practical coverage in the field of Plant Engineering.

The modules are:

- Introduction to Plant Engineering
- Plant Operations and Facility Management
- Electrical Equipment and Technology
- Pressure Vessels and Boilers
- Fundamentals of Professional Engineering
- Mechanical Equipment and Technology
- Fluid Power Systems and Components
- Pumps and Seals
- Thermodynamics, Compressors, Fans and Blowers
- Process Plant Layout and Piping Design
- Heating, Ventilation and Air Conditioning
- Noise and Vibration
- Structural and Civil Engineering Concepts
- Process Management
- Energy Management
- Instrumentation and Control Engineering
- Maintenance Management
- Environmental Engineering
- Safety Management

PRESENTATION FORMAT

The programme features real-world applications and uses a multi-pronged approach involving interactive on-line webinars, simulation software and self-study assignments with a mentor on call. The course consists of 72 topics delivered over a period of 18 months. Presentations and group discussions will be conducted using a live, interactive software system. For each topic you will have an initial reading assignment (which will be delivered to you in electronic format in advance of the online presentations). There will be coursework or problems to be submitted and in some cases there will be practical exercises, using simulation software and remote labs that you can easily do from your home or office. You will have ongoing support from the instructors via phone, fax and e-mail.

LIVE WEBINARS

The webinar schedule is not put together until after registrations close. The reason for this is that the program is promoted globally and we often have participants from several time zones. When you enrol you will receive a questionnaire which will help us determine your availability. When all questionnaires are returned we create a schedule which will endeavour to meet everyone’s requirements. Each webinar runs 2 or 3 times during each presentation day and we try our best to ensure that at least one session falls into your requested time frames. This is not always possible, however, due to the range of locations of both presenters and students. If you are unable to attend the webinars scheduled, we do have some options available. Contact the EIT for more details.

PRACTICAL EXERCISES AND REMOTE LABORATORIES

As part of the groundbreaking new way of teaching, we will be using a series of remote laboratories (labs) and simulation software, to facilitate your learning and to test the knowledge you gain during the course. These involve complete working labs set up at various locations of the world into which you will be able to log and proceed through the various practical sessions. These will be supplemented by simulation software, running either remotely or on your computer, to ensure you gain the requisite handson experience. No one can learn much solely from lectures, the labs and simulation software are designed to increase the absorption of the materials and to give you a practical orientation of the learning experience. All this will give you a solid, practical exposure to the key principles covered in the course and will Practical Exercises and Remote Laboratories ensure that you obtain maximum benefit from the course to succeed in your future career in Industrial Automation.

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_smartgrid.pdf
This track of the Master of Science in Electrical Engineering provides tools to manage the new challenges of electricity systems involving increasing presence of Renewable Energy Sources (RES) and Dispersed Generation. Such a new generation paradigm drives the evolution of distribution networks towards Smart Grids. Mastering the evolution requires new professional skills, ranging from the use of information-communication technology as enabling key for enhancing traditional networks to a full knowledge of the regulation of power systems operated in liberalized energy markets. Graduates will be highly employable in the following sectors: planning and operation of distribution systems; manufacturing of RES power plants; energy market operators.
The programme is taught in English and supported by ENEL Distribuzione S.p.A

Subjects

Electric power systems; Project management: principles & tools; Electricity Market; TLC networks for electricity systems Sensors, measurements and smart metering; Electromagnetic compatibility; Electric switching apparatus (or other offered courses); Planning & operation of distribution grids with a high penetration of RES; Renewable energy sources and network interface; Regulation of electric power systems; Network automation and protection systems; tools for network simulation; Smart grids: components, functionalities & benefits

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Industrial Masters by Research is is supported by the University of Salford and by Dyer Environmental Controls Ltd. Supervisors. Read more
The Industrial Masters by Research is is supported by the University of Salford and by Dyer Environmental Controls Ltd

Supervisors: Professor Will Swan and Richard Fitton

It will run for 1 year and includes:
• A fee waiver
• A stipend of £15,363 p.a.

Candidates must have settled status in the UK and meet the Residency Requirements of EPSRC – see below.

Description:

An exciting Industrial Masters by Research opportunity has arisen out of the ongoing relationship between the University of Salford and Dyer Environmental Controls Ltd.

