• University of York Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Southampton Featured Masters Courses
University of Leeds Featured Masters Courses
University of Leeds Featured Masters Courses
Aberdeen University Featured Masters Courses
"heating"×
0 miles

Masters Degrees (Heating)

  • "heating" ×
  • clear all
Showing 1 to 15 of 20
Order by 
Beautiful architecture. Solid structure. What else do buildings need?. Try living in one without any heating, cooling, electrical power, lighting, water or drainage. Read more
Beautiful architecture. Solid structure. What else do buildings need?

Try living in one without any heating, cooling, electrical power, lighting, water or drainage. What would it be like to work in a tower without lifts? How would you manage without telephones, an IT system or an internet connection? All of these systems and many more are designed by building services engineers. Building Service Engineers turn buildings from empty shells into spaces fit for people to use.

From the very start of the building design, Building Services Engineers are involved helping architects and other members of the design team to get the size, shape and configuration of the building right. They determine strategies for designing energy efficient buildings, making them sustainable in the long term. Buildings are responsible for a large chunk of carbon emissions so this work makes a critical contribution to reducing a building's impact on climate change.

Of all the disciplines working in the built environment today, the building services engineer has the broadest reach and the deepest impact, affecting virtually every aspect of building design. In short, they make buildings work.

This Masters course provides a broad basis of advanced understanding in the technological areas of building services and energy engineering, with particular emphasis on those areas that are relevant to the interaction between the built and natural environments, modern industry, and the analysis of developing technologies.

See the website http://www.lsbu.ac.uk/courses/course-finder/building-services-engineering-msc

Modules

The course provides a practitioner perspective with which we analyse building energy requirements in terms of the external environment and internal space, and the effect on energy resources. We consider the principles and analyse associated building engineering systems to understand control, simulation and modelling techniques.

As well as the core engineering skills, appropriate areas of management and research methods are studied to provide a balance foundation for the specialist units. The MSc dissertation provides an opportunity to develop further research skills by application to problems that require in-depth and innovative thinking.

Module descriptions

- Thermal environment, acoustics and lighting
The module provides an introduction to the processes and characteristics that determine the quality of the internal built thermal, acoustic and visual environment. The aims of this module are to examine the principal parameters that affect the thermal, acoustic and visual environment, and the theory and principles necessary for the design of the internal environment.

- Heating and energy in buildings
This module introduces the key components of building heating and cooling systems, and presents sizing methodologies of central plant and techniques for analysing energy consumption and carbon emissions. System configurations and controls are discussed that ensure optimum safe and efficient operation of the plant.

- Energy resource and use analysis
This module offers the opportunity to develop strategic and operational management skills in the fields of infrastructure asset management and project appraisal. It covers design life extensions, risk and asset management techniques for infrastructure, and techniques for physical appraisal of infrastructure, and their economic, environmental and social impacts.

- Electrical power
The module covers electrical power engineering as applied to the design of systems in buildings. In particular, this includes the connection of, and the effects of, small-scale embedded generation as might be employed to exploit renewable energy sources. The module aims to provide an appreciation and understanding of electrical services design in buildings with particular reference to safety requirements and the effects of embedded generation on the supplier and the consumer.

- Sustainable refrigeration
The module introduces the principles of thermodynamics, and applies them to the study and design of energy efficient refrigeration systems. Vapour compression, absorption and other novel cycles are analysed and modeled. Practical applications of sustainable refrigeration are investigated through case studies.

- Ventilation and air conditioning
This module introduces the theory and principles necessary for the evaluation of ventilation and cooling loads, the selection and design of ventilating and air conditioning systems. It examines the principles of operation and characteristics of contemporary systems and their associated controls and distribution systems with particular emphasis on energy use and heat recovery. It discusses the effect of system balancing and maintenance on the correct and energy efficient operation of the systems.

- Energy engineering project

Employability

Employment prospects are excellent. Construction and engineering activity is expected to accelerate in the UK, Europe and worldwide over the next 20 years and demand for building services engineers continues to outstrip supply.

Graduate success stories

Successful students enter various roles including building services design, management of construction projects, and operation of complex installations.

Professional accreditation

The course is fully accredited by Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) undergraduate degree. Potential students are advised to check directly with the CIBSE or EI as to the validity of their first degree for a CEng route.

Accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. Read more
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. With energy consumption within the design and operation of buildings becoming an ever increasingly important factor this programme is designed to combine building services engineering knowledge with specific energy considerations in their design.

