• University of Surrey Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University of Leeds Featured Masters Courses
Coventry University Featured Masters Courses
Staffordshire University Featured Masters Courses
Swansea University Featured Masters Courses
"health" AND "physics"×
0 miles

Masters Degrees (Health Physics)

We have 223 Masters Degrees (Health Physics)

  • "health" AND "physics" ×
  • clear all
Showing 1 to 15 of 223
Order by 
About the course. In the current economic climate with healthcare systems facing resource constraints, governments, insurers, health care organisations and the pharmaceutical industry need to analyse the costs and benefits of health-related strategies. Read more

About the course

In the current economic climate with healthcare systems facing resource constraints, governments, insurers, health care organisations and the pharmaceutical industry need to analyse the costs and benefits of health-related strategies.

This course is ideal preparation for a career as a professional health economist or modeller.

As a graduate, you'll be capable of working immediately in health economics and outcomes research consultancies; university-based health technology assessment centres; pharmaceutical and medical companies; healthcare and government organisations; or progressing in an academic career to PhD and further research.Your career

Career

We can help you develop the skills and knowledge you need to understand and improve health services: analytical skills, critical thinking and in-depth knowledge of your discipline. We offer postgraduate courses for health and social care professionals, managers and anyone planning a career in health services research.

Our graduates work in public health, the private sector, health services management, and health and social care, all over the world. They also go on to further public health training or academic research.

An international academic community

As one of the largest multi-disciplinary schools of public health and health services research in the UK, ScHARR is a rich academic community. You will be taught by world-leading experts in health economics, public health sciences, the sociology of health, health psychology, decision analysis, management sciences, epidemiology, medical statistics and information science. They include members of The Academy of Medical Sciences, the Royal Pharmaceutical Society and the Royal Society of Public Health. The 2014 Research Excellence Framework (REF) rates us fourth in the UK for research power.

Our staff and students come from all over the world and offer international perspectives to all our courses.

Flexible study routes

We offer both traditional campus-based and online courses. Our high quality online courses are taught by the same expert academic staff who teach our courses in Sheffield and offer an alternative to coming to the UK. Guided by our staff, you can study at a pace that suits your personal circumstances. This can be an effective route for those who need to continue to work while they study. Postgraduate certificates and diplomas are also available.

You can also study individual modules as Continuing Professional Development (CPD). See the ScHARR web pages for details of available modules. For LBR and CPD information, visit: http://www.sheffield.ac.uk/hsccpd

Facilities

You’ll have access to library and computing facilities. We provide specialist information and library services in our information resources section.

Course content

  • ntroduction to Health Economics
  • Economic Evaluation
  • Cost-effectiveness Modelling for Health Technology Assessment
  • Medical Statistics and Evidence Synthesis
  • Study Design and Systematic Review Methods
  • Valuing the Benefits of Health Care
  • Further Statistical Methods for Health Economic Analysis
  • Advanced Simulation Methods

Teaching and assessment

You'll be taught through lectures, seminars, tutorials and independent study. Assessment is by coursework, examinations and a dissertation.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Medical physicists fill a special niche in the health industry. The role includes opportunities for laboratory work, basic and applied research, management and teaching, which offers a uniquely diverse career path. In addition there is satisfaction in contributing directly to patient treatment and care.

This three-year programme in Clinical Science (Medical Physics), hosted by the College of Medicine, builds on an existing collaboration with the NHS in providing the primary route for attaining the professional title of Clinical Scientist in the field of Medical Physics.

Key Features of MSc in Clinical Science (Medical Physics)

The Clinical Science (Medical Physics) programme is accredited by the NHS and provides the academic component of the Scientist Training Programme for medical physics trainees, within the Modernising Scientific Careers framework defined by the UK Department of Health, and offers students the chance to specialise in either radiotherapy physics or radiation safety. This Master’s degree in Clinical Science (Medical Physics) is only suitable for trainees sponsored by an NHS or an equivalent health care provider.

The MSc in Clinical Science (Medical Physics) is modular in structure, supporting integration of the trainee within the workplace. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits of taught-course elements and a project that is worth 60 credits and culminates in a written dissertation.