Highlighted by the recent flooding issues in the UK, Dyer Environmental Controls Ltd believes that there is a need for improved weather detection and is looking to design a low-cost , wireless weather sensor and transmitter to enable early warning sensing and quantitative data for analysis. Dyer believes this data can be used for many applications e.g. flood warning/defenses; agricultural irrigation control; building automation; and the data collection for future modelling.

The aim of this Industrial Masters project is to produce a trialed and tested working prototype unit which Dyer Environmental can then look to submit for commercial development.

The collaboration

The School of Built Environment at the University of Salford has a strong track record of working with industry. The placement will be with the Applied Buildings and Energy Research Group, which is home to the Salford Energy House. Over the last 5 years we have developed detailed knowledge of sensors to understand both internal and external environments that are used in both laboratory and field environments.

Dyer Environmental Controls Ltd has worked closely with the University of Salford for the past 8 years, completing a 2.5 year KTP project and also sponsoring a PhD student. Dyer has also worked on various projects with the University of Salford’s Energy House. Now celebrating its 25th year, Dyer has worked within the ventilation and building automation sectors and is constantly striving for innovation. Dyer’s success is through customer relationships and flexibility – providing the most efficient and most effective solution for their customer’s needs. The KTP project succeeded in bringing a new product to market and is now sold globally.

Candidates:

The preferred candidates must have a good understanding of:
• A suitable undergraduate level award in electronics/electronics engineering
• The design/implementation and construction of analogue and digital electronic circuits.
• A good working knowledge of C & C++ for embedded microcontrollers, wireless/ mobile communications and PCB layout and design.
• Should have a working knowledge of meteorological or environmental sensors

Candidates are asked to provide a personal statement describing their background, skills, academic interests and their motivation for doing a Masters in no more than 2 sides of A4. This should include evidence of being able to work independently to a high standard, collaborate with others, and excellent writing skills.

The Successful candidate will work mainly on the premises of the University but will spend a significant amount of time at the Company Partner premises.

Funding:

This Industrial Masters by Research studentship is only available to students with settled status in the UK, as classified by EPSRC eligibility. http://www.epsrc.ac.uk/funding/students/Pages/eligibility.aspx

Eligibility: Residence requirements

To be eligible for a full award (stipend and fees) a student must have:

• Settled status in the UK
• Been ‘ordinarily resident’ in the UK for 3 years prior to the start of the grant.
• Not been residing in the UK wholly or mainly for the purpose of full-time education. (This does not apply to UK or EU nationals)

Enquiries: Informal enquiries may be made to Professor Will Swan by e-mail
Applicants should send a curriculum vitae and a covering letter explaining their interest to Vicky Beckett

Application deadline: Friday 22nd July 2016.

Read less
Want a rewarding and well-paid career as an Engineer but don’t have a first degree in engineering? This Manufacturing Engineering Masters conversion course is just for you. Read more
Want a rewarding and well-paid career as an Engineer but don’t have a first degree in engineering? This Manufacturing Engineering Masters conversion course is just for you.

Course overview

The University of Sunderland has over 100 years experience in teaching engineering and our engineering research has been rated as ‘world-leading’ in the latest Research Excellence Framework. We also have strong industry links with manufacturing giants such as Nissan.

Manufacturing Engineers are creative innovators that revolutionise the way we live and are highly skilled in research, design, technology, processes and equipment. Industry-relevant modules such as Design for Manufacturing and Manufacturing Automation mean you’ll be well-prepared for employment in the sector.

Develop strong managerial, operational and leaderships skills, necessary to become an expert in areas such as advanced maintenance, operations management and quality management.

Benefit from a range of practical activities, industry experts’ lectures and real-world problem-solving workshops hosted by the Institute for Automotive and Manufacturing Advanced Practice (AMAP).

Graduate with the all the necessary skills to start a diverse career in a high-tech industry.

Course content

Independent research is mixed with taught elements and supported by expert’s supervision. Modules on this course include:
-Engineering Principles for Manufacturing (30 Credits)
-Manufacturing Automation (15 Credits)
-Design for Manufacturing (15 Credits)
-Advanced Maintenance Practice (15 Credits)
-Engineering Operations Management (15 Credits)
-Manufacturing Management (15 Credits)
-Qualify Management for Manufacturing (15 Credits)
-Manufacturing Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, group work, research, discussion groups, seminars, tutorials and practical laboratory sessions.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working.