The programme is accredited for further learning for CEng and professional membership by the Energy Institute and CIBSE. CIBSE has praised the programme as ‘one of the leading MSc courses of its kind in the UK’.

Areas studied include low energy building design, designing for suitable indoor air quality and thermal comfort, state-of-the-art control systems, and the design of building heating, ventilating, and air conditioning systems.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Programme modules

Compulsory Modules:
- Thermodynamics, Heat Transfer & Fluid Flow [70% exam, 10 credits]
The aim of this module is to provide students from related engineering backgrounds with an understanding of the fundamentals of heat transfer, fluid flow and thermodynamics for application to buildings and their engineering systems.

- Thermal Comfort & Indoor Air Quality [70% exam, 15 credits]
The aim of this module is for the student to understand the principles and practice involved in the design of indoor environments, with respect to occupant thermal comfort and air quality.

- Building Thermal Loads & Systems [70% exam, 15 credits]
The aim of this module is for the student to understand the principles of building thermal load analysis and required systems for medium to large buildings.

- Building Energy Supply Systems [70% exam, 15 credits]
The aim of this module is for the student to be provided with a practical foundation in system design and analysis, by developing the students' understanding of thermal plant in buildings including air conditioning systems and systems for heat recovery.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow and thermal modelling software as wells as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Cundall, Foster & Partners, and Atkins. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Read less
This MSc programme offers very relevant modules in highly sought-after engineering and scientific subjects. Read more
This MSc programme offers very relevant modules in highly sought-after engineering and scientific subjects. Computational modelling has become an essential part of industrial product development; the manufacturing sector in particular has been experiencing a significant uptake of computational engineering technologies to increase its competitiveness in the global market. This programme is designed for engineering and science graduates, providing a wide exploration of these new and advanced technologies. Problem based learning facilities the application of the modelling techniques.

Subject guide and modules

The range of modules reflects the nature of engineering modelling and the uses it is put to in engineering and commercial practice.
Core modules:
-Computational Fluid Dynamics and Applications (ME4501)
-Practical Numerical Methods (ME4510)
-CAD Principles and Materials Selection (ME4505)
-Advanced Computer Aided Design (ADVCAD) (ME4518)
-Major Project (PD4000)
-Research Project (PD4001)
-Renewable Energy (ME4504)
-Sustainable Design (PD4005)

Elective Modules:
-Solid Mechanics and Finite Element Analysis (ME3070)
-Strategic Finance (EM4001)
-Project Management (EM4003)
-New Product Development (EM4006)
-Innovation Business Development (PD4008)
-Finite Element Analysis: Theory and Application (ME4502)

Learning, teaching & assessment

The modules in this programme are delivered with lectures and lab-based tutorials giving a good balance between scientific methodologies and hands-on practice.

There is a heavy emphasis on the use of computational engineering methods and this is reflected in the way the programme is delivered and assessed.

Modules are assessed through either course work or exams. The major project is assessed by dissertation; examples of past major projects include development of CFD code, aero and structural dynamics of vehicles and aircraft, and analysis of development of industrial machines.

Personal development

Along with the range of technical skills, the Programme aims to develop self reliance, project management, IT communications and research skills.

You will develop and deliver a major dissertation and the necessary project management processes. You will also make several individual presentations and get chance to hone your interview techniques.

Career prospects

Career prospects for graduates are excellent. The programme puts practical engineering modelling, research and project management skills in to the hands of graduate. This helps career progression in industries where computer-based technology is required including manufacturing, R&D, science, IT, design and academia.

Recent graduates have been employed in a range of jobs including:
-Product development with a manufacturer of domestic heating products
-Computer aided design with a manufacturer of military/surveillance equipment

Professional accreditation

The MSc Mechanical Engineering (Modelling) is accredited by the Institution of Mechanical Engineers (IMechE) for the purpose of meeting the educational requirements of Chartered Engineer (CEng).

Read less
This Master Program is unique throughout Europe's postgraduate education landscape. It is the first cross-border course dealing with the future issues of alternative energy production. Read more
This Master Program is unique throughout Europe's postgraduate education landscape. It is the first cross-border course dealing with the future issues of alternative energy production. In the beginning the focus of this program relied on contributions from Austria, Hungary and Slovakia. Meanwhile the international orientation was enlarged.