The Clinical Science (Medical Physics) MSc is accredited by the Department of Health.

Modules

Modules on the Clinical Science (Medical Physics) MSc typically include:

• Introduction to Clinical Science

• Medical Imaging

• Nuclear Medicine and Diagnostic Imaging

• Radiation Protection

• Radiotherapy Physics

• Research Methods

• Advanced Radiotherapy

• Specialist Radiotherapy

• Advanced Radiation Safety

• Specialist Radiation Safety

Careers

The MSc in Clinical Science (Medical Physics) provides the main route for the professional qualification of Clinical Scientist in Medical Physics.

Additionally, the need for specific expertise in the use of medical radiation is enshrined in law. The Ionising Radiation (Medical Exposure) Regulations (IRMER) 2000 defines the role of Medical Physics Expert, required within any clinical context where radiation is being administered, either a diagnostic or therapeutic.

Links with industry

The close working relationship between Swansea University and the NHS in Wales, through the All-Wales Training Consortium for Medical Physics and Clinical Engineering, provides the ideal circumstances for collaborative teaching and research. The Consortium is recognised by the Welsh Government. A significant proportion of the teaching is delivered by NHS Clinical Scientists and other medical staff.

Facilities

The close proximity of Swansea University to Singleton Hospital, belonging to one of the largest health providers in Wales, Abertawe Bro Morgannwg University (ABMU) health board, as well as the Velindre NHS Trust, a strongly academic cancer treatment centre, provide access to modern equipment, and the highest quality teaching and research.

The Institute of Life Science (ILS) Clinical Imaging Suite has recently been completed and overlaps the University and Singleton Hospital campuses. It features adjoined 3T MRI and high-resolution CT imaging. ILS has clinical research of social importance as a focus, through links with NHS and industrial partners.

Research

Swansea University offers a vibrant environment in medically-oriented research. The Colleges of Medicine has strong research links with the NHS, spearheaded by several recent multimillion pound developments, including the Institute of Life Science (ILS) and the Centre for NanoHealth (CNH).

The University provides high-quality support for MSc student research projects. Students in turn make valuable progress in their project area, which has led to publications in the international literature or has instigated further research, including the continuation of research at the doctoral level.

The College of Medicine provides an important focus in clinical research and we have the experience of interacting with medical academics and industry in placing students in a wide variety of research projects.

Medical academics have instigated projects examining and developing bioeffect planning tools for intensity modulated radiotherapy and proton therapy and devices for improving safety in radiotherapy. Industry partners have utilised students in the evaluation of the safety of ventricular-assist devices, intense-pulsed-light epilators and in the development of novel MRI spectroscopic methods. The student join teams that are solving research problems at the cutting-edge of medical science.



Read less
Apply your physics background. A career in medical physics offers you the opportunity to use your physics background to provide people with life-changing options every day. Read more
Apply your physics background
A career in medical physics offers you the opportunity to use your physics background to provide people with life-changing options every day. Medical physicists play a critical role at the cutting-edge of patient healthcare, overseeing effective radiation treatment, ensuring that instruments are working safely, and researching, developing and implementing new therapeutic techniques.

The Medical Physics Programs at the University of Pennsylvania prepare students to bridge physics and clinical medicine, overseeing clinical applications of radiation and creating the cutting-edge medical technologies of tomorrow. The master’s degree and post-graduate certificate programs combine the resources of one of the world’s top research universities and most prestigious medical schools, offering you unmatched opportunities to shape your own path.

Unsurpassed resources and a rich array of options
Access to Penn’s outstanding facilities creates a unique opportunity for you to sample four subspecialties of medical physics, including radiation oncology, diagnostic imaging, nuclear medicine and health physics. Whether you enter a residency, seek employment directly after the program, go on to a PhD, earn an MBA or change career directions with your PhD, you’ll have the resources at your fingertips to build the career most compelling to you.

Our research facilities—all of which are located on campus, within a 10-minute walk—include the state-of-the art Perelman Center for Advanced Medicine; the Roberts Proton Therapy Center, the largest and most advanced facility in the world for this form of cancer radiation; and the Smilow Center for Translational Research, which brings Penn scientists and physicians together to collaborate on research projects.