Assessment methods may include individual written reports and research papers, exams, practical assignments and the Masters project.

Facilities & location

The University of Sunderland has excellent facilities with specialist laboratories and modelling software.

Engineering facilities
Our specialist facilities include laboratories for electronics and electrical power, and robotics and programmable logic controllers. We also have advanced modelling software that is the latest industry standard. In addition, the University is the home of the Institute for Automotive and Manufacturing Advanced Practice (AMAP), which builds on Sunderland’s role as a centre of excellence in the manufacturing and assembly of cars.

University Library Services
We’ve got thousands of books and e-books on engineering topics, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for engineers include:
-British Standards Online which offers more than 35,000 documents covering specifications for products, dimensions, performance and codes of practice
-Abstracts from the Institute of Electrical and Electronics Engineers and Institution of Engineering and Technology. These include journals, conference proceedings, technical reports and dissertations. A limited number of articles are full-text
-Science Direct, which offers more than 18,000 full-text Elsevier journals
-Archives of publications from Emerald, including over 35,000 full-text articles dating back to 1994 that span engineering and management subjects

IT provision
When it comes to IT provision you can take your pick from hundreds of PCs as well as Apple Macs in the David Goldman Informatics Centre and St Peter’s Library. There are also free WiFi zones throughout the campus. If you have any problems, just ask the friendly helpdesk team.

Location
The course is based at our Sir Tom Cowie Campus at St Peter’s. The Campus is on the banks of the River Wear and is less than a mile from the seaside. It’s a vibrant learning environment with strong links to manufacturers and commercial organisations and there is a constant exchange of ideas and people.

Employment & careers

This course equips you for a wide range of engineering management roles throughout the engineering and manufacturing sector. Employers recognise the value of qualifications from Sunderland, which has been training engineers and technicians for over 100 years.

Manufacturing Engineering graduates develop expertise in planning and designing, as well as the modification and optimisation of manufacturing processes. The essential principles of manufacturing engineering apply to all industries and equips you for a wide range of engineering roles throughout the engineering and manufacturing sector.

A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

On completing this course, you will be equipped as a skilled professional with essential up-to-date knowledge in manufacturing engineering.

Leading market companies employing engineers, include:
-Boeing
-Thales Group
-Jaguar Land Rover (JLR)
-Nissan
-Rolls-Royce
-GlaxoSmithKline
-P&G
-Siemens

Read less
The Engineering Management MSc programme helps you master current and emerging engineering management issues and the management principles that underpin effective strategies and outcomes. Read more

About the course

The Engineering Management MSc programme helps you master current and emerging engineering management issues and the management principles that underpin effective strategies and outcomes.

Balancing academic theory with practical opportunities, it equips you to handle the diverse management responsibilities that require knowledge in finance, systems thinking, operations, human resources and the design and management of the supply chain.

You will understand the way in which finance and assets are managed within the business, appreciate the concepts and principles of marketing and customer care and learn effective team working and motivation techniques – as well as a range of transferable skills.

Aims

Studying management within the MSc Engineering Management programme allows you to obtain an understanding of how an engineering organisation is managed internally and operates from a corporate perspective.

Increasingly employers are looking for students who can demonstrate a strong understanding, not just in the technical (your first degree), but also in managing people, processes, understanding business models especially in relation to the supply chain, and corporate strategy.

Most students choosing this programme are looking to demonstrate a broad range of management knowledge and skills that can be used together with their technical background to obtain management positions in their careers.

The course is intended to benefit a wide range of participants, in particular:

Engineering and technology graduates who aspire to management positions.
Established engineers working in industry and faced with the challenge of new areas of responsibility following promotion to management positions.
Managers working in engineering organisations who have the technical knowledge and skills but need to broaden their experience and update their expertise.
Others with engineering, technology or appropriate business backgrounds, working in advisory, consultancy or research roles, who need to familiarise themselves with engineering management principles and practices.
European and other overseas engineers who wish to broaden their education in the United Kingdom.