The program is designed more and more cross-border in view of the growing markets in Central and Eastern Europe and the expected investments of enterprises in these countries. The international orientation of the program is reflected not only in the curriculum, but also in the cross-border cooperation with universities and organizations of other countries in the scope of country modules.

Tailor-made country modules are offered to gain in-depth knowledge on energy markets in CEE.

Contents
During the first academic year basic knowledge is taught in order to achieve a uniform level of knowledge on renewable energy among the students. A systematic integration of theory, practice and case studies ensures that the knowledge acquired by the participants can be directly put into practice in their respective companies:

Introduction on Renewable Energy
Biomass, Biofuels and Biogas
Solar Energy – Solar Heating and Photovoltaics
Geothermal Energy, Wind Power, and Small Hydro Power
Efficient Energy Use and Thermal Building Optimization
General Legal and Economical Frameworks
Integration of Renewable Energy Sources into the Energy System
Management and Soft Skills
Perspectives on the Use of Renewable Energy
Master´s Thesis

Target Group

Individuals within companies, organisations, and authorities who are engaged in planning, operating or evaluation of renewable energy or who are involved in financing, promotion, legal licensing, operation of facilities for the use of renewable energy or environmental issues.

Read less
The Composite Materials research degrees are part of a forward-thinking area of research in the school. Read more
The Composite Materials research degrees are part of a forward-thinking area of research in the school. We have close links with the Northwest Regional Development Agency and other leading companies such as, Quickstep, a manufacturer of autoclave processing equipment, as well as a large number of suppliers in the aircraft industry.

Active research
Current research covers interfacial phenomena in composite materials, natural composites and rapid composites manufacture. The deformation mechanics of a range of high performance synthetic reinforcement fibres for composites are explored, as are those of natural and regenerated cellulose fibres. In the later case the main emphasis is on understanding the relationships between the microstructure and molecular structure of these materials and their mechanical properties. Molecular dynamics modelling together with experimental studies have been used to gain an improved insight into the behaviour of natural fibres.

Northwest Composites Centre
We are actively involved with the Northwest Composites Centre, a collaboration which incorporates researchers from several schools in the university, together with colleagues from the University of Liverpool, University of Bolton and Lancaster University covering a wide range of polymer and metallic composites. The hub of this activity is based here at the School of Materials, established through a £2.1m grant from NWDA, and has facilities for rapid processing of composites through a variety of new technologies, including microwave and radio frequency heating as well as Quickstep. There are also extensive facilities for the characterisation of composites.

There are a large number of researchers working in the centre, nearly all on the rapid processing of composites with a view to improving the cycle time and properties of composites. These involve not just the use of rapid curing techniques, but also textile structures for next generation 3 D composites. The evaluation of these materials is also an important part of the projects and therefore supported by state-of-the-art equipment.

Read less
The Composite Materials research degrees are part of a forward-thinking area of research in the school. Read more
The Composite Materials research degrees are part of a forward-thinking area of research in the school. We have close links with the Northwest Regional Development Agency and other leading companies such as, Quickstep, a manufacturer of autoclave processing equipment, as well as a large number of suppliers in the aircraft industry.

Active research
Current research covers interfacial phenomena in composite materials, natural composites and rapid composites manufacture. The deformation mechanics of a range of high performance synthetic reinforcement fibres for composites are explored, as are those of natural and regenerated cellulose fibres. In the later case the main emphasis is on understanding the relationships between the microstructure and molecular structure of these materials and their mechanical properties. Molecular dynamics modelling together with experimental studies have been used to gain an improved insight into the behaviour of natural fibres.

Northwest Composites Centre
We are actively involved with the Northwest Composites Centre, a collaboration which incorporates researchers from several schools in the university, together with colleagues from the University of Liverpool, University of Bolton and Lancaster University covering a wide range of polymer and metallic composites. The hub of this activity is based here at the School of Materials, established through a £2.1m grant from NWDA, and has facilities for rapid processing of composites through a variety of new technologies, including microwave and radio frequency heating as well as Quickstep. There are also extensive facilities for the characterisation of composites.

There are a large number of researchers working in the centre, nearly all on the rapid processing of composites with a view to improving the cycle time and properties of composites. These involve not just the use of rapid curing techniques, but also textile structures for next generation 3 D composites. The evaluation of these materials is also an important part of the projects and therefore supported by state-of-the-art equipment.