Preparation for professional success
Our programs, accredited by the Commission on Accreditation of Medical Physics Educational Programs (CAMPEP), are grounded in providing the highest standard of patient care. Our students have numerous opportunities to gain hands-on experience at some of the most advanced medical imaging and therapy facilities in the world, through part-time clinical work, residencies, practicum training and much more. It is for this reason that our degree and certificate programs enjoy a high placement rate for our students, year after year. Faculty from Penn’s CAMPEP-accredited residency program participate in professional development to make our students competitive for medical physics residency programs.

We welcome you to contact a member of our program team to learn more about the possibilities that await you in the Medical Physics Programs at Penn.

Read less
Why Surrey?. The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more

Why Surrey?

The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

Programme overview

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

Why not discover more about the subject in our video?

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation. Part-time students take the same content over 2 academic years.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The primary aim of the programme is to provide a flexible high quality postgraduate level qualification in physics. It integrates the acquisition of core scientific knowledge with the development of key practical skills in the student’s chosen area of specialisation.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medical Radiation Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medical Radiation Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The Medical Radiation Physics course builds on the highly successful research partnerships between the College of Medicine and Abertawe Bro Morgannwg University (ABMU) Health Board, including the Institute of Life Science and Centre for NanoHealth initiatives, and ongoing work in Monte Carlo-based radiotherapy modelling and dosimeter development, body composition, tissue characterisation and novel modes of the detection of disease with state-of-the-art CT and MRI facilities.

Key Features of the MSc in Medical Radiation Physics

On the Medical Radiation Physics MSc, you will gain the necessary knowledge and understanding of fundamental aspects of the use of radiation in medicine, in order that you are conversant in medical terms, human physiology and radiation mechanisms.

A direct link to clinical practice is provided through hands-on instruction with equipment used routinely in the hospital setting, which will prepare you for research in a rapidly changing field, including tuition in computer-based modelling, research methodology and the ethical dimensions associated with medical research.

The Medical Radiation Physics programme is accredited by the Institute of Physics and Engineering in Medicine (IPEM).

The Medical Radiation Physics programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Medical Radiation Physics scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Timetables for the Medical Radiation Physics programme are typically available one week prior to each semester.

Modules

Modules on the Medical Radiation Physics course can vary each year but you could expect to study:

• Introduction to the Practice of Medical Physicists and Clinical Engineers

• Nanoscale Simulation

• Physics of the Body

• Nuclear Medicine and Diagnostic Radiology

• Research Methods

• Radiation Protection

• Radiation Physics

• Radiotherapy Physics

• Medical Imaging

• Advanced Radiotherapy

• MSc Research Project

Accreditation

The Medical Radiation Physics course has been accredited by the Institute of Physics and Engineering in Medicine (IPEM). IPEM is the professional body that works with physical science, engineering and clinical professionals in academia, healthcare services and industry in the UK and supports clinical scientists and technologists in their practice through the provision and assessment of education and training.

Links with industry

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London, as well Velindre NHS Trust (a strongly academic cancer treatment centre), offers the opportunity for collaborative research through student placements.

The academic staff of this discipline have always had a good relationship with industrial organisations, which are the destination of our medical engineering graduates. The industrial input ranges from site visits to seminars delivered by clinical contacts.

Careers

The Medical Radiation Physics course will prepare you for research and clinical practise in a rapidly changing field, including tuition in computer modelling, human engineering and the medico-legal issues they imply. It will enable you to develop the potential to become leaders, defining and influencing medical practise.

For a medical physicist career path, the role includes opportunities for laboratory work, basic and applied research, management and teaching, offering a uniquely diverse career. In addition there is satisfaction in contributing directly to patient treatment and care.



Read less
This programme builds upon the ever-increasing professional and research interest in the sector. It equips professionals with the skills, knowledge and networks needed to drive sustainable innovation for health and wellbeing in the design, retrofit and operation of buildings. Read more

This programme builds upon the ever-increasing professional and research interest in the sector. It equips professionals with the skills, knowledge and networks needed to drive sustainable innovation for health and wellbeing in the design, retrofit and operation of buildings. Based at The Bartlett, the UCL Institute for Environmental Design and Engineering is a world-leading research centre.

