• University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
University of Manchester Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
FindA University Ltd Featured Masters Courses
FindA University Ltd Featured Masters Courses
"highway"×
0 miles

Masters Degrees (Highway)

We have 64 Masters Degrees (Highway)

  • "highway" ×
  • clear all
Showing 1 to 15 of 64
Order by 
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. Read more
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. The course is particularly suited to engineers involved in the provision, preservation and operation of highways, but it is open to all those holding a degree or equivalent in Civil Engineering or any other relevant branch of engineering.

The topics covered include: transportation economics; highway planning and programming and route selection; survey methods and instrumentation; computer applications in local authorities; construction law; transportation modelling; theory of traffic flow; impacts of road traffic facilities; traffic: methods for planning, capacity analysis and design; traffic control and management; design of flexible and concrete pavements; pavement maintenance and rehabilitation; surface and sub-surface drainage; bridge design and management; quality assurance plans for road schemes; descriptions of soils and rocks; earthworks technology; stability of fills, slope stability; construction of embankments on soft ground; procurement of civil engineering works; road asset management plans; environmental impact assessment.

Lectures are normally held on Friday evening and Saturday morning each week throughout the two semesters (September to April).

Read less
The Master of Engineering Studies in Transportation Engineering is a specialised masters degree programme developed in consultation with the land transport industry professionals and support from the NZ Transport Agency. Read more

Invest in your future

The Master of Engineering Studies in Transportation Engineering is a specialised masters degree programme developed in consultation with the land transport industry professionals and support from the NZ Transport Agency.

Industry leaders are directly involved through national and regional liaison committees as well as making contributions to lecture content, assignments and research projects.

Programme Structure

Taught (120 or 180 points)
The MEngSt (Transportation Engineering)'s flexible structure gives you the opportunity to consider your personal strengths, undergraduate qualifications, previous work experiences and learning objectives. This makes our programme an excellent choice for students who need to study part-time, or are currently working in industry.

Electives

Elective enrolments may depend on your prior study and professional experience, but ultimately, choosing the appropriate courses and topics can allow you to concentrate on and develop strengths in your energy field of choice.

Our broad list of electives include courses in:
• Traffic Engineering and Planning
• Highway and Pavement Engineering
• Traffic Systems Design
• Highway and Transportation Design
• Traffic Operations and Management
• Planning and Design of Transport Facilities
• Transportation Planning
• Transportation and Networks Analysis
• Highway Safety and Operations
• Infrastructure Asset Management
• Road Asset Management
• Pavement Analysis Design
• Crash Reduction and Prevention
• Highway Geometric Design
• Transport Systems Economics
• Planning and Managing Transport
• Public Transport: Planning and Operation
• Sustainable Transport: Planning and Design

Next generation research at the Faculty of Engineering

The Faculty of Engineering is dedicated to providing you with all the facilities, flexibility and support needed for you to develop the skills needed for the workforce. We boast research themes and programmes that provoke interdisciplinary projects, bringing together expertise from our five departments, other faculties, and industry partners and research organisations. Collaborative study is strongly encouraged – postgraduates in particular have the benefit of experiencing cohorts with diverse academic and industry backgrounds.

You will gain access to world-renowned experts who actively demonstrate the positive impacts research have on society. High-performance equipment and labs beyond industry standards are at your fingertips. Our facilities extend beyond study hours – we take pride in our involvement in student events and associations across the University, and are dedicated to providing you with academic, personal and career advice. We encourage you to take advantage of our resources, and use them to expand the possibilities of your research and career path.

Read less
This course has two distinct streams; Sustainable Highways and Sustainable Railways. Highway engineering is concerned with the planning, design, construction, maintenance and operation of highways, including vehicular, cycle and pedestrian highways and with their effective management. Read more
This course has two distinct streams; Sustainable Highways and Sustainable Railways.

Highway engineering is concerned with the planning, design, construction, maintenance and operation of highways, including vehicular, cycle and pedestrian highways and with their effective management. All this must be achieved as sustainably as possible.

Railway engineering is concerned with the planning, design, construction, maintenance and operation of railways, extending to rapid transit (tram) systems, and with their effective management. All this must be achieved as sustainably as possible.

Both of the streams within this MSc programme take a radical, hands-on approach by linking traditional teaching intimately to near-real life highway and railway engineering problems. It provides the technical knowledge and skills to develop the analytical, decision-making and critical powers required to solve, in a sustainable way, genuine, practical highway and railway engineering problems. It will help you to develop transferable skills which could lead to a successful career in highway or railway engineering.

