• Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University College London Featured Masters Courses
University of Leeds Featured Masters Courses
University of Manchester Featured Masters Courses
Swansea University Featured Masters Courses
"high" AND "performance" …×
0 miles

Masters Degrees (High Performance Computing)

We have 198 Masters Degrees (High Performance Computing)

  • "high" AND "performance" AND "computing" ×
  • clear all
Showing 1 to 15 of 198
Order by 
The Department of Computer Science at The University of Liverpool is delighted to announce the opportunity for Home and European students to receive industrial sponsorship to cover tuition fees for this programme. Read more
The Department of Computer Science at The University of Liverpool is delighted to announce the opportunity for Home and European students to receive industrial sponsorship to cover tuition fees for this programme. For more information visit our Postgraduate Funding Tool or contact Dr Martin Gairing.

The MSc in Big Data and High Performance Computing provides students with an in-depth understanding of big data analysis and processing using high performance computing technology. Run in conjuction with the STFC Hartree Centre, this MSc programme enables students to gain a specialist qualification in an area of computing that is in great demand worldwide.

Big data is commonly described as data that is so large that it cannot be readily processed using standard techniques. Our current global ability to collect data is such that “big data” sets are becoming common-place.

The most obvious example of this is the exponential growth of the World Wide Web; however there are many public and private enterprises where the analysis of large-scale data sets is critical to growth. Although significant computer power exists, the necessary skills-base is lagging behind the technology.

There is an employment gap looming in the field of big data, especially in the context of the skills required with respect to the application of High Performance Computing (HPC) capabilities to address big data problems.

The MSc in Big Data and High Performance Computing is designed to address this anticipated skills gap and provide those completing the programme with the necessary abilities (abilities which will be highly desirable within the employment market) to address big data centric problems in the context of HPC.

The programme has been designed and operates in close collaboration with the Hartree High Performance Computing Centre and focuses on the practical application of Big Data and HPC technology.

The Hartree centre is underpinned by £37.5 million of Government investment and hosts the UK’s premier supercomputing environment. This partnership provides a unique and unrivalled MSc programme and ensures that students completing the programme have a ready route into employment, facilitated by commercial contacts provided as part of the individual project.

You may also be interested in our Big Data Management MSc, Geographic Data Science MSc and Risk and Uncertainty MSc. For more information visit http://www.liverpool.ac.uk/study/postgraduate

The programme is organised as two taught semesters followed by an individual project undertaken over either the summer or, if desired, during the following year of study. Within each semester students study a number of modules adding up to 60 credits per semester (120 in total). This will be followed by a project dissertation, also 60 credits, making an overall total of 180 credits.

Why Computer Science?

Excellent partnerships

The MSc in Big Data and High Performance Computing programme has been developed, and operates, in close collaboration with the STFC Hartree Centre at Daresbury. The Hartree centre is underpinned by £37.5 million off Government investment and hosts the UKs premier supercomputing environment. The Department of Computer Science at Liverpool provides for a wide range of Big data, HPC and related skills and experience. This partnership means that this programme is unique and unrivalled. The partnership also ensures that students completing the programme have a ready route into employment facilitated by commercial contacts provided as part of the individual project element of the programme, which will in most cases is conducted with respect to real commercial requirements.

State of the art teaching and research

MSc Students who pursue their postgraduate study within the Department of Computer Science at the University of Liverpool will be an integral part of a department that is internationally renowned for its advanced research and teaching. The Department came seventh nationally in the 2008 research assessment exercise.

The Department of Computer Science is organised into four main research groups:

Agents
Algorithmics
Logic and Computation
Economics and Computation
Together these groups provide a critical mass of expertise equal to the most complex challenges in Computer Science, within a setting that offers world-class research facilities and support.

Teaching

You will be taught by lecturers who are internationally known for their research. The MSc in Big Data and High Performance Computing is offered full-time on-campus.

The taught components of the programme offer a choice of contemporary computing topics, a strong theoretical basis and the opportunity to gain sound practical and critical analysis skills. The programme can be taken in the form of a single year (12 months) of study with the individual project being undertaken over the summer months, or alternatively the project can be undertaken in the following academic year.

The computing resources include an extensive integrated network of workstations running the Linux operating system and the X-Windows graphical interface, together with a large number of PCs running Microsoft Windows. Staff and students have easy access to high quality laser printing facilities and a range of specialist software.

Career prospects

The MSc in Big Data and High Performance Computing (HPC) is specifically designed to fill a "skills gap" in the employment market. More specifically it is designed to provide students with the necessary skills to allow them to apply Big Data and HPC concepts to real problems. The programme has been structured to facilitate the practical application of this "cutting-edge" technology to real-world problems. The intention is that at the end of the programme students will be able to apply the knowledge gained on the programme specifically to real-world big data and HPC problems. However, the programme is also designed to furnish students with a set of transferable skills that are of particular relevance across the IT industry.

The programme has been developed, and is delivered, in close collaboration with the Hartree Centre at Daresbury which operates the UK's largest supercomputer (capable of a thousand trillion calculations per second). Hartree have close links with industry, and provide assistance with respect to the group and final individual projects, the latter conducted in partnership with commercial and/or non-commercial organisations.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study High Performance and Scientific Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study High Performance and Scientific Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in High Performance and Scientific Computing is for you if you are a graduate in a scientific or engineering discipline and want to specialise in applications of High Performance computing in your chosen scientific area. During your studies in High Performance and Scientific Computing you will develop your computational and scientific knowledge and skills in tandem helping emphasise their inter-dependence.