Read less
Renewable Energy Systems and the Environment is one of the pathways offered in the Sustainable Engineering programme. This course examines the design and operation of the energy systems that provide the environments in which people live and work. Read more

Why this course?

Renewable Energy Systems and the Environment is one of the pathways offered in the Sustainable Engineering programme.

This course examines the design and operation of the energy systems that provide the environments in which people live and work. It explores how quality of life can be balanced by the need for conservation of world resources.

You’ll learn about different energy resources:
- renewable
- fossil
- nuclear

You’ll look at the systems that are employed to control these resources such as:
- combined heat & power schemes
- heat pumps
- solar capture devices
- high efficiency condensing boilers
- advanced materials
- adaptive control systems

You’ll explore the impact energy has on the environment and how it can be reduced.

Our course has been running for over 20 years and has over 400 graduates. External examiners consistently refer to our beneficial links with industry and the high quality of our project work.

Study mode and duration:
- MSc:12 months full-time, up to 36 months part-time
- PgDip: 9 months full-time

See the website https://www.strath.ac.uk/courses/postgraduatetaught/sustainableengineeringrenewableenergysystemstheenvironment/

You’ll study

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

You must take three specialist modules if you’re studying for the Postgraduate Certificate and up to five if you’re studying for a Postgraduate Diploma or MSc.

Successful completion of six modules leads to the award of a Postgraduate Certificate.

Major projects

- Group project
This usually involves four or five students working together. Each project focuses on a particular energy/environment system and includes a technical appraisal, and, where appropriate, an assessment of its cost effectiveness and environmental impact.
At the end of the project, students perform a presentation during the University’s Knowledge Exchange week to invited guests from industry. This event provides an important networking opportunity for students.

- Individual project
The individual project is an opportunity for students to work independently on an energy topic with a more in-depth analysis than the group project.

Accreditation

The course is approved by the Energy Institute, the Institution of Mechanical Engineers and the Royal Aeronautical Society and meets the academic requirements for Chartered Engineer (CEng) status.
Students are encouraged to take up free membership of these professional organisations.

Facilities

Students have access to departmental laboratories with a range of testing equipment. For example, a recent MSc project included the use of sophisticated thermal measurement of thermal storage materials undertaken in the Advanced Materials Research Laboratory.

Student competitions

Students can enter a number of competitions, which vary year-to-year. Recent examples include:
- District Heating and Cooling (DHC+) Student Competition
- Chartered Institution of Building Services Engineers Simulation Group Award for Best MSc Dissertation

- Guest lectures
Students are regularly invited to talks by research visitors from the Energy Systems Research Unit. Talks on career options are also given by representatives of the Energy Institute.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course comprises compulsory technical modules, a choice of broader generic modules, which are recommended by accrediting professional bodies, group projects with industry input, and individual projects.

Teaching methods are varied, and include lectures, discussions, group work, informal reviews, on-line questionnaires, and computer modelling laboratories.

Assessment

Assessment of taught modules are by written assignments and exams. Group projects are assessed by project websites and presentations. Individual projects are assessed on the submitted thesis.

Careers

- Where are they now?
100% of our graduates are in work or further study.*

Job titles include:
- Artificial Intelligence Engineer
- Biomass Engineer
- Renewable Energy Consultant
- Renewable Energy Development Officer
- Technical Analyst

Employers include:
- Greenspan
- Mott Macdonald
- Natural Power
- SSE
- Scottish Power Energy Networks
- The Campbell Palmer Partnership
- RSP Consulting Engineers

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more

Course Overview

Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

Research Areas

Bio-energy:
Our research spans the whole supply chain: growing novel feedstocks (various biomass crops, algae etc); processing feedstocks in novel ways; converting feedstocks into fuels and chemical feedstocks; developing new engines to use the products.
Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.
We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy:
New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.
Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.
Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power:
We undertake fundamental and applied research into various aspects of power generation and energy systems, including: the application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines; domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils; biowaste methanisation; biomass and biowaste combustion, gasification; biomass co-combustion with coal in thermal power plants; CO2 capture and storage for thermal power systems; trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy); engine and power plant emissions monitoring and reduction technology; novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies:
We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.
Key areas of research include: biomineralisation; liquid organic hydrides; adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources:
Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.
We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.
Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Postgraduate Researcher Development Programme, doctoral training centres and Research Student Support Team.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/energy-mphil-phd/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/energy-mphil-phd/#howtoapply

Read less
The world is facing increasing environmental threats which are posing severe scientific, social and economic challenges to the human race. Read more