Read less
This programme enables graduates and engineers to develop their technical knowledge and skills to meet the future demands of the construction industry. Read more
This programme enables graduates and engineers to develop their technical knowledge and skills to meet the future demands of the construction industry. It will give you the opportunity to develop your professional, analytical and management skills to an advanced level. It provides a broad, subject-specific curriculum with the chance to specialise through a variety of course options and an individual project. Topics for the project cover a variety of industrial applications and are inspired by the consultancy and research activities of academic staff. The programme is run by a team of research-active staff and is supported by world-class experimental facilities, including the largest concrete slab testing rig in Europe, geotechnical and hydraulics laboratories, and one of the largest environmental chambers in the country. This environment will provide you with unique support and enable you to undertake course-related activities that involve analytical and experimental tasks as well as computer simulations. Our staff work hard to support learning and are committed to student satisfaction. In return, we have received very positive feedback: No.1 in the UK for student satisfaction with the quality of teaching for civil engineering from the Complete University Guide 2016.

The Department of Engineering Science, part of the Faculty of Engineering & Science, has built strong links with local and national employers. We enjoy the support of an industrial board, a forum which enables us to constantly revise our programmes to reflect the changing needs of industry. Our students leave equipped with the skills and practical experience that employers value. We have invested in the very latest facilities and industry-standard equipment, so you will graduate with hands-on experience of the technology being used in the workplace. Many of our programmes are accredited or recognised by relevant professional bodies, which can widen your career options and increase your opportunities for career progression. Our success has been widely acknowledged.

The aims of the programme are:

- To enhance specialist knowledge in selected areas of civil engineering which build upon studies at the undergraduate level

- To develop a broader insight into aspects of civil engineering design

- To develop critical insight into broader management issues relating to civil engineering in particular and construction in general.

Visit the website http://www2.gre.ac.uk/study/courses/pg/engciv/civeng

Engineering - Civil

Our programmes offer graduates and engineers an opportunity to update technical knowledge and enhance skills to serve the future demands of the construction industry, to participate in professional development and to achieve career progression. The School of Engineering seeks to make the postgraduate experience both challenging and rewarding, and, by working closely with industry, strive to uphold our tradition of the high level of industrial relevance of our programmes.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Computer Modelling of Civil Engineering Problems (15 credits)
Highway Engineering (15 credits)
Principles of Management for Civil Engineering. (15 credits)
Analysis and Management of Risk in Civil Engineering (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)
Dynamics of Structures (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Materials Engineering for Construction (15 credits)
Water and Wastewater Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

Analysis and Design for Seismic Action (15 credits)
Advanced Geotechnical Engineering (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Computer Modelling of Civil Engineering Problems (15 credits)
Highway Engineering (15 credits)
Analysis and Management of Risk in Civil Engineering (15 credits)
Dynamics of Structures (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Principles of Management for Civil Engineering. (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Materials Engineering for Construction (15 credits)
Water and Wastewater Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

Analysis and Design for Seismic Action (15 credits)
Advanced Geotechnical Engineering (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

You will be assessed through examinations, case studies, assignments, practical work and a dissertation.

Professional recognition

This programme is accredited by the Joint Board of Moderators (comprising the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers) as fully satisfying the further learning requirement for chartered engineer (CEng) registration. An individual holding an accredited MSc must also hold a CEng-accredited honours degree to have the full exemplifying qualifications for CEng status.

Career options

You may join world-class engineering consultants, contractors and clients with established, accredited training programmes and continuing professional development opportunities worldwide.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643911

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation. Read more
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation.

The technical modules of the course aim to develop the understanding and application of advanced theoretical contents of the specialist subject.

Structural topics are taught in the two modules of Finite Elements and Stress Analysis, and Advanced Structural Design. The interaction of geotechnics and structures is covered in the Soil-Structure Engineering module. The Water Resources Systems Management module looks into the water engineering aspects. The transportation field is studied in the Highway and Railway Engineering and Operations module. The final module, Asset Management and Project Appraisal of Infrastructures examines the methods, merits and economics of repairs of existing structures.

You'll be required to complete an individual project into a specific area of the programme studied, providing you with the opportunity of pursuing a programme of independent study. The work is to be of an investigative nature having an experimental, analytical, computer-based or fieldwork input.