Course Content

Modes of Study

1 Year Full-Time: The taught element of the course (September to April) includes eight modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-5 Years by Distance Learning: The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace. For more information regarding distance learning please see website

http://www.brunel.ac.uk/study/postgraduate/Engineering-Management-MSc

Typical Modules

Compulsory Modules

Logistics and Global Supply Chain Management
Manufacturing Systems Design and Economics
Quality Management and Reliability
Managing People and Organisations
Project Management
Dissertation
Systems Modelling and Simulation

Optional Modules (choose two)

Advanced Manufacturing Measurement
Sustainable Design and Manufacture
Global Manufacturing
Robotics and Manufacturing Automation
Financial Management

Special Features

Research

The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Engineering Management MSc which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Engineering Management is accredited by both the Institution of Mechanical Engineering (IMechE) and the Institution of Engineering and Technology (IET). This will provide a route to Chartered Engineer status in the UK.

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs which are supported by e-learning web based lecture materials.

Students can take between three and five years to complete the course, it is entirely up to you how long you take but usually the minimum is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

Assessment

Assessment is by a combination of assignments and examinations. Examinations can be taken either at Brunel University or in the country you are resident in (the latter on the Distance Learning mode only). We have an extensive network of organisations (universities, colleges and British Council Offices) throughout the world that will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. The exams are held in May and September each year.


 

Read less
Control Engineering is a multi-disciplinary subject, with applications across a wide range of industrial sectors. The Control Systems Group in the School of Electrical and Electronic Engineering at the University of Manchester has been running an MSc course in Advanced Control and Systems Engineering since 1968. Read more
Control Engineering is a multi-disciplinary subject, with applications across a wide range of industrial sectors. The Control Systems Group in the School of Electrical and Electronic Engineering at the University of Manchester has been running an MSc course in Advanced Control and Systems Engineering since 1968. The course is geared for graduates from a variety of scientific and engineering disciplines.

The aims of the course are to:
-Provide an advanced education in control and systems engineering, emphasising modern theoretical developments and their practical application
-Give a sound fundamental understanding of the principles underlying the operation of control systems
-Enable students to apply modern control principles in various areas of industry

Students acquire a range of intellectual skills that cover the design, analysis and simulation of control systems. A strong emphasis is placed on practical and transferable skills through laboratory exercises and the use of software packages.

Coursework and assessment

The taught part of the course comprises six course units of 15 credits each. This is assessed by written examinations, coursework and laboratory reports.

A strong feature of the course is the dissertation project, which constitutes 60 Credits. The project introduces students to cutting edge control theory and applications.

Course unit details

Typical course units include Control and Computer Laboratory, Linear Optimal Control, Intelligent Systems, Non-linear Controllers & Systems, Self-tuning and Adaptive Systems, Manufacturing Automation and Data Engineering, Fault Detection and Diagnosis, and Process Control Systems.

Career opportunities

In 2008 we celebrated the 40 th anniversary of our MSc course. In that time graduates of the course have achieved top ranking industrial and academic positions in their home countries, in the UK and around the world.

Graduates from the course are employed in a variety of industries, including process and petro-chemical industries, manufacturing, power generation and the automotive and aerospace sectors. Recently there has been a surge in demand for control engineers in the field of biomedicine. More generally feedback control and systems engineering skills play an important part in an ever widening range of high tech applications.

The MSc can also be used a spring board for postgraduate research. Approximately 50% of the current PhD students in the Control Systems Group are graduates from the MSc course.

Read less
This course, accredited by the Institution of Mechanical Engineers (IMechE), provides an excellent opportunity to improve your current technical portfolio with a spectrum of engineering operations and project management skills. Read more
This course, accredited by the Institution of Mechanical Engineers (IMechE), provides an excellent opportunity to improve your current technical portfolio with a spectrum of engineering operations and project management skills. As a result, you will enhance your employment prospects and your ability to apply for senior engineering management roles.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-The course is designed to complement your engineering degree with a rich spectrum of engineering and project management skills.
-Academic teaching is supported by specialist speakers from industry, keeping you up to date with the challenges and developments in the real world.
-Skills learnt in hands-on practical sessions using the latest software are easily transferred into any working environment.