About this degree

During the course students will:

  • examine the built environment's impacts on health and wellbeing, within the context of sustainability;
  • master key design, engineering and public health principles;
  • use tools applicable in professional practice, including standards, benchmarking, modelling and monitoring methods;
  • consider factors affecting the business case for healthy and productive sustainable buildings.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), two optional modules (30 credits) and a dissertation report (60 credits).

A Postgraduate Diploma (120 credits - full-time 9 months or modular/flexible 2-5 years) is offered. The programme consists of eight modules (15 credits each).

A Postgraduate Certificate (60 credits - full-time 4-7 months or modular/flexible 2-5 years) is offered. The programme consists of four modules (15 credits each).

Core modules

  • Health, Comfort and Wellbeing in the Built Environment
  • Health and Wellbeing in Cities: Theory and Practice
  • Indoor Air Quality in Buildings
  • Integrated Building Design for Health, Comfort and Wellbeing
  • Methods of Environmental Analysis
  • Wellbeing in Buildings: Theory and Practice

In addition to core modules, student learning is supported via supplementary activities including: dedicated tutorials for specialised software, case study visits, a residential field visit, an introduction to building physics, and opportunities to attend selected events with international experts. 

Optional modules

Students choose two of the following:

  • Building Acoustics
  • Designing Inclusive Places
  • Light, Lighting and Wellbeing in Buildings

Dissertation/report

All students undertake an independent research project culminating in a 10,000-word report.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, interactive workshops, tutorials and lab demos. Assessment is through coursework, design reports, written examinations and a dissertation.

Fieldwork

The programme includes case study visits and a residential field visit. Fieldwork activity may be required for selected coursework – if so this is likely to take place within the London area. 

Travel, accommodation and activities for the residential field visit is free. Travel costs for site visits or fieldwork within the London area (zones 1-6) accessible by public transport is covered by students. Otherwise, travel is covered by the programme.

Further information on modules and degree structure is available on the department website: Health, Wellbeing and Sustainable Buildings MSc

Careers

It is anticipated that students taking this programme will find employment in architectural or engineering companies, and specialist consultancies dedicated to the design and/or evaluation of sustainable buildings with a strong focus on health, wellbeing and human performance (e.g. productivity).

Additional career paths may be found within in-house building design and operational teams, and in public sector agencies or government departments concerned with built environment, public health and/or other health, wellbeing and sustainability issues.

Employment opportunities may also be available in relevant product or service innovation companies. The MSc can provide a foundation for MPhil/PhD research.

Employability

Students gain hands-on experience of monitoring environmental conditions, gathering and evaluating human responses, applying industry standards, and simulation tools similar to those used by commercial companies for building performance evaluation.

Successful graduates will understand how to communicate to different stakeholders, and develop the business case for improved health, wellbeing and productivity in buildings. Our advisory group of industry experts has helped us shaping a curriculum with employability in mind.

As awareness increases of the impacts that the built environment can have on health, wellbeing and sustainability, so too does the demand for professionals with relevant expertise.

Why study this degree at UCL?

The UCL Institute for Environmental Design and Engineering (UCL IEDE) has proven research and teaching excellence in built environment, sustainability and health research.

The UCL Bartlett is the UK's largest multidisciplinary faculty of the built environment, bringing together scientific and professional specialisms. Our high-achieving graduates are sought after by the biggest names in the built environment industry.

The degree facilitates networking with industry leaders, including meeting members of the MSc Advisory Group and selected opportunities for industry-related dissertation projects

Located in London, we are at the heart of a large cluster of creative architects and engineering firms and next to the UK's seat of government and finance. We offer unrivalled networking opportunities, with alumni employed throughout the major firms in London who often give lectures and attend networking events.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Bartlett School of Environment, Energy & Resources

81% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Our programme will give you a thorough grounding in the radiation and environmental protection aspects of nuclear physics. Read more

Our programme will give you a thorough grounding in the radiation and environmental protection aspects of nuclear physics.