Modules

Teaching techniques include lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Advanced structural design
Soil-structure engineering
Finite elements and stress analysis
Highway engineering and operation
Railway engineering and operation
Water engineering
Project

Accreditation

This degree is accredited by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Employability

Employment prospects for graduates of these courses are very good, especially in view of the upturn in new infrastructure projects in the UK and overseas. Successful students enter into a variety of positions within the construction industry, ranging from working in a design office, with contractors and in local authorities.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society. Read more

Why take this course?

Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society.

This course is a dynamic mix of specialist civil engineering knowledge and essential learning of current technical and practical methods.

What will I experience?

On this course you can:

Create your own designs and models in response to industry-relevant civil engineering demands
Apply your skills to real-life practical problems as part of our partnership schemes with local and global organisations
Venture overseas on a European exchange programme or do a paid work placement in industry

What opportunities might it lead to?

This course will lead you to a recognised professional qualification in civil engineering. It is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT) and the Institute of Highway Engineers (IHE).

It fully satisfies the educational base for a Chartered Engineer (CEng) under the UK Standard for Professional Engineering Competence (UK-SPEC). We maintain excellent links with these professional bodies and regularly update and advise you on matters relating to your progress to professional status.

Here are some routes our graduates have pursued:

Civil engineering
Site engineering
Project management

Module Details

Year one

During your first year you will study fundamental engineering principles and be introduced to the key theories upon which civil engineering practice is based.

Core units include:

Construction Management and Practice
Engineering Analysis
Professional Development 1
Soils and Materials 1
Understanding Structures - Analysis and Design
Water and Environmental Engineering

Year two

In year two you will extend your understanding and ability to analyse complex civil engineering systems.

Core units include:

Behaviour of Structures
Design of Structural Elements
Numerical Skills and Economics
Professional Development 2
Soils and Materials 2

Options to choose from include:

Diving and Underwater Engineering A
Diving and Underwater Engineering B
Fieldwork for Civil Engineers
Heritage Property
Introduction to Project Management Principles
Water Infrastructure

Years three and four*

During your final two years you will build on all the knowledge you have acquired enabling you to analyse, design and manage civil engineering systems in an integrated manner. You will develop practical proposals for complex civil engineering problems in a simulated professional organisation. You will also complete a dissertation on a topic of your choice and a design project, which covers the practical application of knowledge and techniques in the identification, design and management of a simulated major construction project.

Year three

Core units include:

Professional Development 3
MEng Individual Research Project
Project Management for Civil Engineers
Design of Bridges
Soils and Materials 3
Year four

Core units are:

Advanced Engineering Science
Environmental Management
Integrated Design Project

*This course is also available as a 5-year sandwich (work placement)

Programme Assessment

You will be taught through a combination of lectures, seminars, tutorials and group work, and be fully supported throughout your degree. We promote many practical teaching methods by way of lab and fieldwork supplying you with proactive, hands-on learning opportunities.

We guarantee sustained feedback to make sure your studies are on track. Providing you with valuable skills and experience, you will be assessed in a variety of ways, including:

Written exams
Web assessments
Essays and reports
Project presentations
A 10,000-word dissertation

Student Destinations

Working in the construction and engineering sector will make an interesting, challenging and rewarding career. There will be a wide range of roles within the construction industry open to you once you have completed your studies.

This course is an appropriate first degree leading to a recognised professional qualification in civil engineering should you wish to continue your studies. What’s more, it also meets the entry requirements for many of the major graduate engineering programmes.

Overall, you will be a versatile graduate who will have the employable skills to secure work in many areas of the job market.

Roles our graduates have taken on include:

Structural engineer
Construction manager
Design engineer
Highway engineer
Envinronmental and drainage engineer
Site engineer
Traffic engineer
Assistant engineer

Read less
Transportation professionals require a range of advanced skills with a global perspective to develop more sustainable transport systems. Read more

Master of Transportation Systems, SEU-Monash Joint degree

Transportation professionals require a range of advanced skills with a global perspective to develop more sustainable transport systems. To gain this technical and planning expertise in transportation systems, Southeast University and Monash University have established a joint Master’s program in Transportation Systems. This joint Master’s program is undertaken over two years and students graduate with two Master’s degrees; one from Southeast University and one from Monash University.