Overview

The world is facing increasing environmental threats which are posing severe scientific, social and economic challenges to the human race. These challenges include: the depletion of natural resources, the loss of diversity and the need to develop new forms of energy generation whilst efficiently utilising existing energy sources.
Tackling these environmental problems and establishing a sustainable environment requires the adoption of appropriate policies and managerial strategies. The interdisciplinary nature of this postgraduate course provides a broad understanding of these environmental problems whilst embedding the appropriate specialist scientific, managerial and generic skills for a career in the environmental sustainability sector.
The course incorporates Keele University’s internationally recognised expertise in research and teaching on environmental issues. It is taught by a team of environmental specialists working in the fields of environmental technologies, biological sciences, chemical science, project management, and environmental policy and politics.

See the website https://www.keele.ac.uk/pgtcourses/environmentalsustainabilityandgreentechnology/

Keele University Sustainability Hub

Keele University’s campus has unrivalled potential to form a unique hub for research, development and demonstration of a range of environmental and sustainable technologies.

The Keele Sustainability Hub site contains both academic buildings and buildings for technological companies. Renewable energy sources are integrated into these buildings, incorporating:
- Solar thermal
- Solar PV
- Climate control and underfloor heating
- Smart lighting systems
- Rainwater harvesting
- Ground source heat
- Bio-fuel woodchip burner
- Wind turbine

The main focus of the site is the specialist Hub for Sustainability building. The Sustainability Hub acts as a focus for the research into, teaching of, and management of sustainability and green technology that takes place at Keele University. It’s a means to bring all these different activities together and then to communicate the innovations and implications out to the rest of campus, schools, businesses and the wider community.

As a student on the MSc in Environmental Sustainability & Green Technology programme a lot of your teaching will take place at the Hub, and you’ll have direct access to these environmental developments first hand. The students use the Hub and its facilities as their base - a place to meet and to study - during their year at Keele.

Course Aims

The MSc in Environmental Sustainability and Green Technology is designed to provide an interdisciplinary understanding of environmental challenges whilst giving the opportunity to specialise in several sustainability themes related to geosciences, energy generation, biological science, green information technology, environmental policy and politics, and project management.

Successful students will gain
- An understanding of knowledge in the areas of science, technology, policy and green political theory relevant to environmental sustainability

- Experience in analytical and computer techniques which would allow them to contribute to the solving of environmental challenges

- A conceptual understanding to evaluate critically current research and advance scholarship in environmental sustainability

- A comprehensive understanding of experimental design, planning and scientific techniques within a research project

- Problem-solving and team-working skills relevant to the implementation of sustainable technologies and policies

Course Content

The MSc programme comprises 8 taught 15-credit modules and a 60-credit research project which is undertaken either at Keele University or on placement with an industrial collaborator.

This structure allows students to obtain a postgraduate certificate (60 credits) or a postgraduate diploma (120 credits) depending on the number of modules studied.

The first two modules provide an overview of important environmental technologies and policies relevant to sustainability. Students then choose four from ten optional modules which are arranged within four themes:
- Renewable and Sustainable Energy
- Biological Challenges and Sustainability
- Environmental Politics
- Policy and Project Management

Cross theme studies are encouraged. This interdisciplinary knowledge is then applied in a student-centred learning situation. This provides the necessary teamwork and problem-solving skills to formulate strategies to address a range of environmental and sustainability challenges.

The 60-credit research project is preceded by a Research Skills module.

Teaching & Assessment

Modules are assessed by assignment and/or examination. The research project is based on the submission of a 15 - 20,000 word report that is undertaken by the student in conjunction with an academic supervisor and, where appropriate, an industrial collaborator.

Field course costs

There will be no charge to new students taking field courses. The School receives an annual financial contribution from the University to support the cost of the field course programme. Therefore field course costs for new postgraduate students will be paid for by the University.

Employment Case Studies

Our unique inter-disciplinary course leads our graduates into a diverse range of careers.

Our students have chosen careers in research; in local, regional and national government; multi-national corporations; environmental consultancies and charities.

For examples of what graduates are doing now, see here - https://www.keele.ac.uk/gge/applicants/postgraduatetaughtcourses/msc-esgt/employmentcasestudies/

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

The Master of Science in Architecture trains designers to realize the synergy between the engineering and the architecture disciplines.