On the course in High Performance and Scientific Computing you will develop a solid knowledge base of high performance computing tools and concepts with a flexibility in terms of techniques and applications. As s student of the MSc High Performance and Scientific Computing you will take core computational modules in addition to specialising in high performance computing applications in a scientific discipline that defines the route you have chosen (Biosciences, Computer Science, Geography or Physics). You will also be encouraged to take at least one module in a related discipline.

Modules of High Performance and Scientific Computing MSc

The modules you study on the High Performance and Scientific Computing MSc depend on the route you choose and routes are as follows:

Biosciences route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Conservation of Aquatic Resources or Environmental Impact Assessment

Ecosystems

Research Project in Environmental Biology

+ 10 credits from optional modules

Computer Science route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Software Engineering

Data Visualization

MSc Project

+ 30 credits from optional modules

Geography route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Modelling Earth Systems or Satellite Remote Sensing or Climate Change – Past, Present and Future or Geographical Information Systems

Research Project

+ 10 credits from optional modules

Physics route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Monte Carlo Methods

Quantum Information Processing

Phase Transitions and Critical Phenomena

Physics Project

+ 20 credits from optional modules

Optional Modules (High Performance and Scientific Computing MSc):

Software Engineering

Data Visualization

Monte Carlo Methods

Quantum Information Processing

Phase Transitions and Critical Phenomena

Modelling Earth Systems

Satellite Remote Sensing

Climate Change – Past, Present and Future

Geographical Information Systems

Conservation of Aquatic Resources

Environmental Impact Assessment

Ecosystems

Facilities

Students of the High Performance and Scientific Computing programme will benefit from the Department that is well-resourced to support research. Swansea physics graduates are more fortunate than most, gaining unique insights into exciting cutting-edge areas of physics due to the specialized research interests of all the teaching staff. This combined with a great staff-student ratio enables individual supervision in advanced final year research projects. Projects range from superconductivity and nano-technology to superstring theory and anti-matter. The success of this programme is apparent in the large proportion of our M.Phys. students who seek to continue with postgraduate programmes in research.

Specialist equipment includes:

a low-energy positron beam with a highfield superconducting magnet for the study of positronium

a number of CW and pulsed laser systems

scanning tunnelling electron and nearfield optical microscopes

a Raman microscope

a 72 CPU parallel cluster

access to the IBM-built ‘Blue C’ Supercomputer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

The Physics laboratories and teaching rooms were refurbished during 2012 and were officially opened by Professor Lyn Evans, Project Leader of the Large Hadron Collider at CERN. This major refurbishment was made possible through the University’s capital programme, the College of Science, and a generous bequest made to the Physics Department by Dr Gething Morgan Lewis FRSE, an eminent physicist who grew up in Ystalyfera in the Swansea Valley and was educated at Brecon College.



Read less
Provided by the School of Mathematics, this is a one year (full time) taught M.Sc. in High Performance Computing. The degree provides practical training in the emerging high performance computing technology sector. Read more
Provided by the School of Mathematics, this is a one year (full time) taught M.Sc. in High Performance Computing. The degree provides practical training in the emerging high performance computing technology sector.

The aim of the course is to train students in practical applications of high-performance technical computing in industry, finance and research. Course content includes computer architecture, software optimisation, parallel programming, classical simulation and stochastic modelling. Application areas include simulation of physical, chemical and biological systems, financial risk management, telecommunications performance modelling, optimisation and data mining. The course has a number of optional elements, allowing specialization in application areas.

The course includes a strong practical element. Students have unlimited access to a dedicated teaching computing laboratory, and access to the facilities of the Trinity College Centre for High- Performance Computing, which include large-scale parallel computers. Career opportunities include mathematical modeling, simulation and forecasting, database mining and resource management. The techniques covered during the year will allow students to work in advanced software development including parallel and concurrent software applications. High-performance technical computing methods are becoming increasingly widespread in research into mathematics, physics, chemistry and biotechnology, engineering and finance, providing a wide range of options for the student wishing to go on to further research.

Read less
To meet the increasing demand for MSc students to have industry experience, we have introduced this new two-year MSc programme. Read more
To meet the increasing demand for MSc students to have industry experience, we have introduced this new two-year MSc programme. Designed for graduates of the highest calibre the MSc will develop advanced knowledge and skills and give you the opportunity to put your knowledge into practice through valuable work experience during a one year industrial placement.

The MSc in Big Data and High Performance Computing provides students with an in-depth understanding of big data analysis and processing using high performance computing technology. Run in conjunction with the STFC Hartree Centre, this MSc programme enables students to gain a specialist qualification in an area of computing that is in great demand worldwide.

The two-year MSc programme shares the same taught modules with its one-year equivalent. However, unlike the one-year MSc which includes an MSc project over the summer, the two-year programme includes an industrial project and placement in year two (either in the UK or overseas). The placement is typically 30 weeks from September to June.

This opportunity to work in industry will help you strengthen your career options by:

Undertaking the project work in an industrial setting
Applying theory learnt in the classroom to real-world practice
Developing communications and interpersonal skills Building networks and knowledge which will be invaluable throughout your career.
During the placement year you will spend time working in a relevant company suitable for the MSc. This is an excellent opportunity to gain practical engineering experience which will boost your CV, build networks and develop confidence in a working environment. Many placement students continue their relationship with the placement provider by undertaking relevant projects and may ultimately return to work for the company when they graduate.

The University of Liverpool has a dedicated team to help students find a suitable placement. Preparation for the placement is provided by the University’s Careers and Employability Service (CES) who assist students in finding a placement, help students produce a professional CV and prepare students for placement interviews.