This first year of the program comprises two semesters of coursework units delivered in English. Units are taught at the Southeast University and Monash University Joint Graduate School in Suzhou, China. The Joint Graduate School in Suzhou is located in the newly developed Suzhou Dushu Lake Higher Education Town that is a part of the Science and Education Innovation District of Suzhou. This area has a number of Universities and Research Institutes as well as recreation and cultural facilities.

In Semester 1, students are required to take six units taught by Southeast University consisting of three core units and three elective units:

Core Units, Semester 1 (by SEU):

- Research Seminar
- Highway Design Theory and Methods
- Road Traffic Safety

Elective Units, Semester 1 (by SEU):

- Highway Operation and Management
- Urban Transport Network Analysis
- Theory and Method for Pavement Design
- Advanced Soil Mechanics
- Advanced Pavement Materials

In Semester 2, students are required to take another six core units delivered by Monash University:

- Intelligent Transportation Systems: Engineering & Management*
- Quantitative Methods for Transportation Systems Analysis*
- Modelling Transportation Systems*
- Urban Public Transportation Systems
- Sustainable Transportation Systems Planning
- Case Studies in Transportation Systems

For the above three units marked by “*”, the students can elect to take these course at the Monash University Clayton Campus in Melbourne, Australia.

The second year of the program consists of students undertaking a research project supervised by academics from Southeast University as well as a mentor from industrial institutes in the Suzhou area. A research thesis is required for each student.

Visit the website http://eng.monash.edu.au/civil/research/centres/its/education-programs/seu-monash-program/

About ITS (Monash)

On behalf of our entire staff and students, it is my great pleasure to welcome you to the Institute of Transport Studies (ITS Monash) at Monash University.

ITS (Monash) has a long and proud history in Monash University and Australia. The transport group at Monash was established in 1969. The Institute of Transport Studies was established in 1995 as the Key National Centre of Excellence in Teaching and Research in Transport Management, recognised by the Australian Government (a joint venture between The University of Sydney and Monash University). For more than four decades the transport group has played a crucial role in the transport field through fundamental, applied and industry-relevant research and education. Through our excellent education programs we continue to educate transportation leaders for industry, government and academia.

At ITS (Monash), we recognise that the next important challenge and opportunity will present itself through availability of live data and low-priced technology to travellers. There will be soon over 3 billion people with connected devices and more than 210 billion sensors out there that will provide a once-in-generation opportunity to tackle issues of complex transport and urban mobility for modern cities. At ITS (Monash) we have aligned our research focus and efforts to take advantage of this new leap in mobility, opportunity to change the way we travel, create sustainable transport, and work toward more liveable cities.

Find out how to apply here - http://eng.monash.edu.au/civil/research/centres/its/education-programs/seu-monash-program/

Read less
Summary. Our MSc Transportation, Planning and Engineering (Infrastructure) course focuses on the design, engineering and operation of land transport systems, with modules looking in detail at road and railway systems. . Read more

Summary

Our MSc Transportation, Planning and Engineering (Infrastructure) course focuses on the design, engineering and operation of land transport systems, with modules looking in detail at road and railway systems. 

This MSc is appropriate for students interested in a career in the transport industry. The infrastructure pathway is differentiated through the compulsory study of highway and traffic engineering, and railway engineering and operations. Whilst this pathway is very suitable for engineers; graduates from other disciplines - science, mathematics, planning and geography – would be welcome on this course.

Modules

Compulsory modules: Transport Economics; Transport Data Analysis and Techniques; Transport Planning: Policy and Governance; Transport Planning: Practice; Transport Modelling; MSc Research Project; Highway and Traffic Engineering; Railway Engineering and Operations

Optional modules:: Transport, Energy and the Environment; Human Factors in Engineering; Transport Management and Safety; Logistics Systems Operations

Visit our website for more information.



Read less
If you are an ambitious numerate graduate, or a practitioner in the field, this Masters will equip you with the analytical skills for a rewarding career supporting transport delivery and policy-making at national, regional and local level. Read more

If you are an ambitious numerate graduate, or a practitioner in the field, this Masters will equip you with the analytical skills for a rewarding career supporting transport delivery and policy-making at national, regional and local level.

97% of our graduates find employment in a professional or managerial role, or continue with further studies.*

Study transport economics, as well as econometrics and cost-benefit analysis.

Develop a suite of economic skills that will help promote economic growth within a regulatory framework that minimises any damaging health and environmental impacts, whilst incentivising the best use of resources.