The programme provides students with an advanced level of knowledge and insight and makes them proficient in the creative and inventive use of the engineering and architectural knowledge in a complex architectural design.

The training is characterized by the integration of scientific research in education. The design studio acts as a crystallization point in the application of knowledge with respect to architectural design, structural design, installation techniques and urban planning. Given the complex and more advanced nature of architectural design at Master level, it requires the interaction between various disciplines combined with a scientific attitude.

The programme prepares students to a wide range of job profiles such as architectural and structural engineer, project manager, consultant, employee or executive in an architectural or engineer office, supervisor of the built heritage, policy maker for urban planning, researcher and others.

The programme consist of a fixed number of compulsory courses and a number of optional courses . The second year also includes a master thesis. In this master thesis it is requested to realize a synergy between a research study and an architectural design.

Curriculum

Available on http://www.vub.ac.be/en/study/architectural-engineering/programme

Tuition fees

• €837 per year for EEA students
• €2500 per year for non-EEA students (student who require a student visa)

Student profile

You are looking for a career which is creative, challenging and fulfilling
You are driven by architectural and constructional design
You are looking for an engineering degree which combines the challenges and inventiveness of the modern building industry with a flair for originality and creativity
You are interested to study in an international environment

Admission requirements

Applicants should have acquired the following knowledge during their undergraduate studies:

For architectural science: to be able to make use of the knowledge concerning architectural theory and history in project proposals and to discourse on architectural subjects in a reasoned and critical way;

For engineering sciences: to posses the more specialized knowledge for the calculation and simulation of all technical aspects related to the execution of a project, ranging from the stability of structures, foundation techniques, building physics, building acoustics, heating, durability, lighting to the use of new materials, lightweight constructions, the re-use and renovation of existing buildings and the 4D-design;

For design: to have insight into complex problems, to be able to formulate and define a problem, to integrate multi-disciplinary knowledge in the design, to justify the steps taken in a design process, to implement design insights on a distinctive way and to present and communicate, including critical reflection.

Additionally, applicants should be proficient in English

Read less
If your aim is to become a chartered building services engineer we will give you the experience and knowledge - subject to accreditation approval from the Chartered Institution of Building Services Engineers - to achieve your goal. Read more
If your aim is to become a chartered building services engineer we will give you the experience and knowledge - subject to accreditation approval from the Chartered Institution of Building Services Engineers - to achieve your goal. Whether you've graduated from our BSc (Hons) course, or already work in industry as an associate engineer, we will equip you with the ability to play a leading role in the design, installation and management of building services.

The digital age has revolutionised how engineers operate - gone are the days when you could work with calculators, paper and design chart. To meet the demands of this changing industry we've invested heavily in industry standard software to which you'll have access to develop your expertise.

Sustainability and the carbon reduction of buildings is a key issue internationally. We will teach you how to implement this outlook in your work, from energy usage on site, emissions control, and your knowledge of environmental science, to the latest systems and innovation in energy conservation.

We'll improve your technical engineering capabilities so that you can take responsibility for building services and mechanical installations. You'll also focus on areas such as project leadership and management, lighting design, heating, thermal comfort, air conditioning, cooling systems, acoustic comfort and electrical services.

- Research Excellence Framework 2014: our University's results for the Architecture, Built Environment and Planning unit, which it entered for the first time, were impressive with 37% of its research being rated world leading or internationally excellent.

Visit the website http://courses.leedsbeckett.ac.uk/buildingengineering_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

The global outlook of our course content will help you impress many UK companies, who will expect their employees to work for clients around the world. Subject to your accreditation as a chartered engineer - you will be qualified to take responsibility for making key decisions in the industry. We are seeking accreditation from the Chartered Institution of Building Services Engineers from 2015.

- Mechanical Design Engineer
- Building Services Engineer
- Facilities Manager
- Sustainability Engineer

Careers advice:
Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

By 2016 public sector projects over the value of £5,000,000 have to be BIM (Building Information Management) enabled and can no longer comprise of a paper based design - our course gives you the chance to keep pace with an evolving industry.

You'll have the opportunity to use building information modelling that includes packages such as Revit, Tekla and Vico, with a strong emphasis in design that meets environmental constraints.

You'll be taught by staff who are practicing engineers and who will give you a global stance on building services engineering, drawing international comparisons with systems and operational solutions from around the world.

Modules

Masters Final Project / Dissertation & Research Skills (60 Credits)
This is an opportunity to engage in research or advanced scholarship in a subject area that is appropriate to the course and of particular interest to you.