The University has very good links with industry and several companies work with us to offer our MSc students competitive placements. Although industry placements are not guaranteed, the University offers you opportunities and support throughout the process to ensure that the chance to find a placement is high.

If you are unable to secure a suitable placement by the end of April during year one, you will be transferred onto the one-year MSc to undertake the MSc project over the summer and graduate after one year.

The programme is organised as two taught semesters followed by an individual project undertaken over either the summer or, if desired, during the following year of study. Within each semester students study a number of modules adding up to 60 credits per semester (120 in total). This will be followed by a project dissertation, also 60 credits, making an overall total of 180 credits.

Read less
You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research. Read more

You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research.

Our staff have a wealth of expertise across all areas of HPC, parallel programming technologies and data science.

This MSc programme has a strong practical focus and provide access to leading- edge HPC systems such as ARCHER, which is the UK’s largest, fastest and most powerful supercomputer, with more than 100,000 CPU cores.

HPC is the use of powerful processors, networks and parallel supercomputers to tackle problems that are very computationally or data-intensive. You will learn leading-edge HPC technologies and skills to exploit the full potential of the world’s largest supercomputers and multicore processors. This is a well-established programme that has been successful in training generations of specialists in parallel programming.

Programme structure

The MSc programme takes the form of two semesters of taught courses followed by a dissertation project.

Your studies will have a strong practical focus and you will have access to a wide range of HPC platforms and technologies. You will take seven compulsory courses, which provide a broad-based coverage of the fundamentals of HPC, parallel computing and data science. The option courses focus on specialist areas relevant to computational science. Assessment is by a combination of coursework and examination.

Taught courses

Compulsory courses:

  • HPC Architectures (Semester 1)
  • Message-Passing Programming (Semester 1)
  • Programming Skills (Semester 1)
  • Threaded Programming (Semester 1)
  • Software Development (Semester 2)
  • Project Preparation (Semester 2)
  • HPC Ecosystem (Semester 2)

Optional courses:

  • Fundamentals of Data Management (Semester 1)
  • Parallel Numerical Algorithms (Semester 1)
  • Parallel Programming Languages (Semester 1)
  • Advanced Parallel Programming (Semester 2)
  • Data Analytics with High Performance Computing (Semester 2)
  • Parallel Design Patterns (Semester 2)
  • Performance Programming (Semester 2)
  • Courses from the School of Informatics, Mathematics or Physics (up to 30 credits)

Dissertation

After completing the taught courses, students work on a three-month individual project leading to a dissertation.

Dissertation projects may be either research-based or industry-based with an external organisation, with opportunities for placements in local companies.

Industry-based dissertation projects

Through our strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies.

An industry-based dissertation project can give you the opportunity to enhance your skills and employability by tackling a real-world project, gaining workplace experience, exploring potential career paths and building relationships with local companies.

Career opportunities

Our graduates are employed across a range of commercial areas, for example software development, petroleum engineering, finance and HPC support. Others have gone on to PhD research in fields that use HPC technologies, including astrophysics, biology, chemistry, geosciences, informatics and materials science.



Read less
You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research. Read more

You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research.

Our staff have a wealth of expertise across all areas of HPC, parallel programming technologies and data science.

This MSc programme has a strong practical focus and provide access to leading- edge HPC systems such as ARCHER, which is the UK’s largest, fastest and most powerful supercomputer, with more than 100,000 CPU cores.

Data science involves the manipulation, processing and analysis of data to extract knowledge, and HPC provides the power that underpins it.

You will learn the multidisciplinary skills and knowledge in both HPC and data science to unlock the knowledge contained in the increasingly large, complex and challenging data sets that are now generated across many areas of science and business.

Programme structure

This MSc programme takes the form of two semesters of taught courses followed by a dissertation project.

Your studies will have a strong practical focus and you will have access to a wide range of HPC platforms and technologies. You will take seven compulsory courses, which provide a broad-based coverage of the fundamentals of HPC, parallel computing and data science. The option courses focus on specialist areas relevant to computational science. Assessment is by a combination of coursework and examination.

Taught courses

Compulsory courses:

  • Fundamentals of Data Management (Semester 1)
  • Message-Passing Programming (Semester 1)
  • Programming Skills (Semester 1)
  • Threaded Programming (Semester 1)
  • Data Analytics with High Performance Computing (Semester 2)
  • Software Development (Semester 2)
  • Project Preparation (Semester 2)

Optional courses:

  • HPC Architectures (Semester 1)
  • Parallel Numerical Algorithms (Semester 1)
  • Parallel Programming Languages (Semester 1)
  • Advanced Parallel Programming (Semester 2)
  • HPC Ecosystem (Semester 2)
  • Parallel Design Patterns (Semester 2)
  • Performance Programming (Semester 2)
  • Courses from the School of Informatics, Mathematics or Physics (up to 30 credits)

Dissertation

After completing the taught courses, students work on a three-month individual project leading to a dissertation. Dissertation projects may be either research-based or industry-based with an external organisation, with opportunities for placements in local companies.

Industry-based dissertation projects

Through our strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies.

An industry-based dissertation project can give you the opportunity to enhance your skills and employability by tackling a real-world project, gaining workplace experience, exploring potential career paths and building relationships with local companies.

Career opportunities

Our graduates are employed across a range of commercial areas, for example software development, petroleum engineering, finance and HPC support. Others have gone on to PhD research in fields that use HPC technologies, including astrophysics, biology, chemistry, geosciences, informatics and materials science.