Expand your fluency in:

  • Economic appraisal – to better understand the complex interface between transport and the wider economy
  • Micro-economics – to understand pricing techniques, the importance of economic regulation and the valuation of third party costs and benefits
  • Econometrics – to develop your quantitative models with real world data and test economic theories
  • Independent research – opening the gateway to a career in transport research in either academia or consultancy.

Also experience what it is like to be part of a project team working across disciplinary boundaries within the transport sector. Through this, gain insights into how economics, planning, environmental science, modelling and engineering can work together to design sustainable solutions to global challenges. This industry-inspired approach will enable you to apply your knowledge to real-world issues in the field.

Your colleagues will be among the best and brightest from Latin America to the Far East, from Africa to Europe and the UK. Together, you will learn economic research techniques that will help you develop transport networks that are founded on robust evidence, sustainable and equitable principles, state-of-the-art modelling, accurate data analysis, and an understanding of human psychology.

  • *Higher Education Statistics Agency (HESA), Destinations of Leavers from Higher Education (DLHE) 2015, http://www.hesa.ac.uk

ITS – the global institute teaching the transport leaders of tomorrow.

We have redesigned our suites of courses following close consultation with Industry and academia.

With a strong focus on industry needs, our degrees will prepare you for employment in your chosen field. They will also address the multi-disciplinary nature of transport – enabling you to make effective decisions for clients, employers and society.

And to experience what it’s really like to work in the transport sector, collaborate with a project team of students from our other degrees through our new Transport Integrated Project module.

Research environment

The Institute for Transport Studies (ITS) was established as the UK’s first multi-disciplinary transport department, and we continue to lead the field with our research.

Our economics research has been successful in bridging the interface between academia and industry. For example, CQC (Cost, Quality, Customer) Efficiency Network initiative which is based at ITS and a joint venture between the National Highways & Transport Network (NHT) and the University of Leeds. The CQC Efficiency Network offers local authorities throughout Britain the ability to quantify the scope for cost savings in the delivery of highway services and to identify better practises.

Other Study Options

This programme is available part time, allowing you to combine study with other commitments. You can work to fund your studies, or gain a new qualification without giving up an existing job. We aim to be flexible in helping you to put together a part-time course structure that meets your academic goals while recognising the constraints on your study time.

Accreditation

This programme fulfils the educational requirements for membership of the Chartered Institute of Logistics and Transport (CILT UK).

Course structure

Compulsory modules

  • Shaping Future Transport Systems 15 credits
  • Principles of Transport Economics 15 credits
  • Welfare Economics and Cost-Benefit Analysis 15 credits
  • Transport Econometrics 15 credits
  • Economics of Regulation 15 credits
  • Economic Appraisal and Economic Performance 15 credits
  • Transport Dissertation 60 credits
  • Transport Integrated Project 15 credits

For more information on typical modules, read Transport Economics MSc Full Time in the course catalogue

For more information on typical modules, read Transport Economics MSc Part Time in the course catalogue

Learning and teaching

Postgraduate study involves a range of teaching methods, supported by independent learning. In addition to the traditional lecture and seminar formats, you’ll experience a blend of workshops, computer exercises, practical sessions, directed reading, reflective journal, student-led discussions, fieldwork and tutorials.

Assessment

Assessment is equally varied and can include coursework essays, case-study reports, group assignments, posters, presentations and exams.

Field trips

Transport at ITS is an applied subject. We offer plenty of opportunities for students to experience transport systems in action, both within the UK and Europe, allowing you to meet and hear directly from transport professionals and see what you’ve learned in practice.

For many of our students, the highlight of their year is the European Field Trip. This week-long trip which takes place after the summer exams and has been a fixture in the ITS calendar since 1987. The itinerary varies from year to year, but has often included Belgium, The Netherlands and Germany.

Stops en-route have included Pedestrian Centres and Docklands Transport in Rotterdam; Cycle and Traffic Calming Facilities in Delft; the Motorway Traffic Control Centre in Amsterdam; the Guided Bus System in Essen; the Wuppertal Monorail; Town Planning features in Duisburg and Dusseldorf; research talks at the University of Hasselt, and visit to the Brussels Metro.

Career opportunities

Links with industry

ITS has close working relationships with a number of organisations and many employers visit ITS each year to interview our students for graduate schemes and other vacancies. ITS also regularly circulates specific job vacancies to students.