Project Management (20 Credits)
Examine the role of a project manager in the co-ordination of a range of professional skills required in the development and implementation of complex projects to satisfy client objectives.

Sustainable Buildings (20 Credits)
Extend and deepen your knowledge of building and system performance in resolution of carbon reduction and achieving long term sustainability. This focus relates to both the design of the building fabric, the operation of the building and its usage.

BIM & MEP (20 Credits)

WBL - Developing Engineering Portfolios & Study Methods (20 Credits)
Based upon the Engineering Gateways work based tool kit you will be introduced to the requirements for an engineering pathway and uses work based tools and skills as a means of developing that approach.

BEM & Intelligent Buildings (20 Credits)

Sustainable Systems Design (20 Credits)
Review current trends in building services systems design, focusing upon design approaches, sustainability considerations, electrical systems and lighting design.

Professor Mohammad Dastbaz

Dean, Faculty of Arts, Environment and Technology

"We aim to provide innovation in curriculum, engagement with current industry practices and standards, and to give our students the experience of working with staff whose research has national and international reputation."

Mohammad is responsible for the strategic leadership of the Faculty of Arts, Environment and Technology,having joined our University in June 2011 from the University of East London. A well published researcher, with over 50 refereed conference and Journal publications, his research profile includes many funded research programmes including JISC and EU FP7 projects. Mohammad’s first degree was in Electrical and Electronic Engineering. He then went on to complete a PhD in the 'Design, Development and Evaluation of Multimedia Based Learning Systems' at Kingston University. In 1989 he set up one of the UK's first multimedia PC companies, 'Systems 2000'.

Facilities

- Library
Our Library is one of the only university libraries in the UK open 24/7 every day of the year. However you like to study, our Library has you covered with group study, silent study, extensive e-learning resources and PC suites.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy. Read more
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy.

Modules are taught by world-leading experts in the field who have designed some of the world’s most innovative low energy buildings. These design experiences provide unique case study material which students find exciting and invaluable for their own research and design work.

The programme is accredited for further learning for CEng and professional membership by CIBSE and the Energy Institute and benefits from its links with the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Programme modules

- Building Energy Consumption [70% exam, 10 credits]
The aim of this module is for the student to understand the impact that climate, people, equipment selection and design have on energy consumption on a range of building sizes from domestic to large commercial.

- Renewable Energy and Low Carbon Technologies [70% exam, 15 credits]
The aims of this module are for the student to understand the principles of renewable energy and low carbon technologies and their integration into buildings, and to be given a perspective on the potential benefits and applications of these technologies.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Advanced Airflow Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building airflow and ventilation modelling with respect to comfort and energy efficiency, and be given a perspective on the applications of these techniques to the design process.

- Advanced Lighting Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of lighting modelling in buildings with respect to comfort and energy efficiency, and be given a perspective on the application of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow, thermal and daylight modelling software as well as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Hulley and Kirkwood and SE Controls. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Accreditation

The programme is accredited for further learning for CEng and professional membership by the CIBSE and Energy Institute.
The 'SE Controls prize for best overall performance' is awarded to the student graduating from this course with the highest overall mark. This presentation is made on graduation day.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Read less
Why study MSc Building Information Modelling Management at Middlesex?. The construction sector is a major part of the UK economy. Read more
Why study MSc Building Information Modelling Management at Middlesex?

The construction sector is a major part of the UK economy. It represents some 7% of GDP or £11bn per annum of expenditure - 40% of this being in the public sector, with central Government the industry's biggest consumer. Now any centrally procured project will require Building Information Modelling (BIM) compliance.

BIM is a process involving the structured sharing and coordination of digital and non-digital information about a building project throughout its entire lifecycle, from design through procurement and construction and beyond, into the operation and management stage, all the way through to demolishment. It involves the efficient coordination of processes, workflows, people, documentation, graphic/non-graphic assets and technology.

As a direct response to this industry need, we have developed this course which aims to produce practitioners with a qualification to be BIM enabled in their discipline with a critical awareness of contemporary BIM issues informed by technology, research and management skills in standard and unpredictable scenarios.
Importantly, the course provides practitioners in the property and construction sector, and related stakeholders providing services for it, with a qualification to be employed in a Management role in BIM projects. These include technical BIM management positions, operational/administrative BIM management positions, and strategic BIM management positions.