Read less
With the advent of ever more sophisticated and powerful computer environments, the techniques needed to develop and produce the software to run on these systems are themselves becoming increasingly complex. Read more

With the advent of ever more sophisticated and powerful computer environments, the techniques needed to develop and produce the software to run on these systems are themselves becoming increasingly complex. This course is unique in that it combines software engineering with high performance computing, giving you the tools and techniques that employers are looking for and an advantage in the job market.

This specialist option of the MSc Computational and Software Techniques in Engineering offers a unique insight into the development of computer applications across a wide spectrum of modern computing environments, from multi-core CPUs to specialist GPUs to Cloud Computing, all of which are relevant to the IT industry today.

Who is it for?

If you intend to make a career in software development, whether it is in the data centre, on the desktop or in the rapidly expanding mobile application space, you need to have a strong basis in software engineering. This course is unique in that it combines software engineering with high performance computing, giving you the tools and techniques that employers are looking for and an advantage in the job market.

Why this course?

Cranfield University has many years of specialist knowledge and experience in High Performance Computing. We are able to offer a unique insight into the development of computer applications across a wide spectrum of modern computing environments, from multi-core CPUs to specialist GPUs to Cloud Computing, all of which are relevant to the IT industry today.

We introduce students to parallel software development on the desktop, the super-computer and in the Cloud. Each platform has its own challenges and this course ensure that students become familiar with the best approach to writing software for each one.

Cranfield University is very well located for visiting part-time students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. Part-time students have a flexible commencement date.

This Msc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students

Course details

The course consists of twelve core modules, including a group design project, plus an individual research project. The course is delivered via a combination of structured lectures, tutorial sessions and computer based workshops.

The C++ and Java programming modules, combined with the Software Engineering course, provide the basis of the academic programme and act as a starting point for the more specialist modules encountered later on. The various computational technology platforms are then introduced, giving students both theoretical and hands-on experience of programming in multi-core, General Purpose CPU, distributed and Cloud computing environments.

Group project

The process of software production is rarely an activity undertaken by an individual developer. In today’s software industry, many different specialists are required to contribute to the creation of software. To ensure a high level of quality in the final product, different roles and responsibilities must be brought together into a single team and therefore clear lines of communication between team members are crucial if the project is to be a success.

An important part of this MSc course is the group project, in which we define a realistic problem and ask each group to propose and implement a solution. It is generally a 6 week project taking place between February and March. Members of each group must decide how to organise themselves, assigning roles to each person.

The group project is an opportunity for you to experience first-hand how a software development team is organised and how the different roles contribute to the final product. This is a chance for you to develop an insight into the organisation of development teams in industry, and allows you to understand what is expected from you once you enter employment.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The individual research project allows you to delve deeper into an area of specific interest. All projects are based on real research, whether it is an area of interest for members of the department, or as part of an active research project funded by industry. In some cases our industrial partners sponsor specific research projects into real world problems or areas of development that are of direct interest to them. In recent years, students have proposed their own ideas for their research project. You will generally begin to consider the research project after completing 3-4 modules - it then runs concurrently with the rest of your work.

For part-time students it is common that their research thesis is undertaken in collaboration with their place of work.

Assessment

Taught modules 45%, Group project 5%, Individual research project 50%

Your career

The Software Engineering for Technical Computing masters, attracts enquiries from companies all over the world, who wish to recruit high quality software development graduates. There is considerable demand for students with expertise in engineering software development and for those who have strong technical programming skills in industry standard languages and tools.

Graduates of this course are in demand by financial software developers, mobile application developers, commercial engineering software developers, automotive, telecommunications, medical and other industries and research organisations, have been particularly successful in finding long-term employment. We have had positive feedback from companies in industries as diverse as finance to computer games studios. As such, we enjoy excellent employment statistics, with over 95% of graduates employed within six months.

Some students may go on to register for PhD degrees, many, on the basis of their MSc research project. Thesis topics are most often supplied by individual companies on in-company problems with a view to employment after graduation - an approach that is being actively encouraged by a growing number of industries.



Read less
The MPhil programme in Scientific Computing is a full-time 12-month course which aims to provide education of the highest quality at Master’s level. Read more
The MPhil programme in Scientific Computing is a full-time 12-month course which aims to provide education of the highest quality at Master’s level. Covering topics of high-performance scientific computing and advanced numerical methods and techniques, it produces graduates with rigorous research and analytical skills, who are well-equipped to proceed to doctoral research or directly into employment in industry, the professions, and the public service. It also provides training for the academic researchers and teachers of the future, encouraging the pursuit of research in computational methods for science and technology disciplines, thus being an important gateway for entering PhD programmes containing a substantial component of computational modelling.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcphmpscm

Course detail

The MPhil in Scientific Computing has a research and a taught element. The research element is a project on a science or technology topic which is studied by means of scientific computation. The taught element comprises of core lecture courses on topics of scientific computing and elective lecture courses relevant to the science or technology topic of the project. Most of the projects are expected to make use of the University’s High Performance Computing Service.

The students will attend lecture courses during Michaelmas Term (some courses may be during Lent Term) and then they will undertake a substantial Research Project over the next 6 months (from March to the end of August) in a participating Department. The research element aims to provide essential skills for continuation to a PhD programme or employment, as well as to assess and enhance the research capacity of the students. It is based on a science or technology topic which is studied by means of scientific computation. Research project topics will be provided by academic supervisors or by the industrial partners who are working with the participating Departments and may be sponsoring the research project.

There is equal examination credit weighting between the taught and the research elements of the course, which is gained by submitting a dissertation on the project and by written assignments and examinations on the core and elective courses, respectively.

Weighting of the assessed course components is as follows: Dissertation (research) 50%; written assignments on the core courses 25%; written examinations on the elective courses 25%.