Our students are highly sought after and have a good reputation with transport consultants, and may receive a job offer before or shortly after graduation.

The organisations that have advertised and/or recruited directly from ITS include Arup, Mott MacDonald, AECOM, Capita, Transpennine Express, Transport for London, Pell Frischmann, Leigh Fisher, JMP, Amey and Hyder among many others.

Read more about Graduate Employability at the Institute for Transport Studies.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation

Solid Mechanics

Finite Element Computational Analysis

Advanced Fluid Mechanics

Computational Plasticity

Fluid-Structure Interaction

Nonlinear Continuum Mechanics

Computational Fluid Dynamics

Dynamics and Transient Analysis

Computational Case Study

Communication Skills for Research Engineers

Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
The University of South Wales Civil & Structural Engineering MSc is a taught postgraduate course offering full-time and part-time pathways. Read more

The University of South Wales Civil & Structural Engineering MSc is a taught postgraduate course offering full-time and part-time pathways.

Students complete a sequence of optional and compulsory modules, plus a final dissertation, before graduating with the 180 credit Master of Science degree.

This degree is your opportunity to establish or consolidate your career as a civil or structural design engineer. The course is accredited for the Further Learning Programme (formerly ‘Matching Sections’) at Chartered Engineer (CEng) level by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

There is also an opportunity for working professionals to progress towards CEng status through a tailor-made route. This will help you accelerate to the remaining steps of CEng status by working with your employer in the process. This is a unique feature of a Masters course and significantly reduces the period required to achieve Chartered status.

To provide the latest specialist knowledge and technical competence, all design-related modules are taught in accordance with the new structural Eurocodes. As well as developing your analytical and problem-solving skills, tuition covers project planning and contract management. The course is also underpinned by research into areas such as the use of novel and sustainable environmentally-friendly materials, geotechnics and structural modelling.

See the website http://courses.southwales.ac.uk/courses/577-msc-civil-and-structural-engineering

What you will study

You will study the following modules:

- Advanced Civil Engineering Materials

- Integrative Project Planning and Management

- Geo-environmental Engineering

- Advanced Structural Analysis and Structural Concrete Design

- Further Advanced Structural Analysis and Steel/Composite Design

- Dissertation

Optional modules include:

- Seismic Analysis and Design to Eurocodes*

- Structural Timber and Masonry Design to Eurocodes*

- Further Finite Element Analysis*

- Non-Destructive Testing*

*10 credit module

Learning and teaching methods

The course is delivered in three major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year – February and September. You will learn through lectures, tutorials and seminars, as well as guest lectures and seminars with prominent industry experts. You will complete a research project using our excellent laboratory facilities and a dissertation on a chosen topic of interest.

Work Experience and Employment Prospects

On completion of this course, you will be able to develop a career as a structural engineer, technical manager, or research and development manager. These roles can be with leading international consultancies, contractors, national and local consulting companies, as well as international research and government organisations.

Assessment methods

Some modules are assessed through coursework, others by a combination of design projects and a formal examination. If you want to continue working in industry, you can apply to study individual modules as short courses on a day-release or block-delivery basis.

Facilities

The University of South Wales has excellent facilities, and is committed to investment and refurbishment. We’ve just completed a £130m investment programme in new buildings and facilities, including significant investment in the Faculty of Computing, Engineering and Science. The University has also announced a further investment of £28m ensure that you’re using equipment and software that is state-of-the-art and industry-standard, we continually evaluate our labs and teaching spaces and regularly re-fit and re-equip them. A recent refurbishment of a number of our Civil and Mechanical Engineering labs is part of this programme of continuous enhancement of our facilities.

Accreditations

The MSc Civil and Structural Engineering is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree*. See http://www.jbm.org.uk for further information.

* It should be noted that candidates completing the MSc who hold an underpinning accredited IEng degree or a non-accredited bachelor degree will need to apply for an academic assessment to determine whether they will meet the educational base for CEng registration.

Applications

Apply directly to the University if you are applying for a part-time, professional or postgraduate course, an Erasmus/Exchange programme, the Legal Practice (part-time) course, to top up your Foundation Degree or HND, or to transfer to USW from another institution.  

Funding

The following postgraduate funding may be available to study the Civil & Structural Engineering MSc at The University of South Wales.