What will you study?

You will learn how to apply advanced project management and resource optimisation skills, and will be able to identify, evaluate and recommend solutions to critical engineering management problems that need improvement. You will study the important ingredients of running a successful business, and how to improve its operations, productivity and competitiveness by using different management techniques specific to engineering companies. You will be able to develop and manage new projects more effectively and within the given constraints in functions, cost and time. You will also learn how to expand your business through deploying the latest e-commerce and IT techniques.

Throughout the course you will have many hands-on sessions to practise what you have learned in the classroom. These practical skills will be obtained through using specialist software in operation management, quality analysis, business decision modelling, supply chain management and resources simulation. The project dissertation will allow you to develop a chosen field of knowledge which will complement your career ambition. Teamwork, group presentations, case studies and industrial speakers are other highlights of the course, enhancing your learning experience and employability.

Assessment

Coursework, software session reports, group presentation, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Projects and Risk Management
-Industrial Operation Management and Resources Simulation
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Engineering Individual Project

Option modules (choose one)
-E-engineering Systems
-Green Engineering and Energy Efficiency
-Mechatronic Design and Automation

Read less
Important. if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course. Read more
Important: if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course.

Choose Kingston's Mechanical Engineering MSc

This course, accredited by the Institution of Mechanical Engineers, is designed to provide you with the latest technological knowledge and industrial management skills, at an advanced level of study, in specific aspects of mechanical engineering that are in demand from industry. The course also provides you with a strategic overview of engineering and management skills necessary to take on leadership roles in major engineering projects.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
-Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
-You can tailor your course to enhance your career ambitions through your module choices, whilst the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.

What will you study?

This course will provide a broad and in-depth understanding of mechanical design engineering, modern materials application and advanced manufacturing technology. You will employ advanced computer-based mechanical engineering design analysis and problem solving, using cutting-edge technologies such as finite elements analysis (FEA), computational fluid dynamics (CFD) and mechanism design analysis and control. What's more, you will develop the entrepreneurial management and business skills necessary to take on leadership roles in major engineering projects.

The project dissertation challenges you to investigate a theoretical area in depth and solve a real-world problem.

Assessment

Coursework and/or exams, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computational Fluid Dynamics for Engineering Applications
-Advanced Stress Analysis and Materials
-Engineering Individual Project

Option modules (choose one)
-Advanced CAD/CAM Systems
-Green Engineering and Energy Efficiency
-Mechatronics Design and Automation

Read less
This course focuses on the latest technology in modern CAD/CAM/CAE/PLM applications to enable students to acquire knowledge and understanding of rapid design and manufacture of a new product from a single computer terminal, without the need for lengthy prototype and test cycles. Read more
This course focuses on the latest technology in modern CAD/CAM/CAE/PLM applications to enable students to acquire knowledge and understanding of rapid design and manufacture of a new product from a single computer terminal, without the need for lengthy prototype and test cycles. Implementing this technology is essential in today's global marketplace, where survival relies on being first to market.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
-Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
-You can tailor your course to enhance your career ambitions through your module choices and the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.

What will you study?

This programme is structured to provide you with the latest developments in this still-evolving discipline, and focuses on providing you with hands-on experience of the latest computing applications throughout the entire product development cycle. The course covers a range of topics from 3D solid modelling and the techniques required to extend the capabilities of a 3D modelling system to gaining practical and theoretical knowledge of analytical computer tools by using finite element analysis (FEA) techniques. It also examines the importance of modern materials in advanced manufacturing processes, as well as computer-aided manufacturing (CAM) and application of rapid prototyping technologies. Additionally, the programme enables you to gain the entrepreneurship, management and business skills necessary to take on leadership roles in major product design engineering projects.

The project dissertation challenges you to investigate a theoretical area in depth and also to undertake a real-world product design problem-solving project.

Assessment

Coursework and/or exams, presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.
-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computer Integrated Product Development
-Advanced CAD/CAM Systems
-Engineering Individual Project

Option modules (choose one)
-Industrial Operation Management and Resources Simulation
-Green Engineering and Energy Efficiency
-Mechatronics Design and Automation

Read less

Show 10 15 30 per page



Cookie Policy    X