Learning Outcomes

By the end of the course, students will have:

- a comprehensive understanding of numerical methods, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research and research techniques and methodologies;
- demonstrated self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

The taught element comprises core lecture courses on topics of all aspects of scientific computing, and elective lecture courses relevant to the topic of the research project.

The taught element comprises core lecture courses on topics of all aspects of scientific computing, and elective lecture courses relevant to the topic of the research project. There is equal examination credit weighting between the taught and the research elements of the course, which is gained by submitting a dissertation on the project and by written assignments and examinations on the core and elective courses, respectively. Weighting of the assessed course components is as follows: Dissertation (research) 50%; written assignments 25%; written examinations 25%.

The core lectures are on topics of high performance scientific computing numerical analysis and advanced numerical methods and techniques. They are organized by the Centre for Scientific Computing and are taught and examined during the first five months (October-February). Their purpose is to provide the students with essential background knowledge for completing their dissertation and for their general education in scientific computing.

In particular, their objective is to introduce students to the simulation science pipeline of problem identification, modelling, simulation and evaluation - all from the perspective of employing high-performance computing. Numerical discretisation of mathematical models will be a priority, with a specific emphasis on understanding the trade-offs (in terms of modelling time, pre-processing time, computational time, and post-processing time) that must be made when solving realistic science and engineering problems. Understanding and working with computational methods and parallel computing will be a high priority. To help the students understand the material, the lecturers will furnish the courses with practical coursework assignments.

The lectures on topics of numerical analysis and HPC are complemented with hands-on practicals using Linux-based laptops provided by the course (students may bring their own), as well as on the University’s High Performance Computing Service.

Appropriate elective lecture courses are selected from Master’s-level courses offered by the Departments of the School of Physical Sciences, Technology or Biological Sciences. The choice of courses will be such as to provide the students with essential background knowledge for completing their theses and for their general education in the materials science application of the project. They are decided in consultation with the project supervisor. While every effort is made within the Departments to arrange the timetable in a coherent fashion, it is inevitable that some combinations of courses will be ruled out by their schedule, particularly if the choices span more than one department.

Continuing

For continuation to a PhD programme in Scientific Computing, students are required to gain a Distinction (overall grade equal or greater than 75%).

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Machine learning, data mining and high-performance computing are concerned with the automated analysis of large-scale data by computer, in order to extract the useful knowledge hidden in it. Read more
Machine learning, data mining and high-performance computing are concerned with the automated analysis of large-scale data by computer, in order to extract the useful knowledge hidden in it. Using state-of-the-art artificial intelligence methods, this technology builds computer systems capable of learning from past experience, allowing them to adapt to new tasks, predict future developments, and provide intelligent decision support. Bristol's recent investment in the BlueCrystal supercomputer - and our Exabyte University research theme - show our commitment to research at the cutting edge in this area.

This programme is aimed at giving you a solid grounding in machine learning, data mining and high-performance computing technology, and will equip you with the skills necessary to construct and apply these tools and techniques to the solution of complex scientific and business problems.

Programme structure

Your course will cover the following core subjects:
-Introduction to Machine Learning
-Research Skills
-Statistical Pattern Recognition
-Uncertainty Modelling for Intelligent Systems

Depending on previous experience or preference, you are then able to take optional units which typically include:
-Artificial Intelligence with Logic Programming
-Bio-inspired Artificial Intelligence
-Cloud Computing
-Computational Bioinformatics
-Computational Genomics and Bioinformatics Algorithms
-Computational Neuroscience
-High Performance Computing
-Image Processing and Computer Vision
-Robotics Systems
-Server Software
-Web Technologies

You must then complete a project that involves researching, planning and implementing a major piece of work. The project must contain a significant scientific or technical component and will usually involve a software development component. It is usually submitted in September.

This programme is updated on an ongoing basis to keep it at the forefront of the discipline. Please refer to the University's programme catalogue for the latest information on the most up-to-date programme structure.

Careers

Skilled professionals and researchers who are able to apply these technologies to current problems are in high demand in today's job market.

Read less
The development of new materials lies at the heart of many of the technological challenges we currently face, for example creating advanced materials for energy generation. Read more

Overview

The development of new materials lies at the heart of many of the technological challenges we currently face, for example creating advanced materials for energy generation. Computational modelling plays an increasingly important role in the understanding, development and optimisation of new materials. This four year Doctoral Training Programme on computational methods for material modelling aims to train scientists not only in the use of existing modelling methods but also in the underlying computational and mathematical techniques. This will allow students to develop and enhance existing methods, for instance by introducing new capabilities and functionalities, and also to create innovative new software tools for materials modelling in industrial and academic research. The first year of the CDT is a materials modelling option within the MPhil in Scientific Computing (please see the relevant entry) at the University of Cambridge and a range of additional training elements.

The MPhil in Scientific Computing is administered by the Department of Physics, but it serves the training needs of the Schools of Physical Sciences, Technology and Biological Sciences. The ability to have a single Master’s course for such a broad range of disciplines and applications is achieved by offering core (i.e. common for all students) numerical and High Performance Computing (HPC) lecture courses, and complementing them with elective courses relevant to the specific discipline applications.

In this way, it is possible to generate a bespoke training portfolio for each student without losing the benefits of a cohort training approach. This bespoke course is fully flexible in allowing each student to liaise with their academic or industrial supervisor to choose a study area of mutual interest.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcphpdcms

Learning Outcomes

By the end of the course, students will have:
- a comprehensive understanding of numerical methods, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research and research techniques and methodologies;
- demonstrated self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Teaching

The first year of the CDT has a research as well as a taught element. The students attend lecture courses during the first five months (October-February) and then they will undertake a substantial Research Project over the next 6 months (from March to the end of August) in a participating Department. The research element aims to provide essential skills for a successful completion of the PhD, as well as to assess and enhance the research capacity of the students. It is based on a materials science topic which is studied by means of scientific computation. Research project topics will be provided by academic supervisors or by the industrial partners. Most of the projects are expected to make use the University’s High Performance Computing Service (for which CPU time for training and research has been budgeted for every student).