UK postgraduate loans:

Erasmus funding:

Funding from FindAMasters:

Fees

Full Time (UK / EU): £6,000

Full Time (international): £12,600

Part Time (UK /EU): £670 per 20 credit 



Read less
Environmental management in civil engineering projects is of increasing importance throughout the world. This interdisciplinary Masters qualification is ideal if you want to establish or consolidate a career in this field. Read more
Environmental management in civil engineering projects is of increasing importance throughout the world. This interdisciplinary Masters qualification is ideal if you want to establish or consolidate a career in this field.

The course is accredited for the Further Learning Programme (formerly Matching Sections) at Chartered Engineer (CEng) level by the Institution of Civil Engineers (ICE), The Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and The Chartered Institution of Highways and Transportation (CIHT).

There is also an opportunity for working professionals to progress towards CEng status through a tailor-made route. This will help you accelerate to the remaining steps of CEng status by working with your employer in the process. This is a unique feature for a Masters course, and significantly reduces the period required to achieve Chartered status.

Your studies are designed to develop the critical and analytical skills, and management expertise needed to manage civil engineering projects and implement environmentally sustainable solutions. A distinctive feature of this course is its strength in relevant research, namely sustainability.

See the website http://courses.southwales.ac.uk/courses/576-msc-civil-engineering-and-environmental-management

What you will study

You will study the following modules:

*Dissertation

- Advanced Civil Engineering Materials
- Integrative Project Planning and Management
- Geo-environmental Engineering
- Low Carbon Technologies and Sustainability
- Safety, Health and Environmental Engineering

Optional modules include:
- Environmental Management
- ArcGIS Principles and Practice

Learning and teaching methods

The course is delivered in three major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year – February and September. You will learn through lectures, tutorials and seminars, as well as guest lectures and seminars with prominent industry experts. You will complete a research project using our excellent laboratory facilities and a dissertation on a chosen topic of interest.

Work Experience and Employment Prospects

Whether you are a graduate or a professional with industrial experience, this course offers excellent opportunities for career progression. You can develop a career as a civil engineer, engineering project manager, or work in the environmental management or health and safety sectors, with leading international consultancies, contractors, or national and local civil engineering companies. Alternatively, you can work as a technical or research and development manager in research, regulatory authorities, local government or non-governmental organisations (NGOs).

Assessment methods

Some modules are assessed through coursework, others by a combination of design projects and a formal examination.

If you want to continue working in industry, you can apply to study individual modules as short courses on a day-release or block-delivery basis.

Facilities

The University of South Wales has excellent facilities, and is committed to investment and refurbishment. We’ve just completed a £130m investment programme in new buildings and facilities, including significant investment in the Faculty of Computing, Engineering and Science. The University has also announced a further investment of £28m ensure that you’re using equipment and software that is state-of-the-art and industry-standard, we continually evaluate our labs and teaching spaces and regularly re-fit and re-equip them. A recent refurbishment of a number of our Civil and Mechanical Engineering labs is part of this programme of continuous enhancement of our facilities.

Read less
Your programme of study. You can study this programme either full time on campus, part time, or online to fit flexibly around work commitments. Read more

Your programme of study

You can study this programme either full time on campus, part time, or online to fit flexibly around work commitments.

Whilst Safety and Reliability Engineering allows you to apply your skills and knowledge to a wider range of industries, this programme is specifically for the oil and gas industry. It provides you with the knowledge to review reliability of engineering facilities, materials and products and legislative framework at the same time. Safety has always been of paramount concern in the oil and gas industry with a lot of learning and knowledge acquired since the oil industry growth of the 1970s. This knowledge has been scrutinised by University of Aberdeen and the industry to provide professional expertise to manage safety and reliability. Future challenges are being met to some extent by the advent of affordable sensors which manage difficult to reach places, but nonetheless require the knowledge and capabilities of professionals working in this discipline to ensure they are fit for purpose.

The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

Courses listed for the programme

Semester 1

Fundamental Safety Engineering and Risk Management Concepts

Statistics and Probability for Safety, Reliability, and Quality

Fire and Explosion Engineering

Offshore Oil and Gas Production Systems

Semester 2

Advanced Methods for Risk and Reliability Assessment

Applied Risk Analysis and Management

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/288/safety-and-reliability-engineering-for-oil-and-gas/

There is also on online delivery:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1081/safety-and-reliability-engineering-for-oil-and-gas/

Why study at Aberdeen?