Course Highlights

-The UK’s only work based MSc in Building Information Modelling Management
- Distance learning so there is no need to take time off work
- Work-applied practical projects
- Supported peer engagement and sharing of best practice including an on-campus summer school
- Online meetings and lectures from industry leaders
- Business simulations
- A study programme aligned to CPD and professional bodies’ frameworks
- Accreditation for prior learning (APL), allowing you to gain credit for prior study/work experience
- Opportunities to influence the future of BIM with your thesis

Flexible study through distance learning

Many students choosing to study MSc Building Information Modelling Management will be practitioners in full-time employment. With this in mind, we have designed the course to be flexible around participants’ work and life commitments. You will be able to complete the course part-time through Distance Learning over two years. However, it would be also possible to shorten this to 12 months in fulltime mode depending on how much time you can commit to the course.

Accreditation of prior learning (APL)

APL is available as part of this course, allowing you to gain credit for prior study or work experience and therefore shorten your overall study hours.

Who should do this course?

The course is specifically aimed at experienced professionals who will be expected to manage BIM projects. These will include people from the following sectors: architects, architectural technologists, construction and civil engineers, mechanical, electrical and plumbing services (MEP) engineers, heating, ventilation and air-conditioning (HVAC) engineers, technicians, contractors, subcontractors, fabricators and manufacturers, project managers, facilities and operations managers (FM & OM), quantity surveyors, cost and legal consultants.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in mechanical engineering. - Hard hitting know-how in pumps, compressors, piping, seals and machinery safety. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in mechanical engineering
- Hard hitting know-how in pumps, compressors, piping, seals and machinery safety
- Guidance from experts in the field of mechanical engineering technology
- Networking contacts in the industry
- Improved career prospects and income
- A world recognized EIT Advanced Diploma in Mechanical Engineering Technology

Next intake is scheduled for October 02, 2017. Applications now open; places are limited.

There are limited places in all of our courses to ensure great interaction can be achieved between the presenters and the students.

Contact us now to receive help from experienced Course Advisors!

INTRODUCTION

Whilst there is probably not a serious shortage of theoretically oriented practitioners in mechanical engineering, there is a shortage of highly skilled practically oriented mechanical technologists and engineers in the world today, due to the new technologies only recently becoming a key component of all modern plants, factories and offices. The critical shortage of experts in the area has been accentuated by retirement, restructuring and rapid growth in new industries and technologies. This is regardless of the recession in many countries.

Many businesses throughout the world comment on the difficulty in finding experienced mechanical engineers and technologists despite paying outstanding salaries. For example, about two years ago a need developed for mechanical technologists and engineers in building process plants. The interface from the traditional SCADA and industrial automation system to the web and to mechanical equipment has also created a new need for expertise in these areas. Specialists in these areas are few and far between.

The aim of this 18 month e-learning program is to provide you with core skills in working with mechanical engineering technology and systems and to take advantage of the growing need by industry here.

The five threads running through this program are:

- Fundamentals of Mechanical Engineering Technologies
- Applications of Mechanical Engineering Technologies
- Energy Systems
- Industrial Automation
- Management

WHO SHOULD ATTEND

- Plant operations and maintenance personnel
- Design engineers
- Process technicians, technologists and engineers
- Process control engineers and supervisors
- Mechanical technicians, technologists and engineers
- Mechanical equipment sales engineers
- Pump and mechanical equipment operators
- Contract and asset managers

COURSE STRUCTURE

The course is composed of 21 modules, which cover 5 main threads, to provide you with maximum practical coverage in the field of Mechanical Engineering Technology:

FUNDAMENTALS OF MECHANICAL ENGINEERING

Fundamentals of Mechanical Engineering
Structural Mechanics
Mechanical Drive Systems
A C Electrical Motors and Drives
Rotating Equipment Balancing, Alignment and Condition Monitoring
Hydraulics
Pneumatics
Lubrication Engineering

APPLICATIONS OF MECHANICAL ENGINEERING TECHNOLOGY

Heating, Ventilation and Air-conditioning
Process Plant Layout and Piping Design
Pipeline Systems
Pumps and Compressors
Mechanical Seals
Safe Lifting
Machinery Safety

ENERGY SYSTEMS

Energy Efficiency
Renewable Energy Systems

INDUSTRIAL AUTOMATION

Industrial Automation
Measurement and Control Systems
Management of Hazardous Areas

MANAGEMENT

Project Management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X