The taught element comprises core lecture courses on topics of all aspects of scientific computing, and elective lecture courses relevant to the topic of the research project. There is equal examination credit weighting between the taught and the research elements of the course, which is gained by submitting a dissertation on the project and by written assignments and examinations on the core and elective courses, respectively. Weighting of the assessed course components is as follows: Dissertation (research) 50%; written assignments 25%; written examinations 25%.

The core courses are on topics of high-performance scientific computing and advanced numerical methods and techniques; they are taught and examined during the first five months (October-February). Their purpose is to provide the students with essential background knowledge for completing their theses and for their general education in scientific computing.

Appropriate elective courses are selected from Master’s-level courses offered by the Departments of the School of Physical Sciences, Technology or Biological Sciences. The choice of courses will be such as to provide the students with essential background knowledge for completing their theses and for their general education in the materials science application of the project. They are decided in consultation with the project supervisor.

Depending on the materials science application of the research topic, students will follow one of the following two numerical methodology options: a) Continuum methods based on systems of partial differential equations (PDEs, e.g. finite-difference, element or volume methods); or b) atomistic approaches, which can be based on classical particle-based modelling (e.g. molecular dynamics) or on electronic structure- based methods (e.g. density functional theory). The students who take the atomistic modelling options will attend a 12-lecture course before continuing to classical particle-based methods or electronic structure methods. Irrespective of the numerical methodology option, students will attend lecture courses on High Performance Computing topics and elements of Numerical Analysis.

In addition to the comprehensive set of Masters-level courses provided by the MPhil and across the University in the field, which will be available to the CDT students, it will also be possible for students to take supplementary courses (not for examination) at undergraduate level, where a specific need is identified, in order to ensure that any prerequisite knowledge for the Masters courses is in place.

Moreover, depending on their background and circumstances, students may be offered places in the EPSRC-funded Autumn Academy, which takes place just before the start of the academic year (two weeks in September).

Funding Opportunities

Studentships funded by EPSRC and/or Industrial and other partners are available subject to eligibility criteria.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/pcphpdcms/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcphpdcms

Read less
Scientists and engineers are tackling ever more complex problems, most of which do not admit analytical solutions and must be solved numerically. Read more

Scientists and engineers are tackling ever more complex problems, most of which do not admit analytical solutions and must be solved numerically. Numerical methods can only play an even more important role in the future as we face even bigger challenges. Therefore, skilled scientific programmers are in high demand in industry and academia and will drive forward much of the future economy.

About this degree

This programme aims to provide a rigorous formal training in computational science to produce highly computationally skilled scientists and engineers capable of applying numerical methods and critical evaluation of their results to their field of science or engineering. It brings together best practice in computing with cutting-edge science and provides a computing edge over traditional science, engineering and mathematics programmes.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), two optional modules (30 credits) and a dissertation/report (60 credits).

A Postgraduate Diploma, six core modules (90 credits), two optional modules (30 credits), is also offered.

Core modules

  • Computational and Simulation Methods
  • Numerical Methods
  • Numerical Optimisation
  • Research Computing with C++
  • Research Software Engineering with Python
  • Techniques of High-Performance Computing

Optional modules

Options include a wide selection of modules across UCL Engineering and UCL Mathematical & Physical Sciences.

Dissertation/report

All students undertake an independent research project project which culminates in a dissertation of 20,000 words.

Teaching and learning

The programme is delivered through a combination of lectures and hands-on programming and includes a variety of short programming projects, delivered as part of the taught component. Students are encouraged to participate in scientific seminars, for example, weekly seminars at the UCL Centre for Inverse Problems. Assessment is through examinations, assignments, small projects and the dissertation, including a computer programme.

Further information on modules and degree structure is available on the department website: Scientific Computing MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

We expect our graduates to take up exciting science and engineering roles in industry and academia with excellent prospects for professional development and steep career advancement opportunities. This degree enables students to work on cutting-edge real-life problems, overcome the challenges they pose and so contribute to advancing knowledge and technology in our society.

Employability

Students develop a comprehensive set of skills which are in high demand both in industry and academia: professional software development skills including state-of-the-art scripting and compiled languages; knowledge of techniques used in high-performance computing; understanding and an ability to apply a wide range of numerical methods and numerical optimisation; a deeper knowledge of their chosen science subject; oral and written presentational skills.

Why study this degree at UCL?

UCL has a global reputation for excellence in research and is committed to delivering impact and innovations that enhance the lives of people in the UK, across Europe and around the world. UCL is consistently placed in the global top 20 across a wide range of university rankings (currently 7th in QS World University Rankings 2018). Furthermore, the Thomson Scientific Citation Index shows that UCL is the second-most highly cited European university and 12th in the world.

Our wide-ranging expertise provides opportunities for groundbreaking interdisciplinary investigation. World-leading experts in the field and students benefit from a programme of distinguished visitors and guest speakers in many scientific seminars. In this way a network of collaborators, mentors and peers is created, which students can access in their future career.

This degree has been designed to balance a professional software development and high performance computing skills with a comprehensive selection of numerical mathematics and scientific subjects, culminating in a scientific computing dissertation project. The dual aspect of a science and computing degree enables students to tackle real-life problems in a structured and rigorous way and produce professional software for their efficient solution.