  • The university is highly regarded within the oil and gas industry for continuous integration with industry needs and knowledge
  • You can study flexibly either part time or online
  • It is supported by the Lloyds Register and Advisory Board which in turn builds on the knowledge within the School of Engineering
  • We are ideally placed to provide this programme of study and support it with strong links to industry

Where you study

  • University of Aberdeen
  • Full time and part time
  • 12 Months or 24 Months
  • September start

There is also an Online delivery of this programme

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

Fees for Online delivery:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1081/safety-and-reliability-engineering-for-oil-and-gas/

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
The MSc in Management of Projects prepares students for a professional role in a wide range of projects by providing students with an understanding of both the people-related and technical requirements necessary for the successful management of projects, as well as the organisational and strategic aspects. Read more
The MSc in Management of Projects prepares students for a professional role in a wide range of projects by providing students with an understanding of both the people-related and technical requirements necessary for the successful management of projects, as well as the organisational and strategic aspects.

This MSc is one of four MSc courses within the Management of Projects Group of Programmes. The other MSc courses are: Commercial Project Management, Construction Project Management and Engineering Project Management.

The School of Mechanical, Aerospace and Civil Engineering has a long history of delivering project management related masters courses and the staff who deliver the programme are drawn for a wide variety of backgrounds and industrial experience.
Teaching and learning

The Management of Projects MSc is a full time course which is studied over 12 months, starting in September each year. The course comprises eight taught course units, each worth 15 credits, and a research dissertation worth 60 credits. In addition, the Applied Project Management unit is course-specific unit which uses simulation exercises supplemented by guest speakers to provide students with hands-on practical experience of managing a project throughout its life cycle. Students must also select three option units and carry out a Management of Projects based dissertation.

Assessment of the taught part of the course is via a combination of formal written examinations and coursework assignments, which will include group work and oral presentations. Some assessment is based on online material provided by the Association for Project Management (APM) and PRINCE2 (a process-based method for effective project management).

Career opportunities

The MSc Management of Projects acquaints students with the basic processes of project management focuses specifically on the application of project management techniques and the people management challenges in application of project management techniques, using simulation exercises to provide students with hands-on practical experience of managing a project throughout its life cycle, developing team working, decision making and communication skills which employers value highly. Successful graduates of this programme find employment in a wide range of organisations including Bentley Motors, Fujitsu, Activisys FZCO, EPAM Systems, UK NHS, CGGVeritas, Siemens, Carllion, Grand Rig International, also PhD-level research in project management.

Accrediting organisations

The MSc in Management of Projects is listed by the Joint Board of Moderators (JBM) as being Approved Further Learning Schemes for Chartered Engineer. The JBM represents the Institution of Civil Engineers, the Institution of Structural Engineers, the Institution of Highways and Transportation and the Institute of Highway Incorporated Engineers. This means that successful completion of the MSc will enable applicants with an accredited first degree at BEng level, to become chartered engineers.

Students who successfully complete the unit MACE 60062 Conflict Management and Dispute Resolution optional unit are eligible for associate membership of the Chartered Institute of Arbitrators.

Read less
Civil engineering problems require the application of analytical, decision making and critical thinking skills - this course will provide students with the technical knowledge and skills needed to develop these skills. Read more
Civil engineering problems require the application of analytical, decision making and critical thinking skills - this course will provide students with the technical knowledge and skills needed to develop these skills. It will also equip students with a range of transferable skills; an ideal combination for a leading career in Civil Engineering.

The MSc in Civil Engineering provides a comprehensive programme of study across a range of subject areas. You may prefer to opt for a more specialised approach by adopting a subject theme and choosing specific modules in the first two semesters with a research project related to the theme.

You may choose from the following subject themes:
Geotechnical Engineering
Management
Pavement Engineering
Structural Engineering
Transportation
Environmental Fluid Mechanics

Students will develop:
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
the ability to plan and undertake an individual project
interpersonal, communication and professional skills

Previous research projects have included:
Weather impact on construction schedules
Predicted future climate change trends
The use and abuse of GPS in current UK survey practices
The utilization of laser scanning system for examination and monitoring of tunnel deformation and structural integrity
Life cycle assessment of the M25 highway widening scheme

This degree is accredited by the as meeting the requirements for Further Learning as a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) Undergraduate first degree.

This course is also taught at The University of Nottingham's Malaysia Campus

Read less

Show 10 15 30 per page



Cookie Policy    X