Read less
This course runs in Germany. This course covers a range of essential topics related to distributed computing systems. Yet these modules are not isolated; each one takes its place in the field in relation to others. Read more

About the course

This course runs in Germany.

This course covers a range of essential topics related to distributed computing systems. Yet these modules are not isolated; each one takes its place in the field in relation to others.

The emphasis in the course is to build the connections between topics, enabling software engineers to achieve co-operation between distinct autonomous systems under constraints of cost and performance requirements.

The course is suitable for:

Recent graduates in Electrical or Electronic Engineering or Computer Science, who wish to develop their skills in the field of distributed computing systems.
Practicing engineers and computer professionals who wish to develop their knowledge in this area.
People with suitable mathematical, scientific or other engineering qualifications, usually with some relevant experience, who wish to enter this field.

Aims

The past few years have witnessed that Grid computing is evolving as a promising large-scale distributed computing infrastructure for scientists and engineers around the world to share various resources on the Internet including computers, software, data, instruments.

Many countries around the world have invested heavily on the development of the Grid computing infrastructure. Many IT companies have been actively involved in Grid development. Grid computing has been applied in a variety of areas such as particle physics, bio-informatics, finance, social science and manufacturing. The IT industry has seen the Grid computing infrastructure as the next generation of the Internet.

The aim of the programme is to equip high quality and ambitious graduates with the necessary advanced technical and professional skills for an enhanced career either in industry or leading edge research in the area of distributed computing systems.

Specifically, the main objectives of the programme are:

To critically appraise advanced technologies for developing distributed systems;
To practically examine the development of large scale distributed systems;
To critically investigate the problems and pitfalls of distributed systems in business, commerce, and industry.

Course Content

Compulsory Modules:

Computer Networks
Network Security and Encryption
Distributed Systems Architecture
Project and Personal Management
High Performance Computing and Big Data
Software Engineering
Embedded Systems Engineering
Intelligent Systems
Dissertation

Special Features

Electronic and Computer Engineering is one of the largest disciplines in the University, with a portfolio of research contracts totalling £7.5 million, and has strong links with industry.

The laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.

We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:

Media Communications
Wireless Networks and Communications
Power Systems
Electronic Systems
Sensors and Instrumentation.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Distributed Computing Systems Engineering is accredited by the Institution of Engineering and Technology (IET).

Read less
This unique programme provides numerate graduates with the requisite expertise for the development of a professional career in the profitable and intellectually exciting triangle formed by mathematics, technology and finance. Read more

This unique programme provides numerate graduates with the requisite expertise for the development of a professional career in the profitable and intellectually exciting triangle formed by mathematics, technology and finance.

Financial institutions rely on a functional blend of Mathematics, Technology and Finance to develop, enhance and sustain their competitive edge. The financial industry is undergoing a second wave of technological transformation related in particular to: the establishment of electronic trading platforms; improved risk management and pricing accuracy; the high performance computing implications of expanding regulatory requirements.

As a result there is increasing demand for numerate and technologically capable personnel from a wide range of top employers including investment banks, hedge funds, financial software companies, brokerage firms and consultancy firms. Other business lines are now developing similar paradigms where numerate, technologically able personnel are part of business innovation and decision-making.

The Financial Computing MSc is run jointly by the School of Mathematical Sciences and the School of Electronic Engineering and Computer Science. It is aimed at science and engineering graduates with mathematical exposure and some experience in computer programming. The content of the programme is a combination of technology and financial mathematics. It contains modules related to up-to-the-minute industry challenges such as high performance and GPU development.

Why study with us?

  • Queen Mary is a member of the prestigious Russell Group of leading UK universities, combining world-class research and teaching excellence.
  • You will be taught by distinguished academics and experienced practitioners who blend advanced theory with practical applications.
  • You will study in recently refurbished MSc student offices, with state-of-the-art computers and software.
  • We are conveniently located in central London, in close proximity to the two world renowned financial districts of the City of London and Canary Wharf.

Programme Outline

The study programme consists of four compulsory and four elective modules. The modules offered by the School of Mathematical Sciences will provide a solid understanding of the principles of mathematical finance. The modules offered within the Schools of Electronic Engineering and Computer Sciences will focus on key aspects of technological implementation.

Full time Study

You will study eight modules in total with an even split across semesters one and two. You will complete a 10,000 word dissertation/research project during semester three.

Full time Study with Industrial Experience

You will study eight modules in total with an even split across semesters one and two. You will complete a 10,000 word dissertation/research project during semester three. Expert staff will support the arrangement of your industrial placement, which will be carried out in the second year of your programme and assessed through the completion of the Industrial Placement Project.

The industrial placement takes place from the September following the taught part of the MSc and is for a maximum of 12 months. It is a student's responsibility to secure their own placement, but the EECS Placement Team will provide support. The Placement Team source and promote suitable opportunities, assist with applications, and with interview preparation.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken after you have completed and passed the taught component of the degree and submitted your MSc project. The placement will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

In the event that you are unable to secure a placement we will transfer you onto the 1 year FT taught programme without the Industrial Experience. This change will also apply to any student visa you hold at the time.

Part time Study

Your programme is delivered across two academic years. You will study four modules in each year of the programme, registering upon two modules per semester to balance your workload.

Our modules are assessed by a mixture of in-term assessment and final examinations. Examinations are held between late April and early June. Dissertations are evaluated in September. Successful completion of the MSc programme will result in the award of the MSc Financial Computing (possibly with Merit or with Distinction).

Structure

Semester 1 - Compulsory

  • ECS793P Introduction to Object-Oriented Programming
  • MTH771P Foundations of Mathematical Modelling in Finance
  • MTH739N Topics in Scientific Computing

Semester 1 - Elective

  • ECS765P Functional Programming
  • ECS765P Big Data Processing
  • ECS708P Machine Learning

Semester 2 - Compulsory

  • MTH777P Financial Programming

Semester 2 - Elective

  • MTH773P Advanced Computing in Finance
  • ECS769P Advanced Object-Oriented Programming
  • ECS786P Parallel Computing
  • MTH774P Portfolio Theory and Risk Management
  • MTH772P Stochastic Calculus and Black Scholes Theory

The Project

Each MSc Financial Computing student is required to complete a 60 credit project dissertation. A typical MSc project dissertation consists of about 30 word-processed pages (10,000 words), securely bound, covering a specific research-level topic in financial computing, usually requiring the student to understand, explain and elaborate on results from one or more journal articles and possibly to implement some industry quality code.

Detailed outlines of each module for MSc Financial Computing are on Queen Mary University of London website.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

MSc in Data Science aims to equip students with a solid grounding in data science concepts and technologies for extracting information and constructing knowledge from data. Students of the MSc Data Science will study the computational principles, methods, and systems for a variety of real world applications that require mathematical foundations, programming skills, critical thinking, and ingenuity. Development of research skills will be an essential element of the Data Science programme so that students can bring a critical perspective to current data science discipline and apply this to future developments in a rapidly changing technological environment.

Key Features of the MSc Data Science

The MSc Data Science programme focuses on three core technical themes: data mining, machine learning, and visualisation. Data mining is fundamental to data science and the students will learn how to mine both structured data and unstructured data. Students will gain practical data mining experience and will gain a systematic understanding of the fundamental concepts of analysing complex and heterogeneous data. They will be able to manipulate large heterogeneous datasets, from storage to processing, be able to extract information from large datasets, gain experience of data mining algorithms and techniques, and be able to apply them in real world applications. Machine learning has proven to be an effective and exciting technology for data and it is of high value when it comes to employment. Students of the Data Science programme will learn the fundamentals of both conventional and state-of-the-art machine learning techniques, be able to apply the methods and techniques to synthesise solutions using machine learning, and will have the necessary practical skills to apply their understanding to big data problems. We will train students to explore a variety visualisation concepts and techniques for data analysis. Students will be able to apply important concepts in data visualisation, information visualisation, and visual analytics to support data process and knowledge discovery. The students of the Data Science programme also learn important mathematical concepts and methods required by a data scientist. A specifically designed module that is accessible to students with different background will cover the basics of algebra, optimisation techniques, statistics, and so on. More advanced mathematical concepts are integrated in individual modules where necessary.

The MSc Data Science programme delivers the practical components using a number of programming languages and software packages, such as Hadoop, Python, Matlab, C++, OpenGL, OpenCV, and Spark. Students will also be exposed to a range of closely related subject areas, including pattern recognition, high performance computing, GPU processing, computer vision, human computer interaction, and software validation and verification. The delivery of both core and optional modules leverage on the research strength and capacity in the department. The modules are delivered by lecturers who are actively engaged in world leading researches in this field. Students of the Data Science programme will benefit from state-of-the-art materials and contents, and will work on individual degree projects that can be research-led or application driven.

Modules

Modules for the MSc Data Science programme include:

- Visual Analytics

- Data Science Research Methods and Seminars

- Big Data and Data Mining

- Big Data and Machine Learning

- Mathematical Skills for Data Scientists

- Data Visualization

- Human Computer Interaction

- High Performance Computing in C/C++

- Graphics Processor Programming

- Computer Vision and Pattern Recognition

- Modelling and Verification Techniques

- Operating Systems and Architectures

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Career Destinations

- Data Analyst

- Data mining Developer

- Machine Learning Developer

- Visual Analytics Developer

- Visualisation Developer

- Visual Computing Software Developer

- Database Developer

- Data Science Researcher

- Computer Vision Developer

- Medical Computing Developer

- Informatics Developer

- Software Engineer



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Visual Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Visual Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MRes Visual Computing is an ideal preparation for following a career of research or specialism within the area of study. In particular the MRes in Visual Computing seeks to prepare you for further research in the areas of Computer Graphics, Computer Vision, Medical Imaging, and Scientific Visualisation.

We seek strongly motivated students who are able to carry out substantial individual study. Such students are likely to want to control their own time, carry out curiosity driven research to an advanced level, and follow self-study material in advanced topics.

You will decide upon your topic of research in discussion with your supervisor in an exciting and recent area of Visual Computing. In collaboration with your supervisor you will evaluate current research and carry your own research programme based on the contribution you will make. The research programme is supported by taught courses covering useful literature and skills.

Course Content

Research Component

The main part of the MRes in Visual Computing is a substantial and challenging project involving cutting edge research. The project is an exciting opportunity for you to carry out research in the area of Visual Computing. You will produce an abstract of your work, a scientific paper, carry out a presentation and produce your final dissertation.

Taught Component

In addition to the research project, you can choose from a range of modules that provide skills and development training in different areas.

Modules available currently include:

Computer Vision and Pattern Recognition (compulsory)

Data Visualisation (compulsory)

Graphics Processor Programming (compulsory)

Research Methodology (compulsory)

Visual Computing Project Development (compulsory)

Distributed Object-Oriented Programming

Interaction Technologies: Information Retrieval

High Performance Computing in C/C++

Interaction Technologies: Hardware and Devices

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).



Read less

Show 10 15 30 per page



Cookie Policy    X