This includes in-depth knowledge of radiation protection and showing you how the technical and organisational procedures of the discipline may be applied to the broader concept of environmental protection.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Research-led teaching

The programme material is taught by a combination of academics from the Department of Physics at Surrey and specialists provided by industrial partners. The Surrey academics are part of the Centre for Nuclear and Radiation Physics which houses the largest academic nuclear physics research group in the UK.

In addition to the formal lectures for taught modules, the programme provides a wide range of experimental hands-on training. This includes a nine-week radiation physics laboratory which takes place in the specialist radiation laboratories within the Department of Physics at the University of Surrey.

These were recently refurbished as part of a £1 million upgrade to the departmental teaching infrastructure. Within the Department, we also have a common room and a departmental library, which contains copies of earlier MSc dissertations.

As well as the laboratory training, you will also undertake a research project at the beginning of the Spring semester as a precursor to the eleven-week research dissertation project which makes up the final part of the MSc.

There are many opportunities for both the spring research project and summer dissertation project to be taken in an external industrial environment.

Careers

The programme has produced over 500 UK and overseas graduates, many of whom have gone on to well-paid positions in companies in the nuclear and radiation sectors. In the UK we need to decommission old reactors and build new ones to provide a low-carbon source of energy.

This, together with, for example, the importance of radioisotopes in fields such as medicine, means that the career prospects of our graduates are excellent.

Educational aims of the programme

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Programme learning outcomes

Knowledge and understanding

  • A systematic understanding of Radiation and Environmental Protection in an academic and professional context together with a critical awareness of current problems and / or new insights
  • A comprehensive understanding of techniques applicable to their own research project in Radiation and / or Environmental Protection
  • Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
  • An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
  • Familiarity with generic issues in management and safety and their application to Radiation and Environmental Protection in a professional context

Intellectual / cognitive skills

  • The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. Graduates should be able to evaluate the significance of their results in this context
  • The ability to evaluate critically current research and advanced scholarship in the discipline of radiation protection
  • The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills

  • The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
  • The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
  • Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills

  • Identify and resolve problems arising from lectures and experimental work
  • Make effective use of resources and interaction with others to enhance and motivate self-study
  • Make use of sources of material for development of learning and research such as journals, books and the internet
  • Take responsibility for personal and professional development

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Why Surrey?. At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries. Read more

Why Surrey?

At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries.

Programme overview

Drawing upon our existing expertise and supported by our MSc in Radiation and Environmental Protection, one of UK’s longest running programmes in its field, our programme will give you a thorough grounding in nuclear science and its applications. This new programmes differs from our existing MSc in Radiation and Environmental Protection as both the group project and the summer dissertation project will be on nuclear science and application topics.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer and students will have the opportunity to complete their dissertation on a topic specialising in nuclear research.

Programme structure

This programme is studied full-time over one academic year. Part-time students study over two academic years, within which the workload is evenly distributed.

The course consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that modules may be subject to teaching availability and/or student demand.

Research-led teaching

The programme material is taught by a combination of academics from the Department of Physics at Surrey and specialists provided by industrial partners. The Surrey academics are part of the Centre for Nuclear and Radiation Physics which houses the largest academic nuclear physics research group in the UK.

In addition to the formal lectures for taught modules, the programme provides a wide range of experimental hands-on training. This includes an eight-week radiation physics laboratory which takes place in the specialist radiation laboratories within the Department of Physics at the University of Surrey.

These were recently refurbished as part of a £1 million upgrade to the departmental teaching infrastructure. Within the Department, we also have a common room and a departmental library, which contains copies of earlier MSc dissertations.

As well as the laboratory training, you will also undertake a research group project at the beginning of the Spring semester as a precursor to the eleven-week research dissertation project which makes up the final part of the MSc.

There are many opportunities for the summer dissertation project to be taken in an external industrial environment.

Careers

Completion of this programme will result in strong job opportunities in the nuclear industry, a growing international industry.

The programme will also naturally lead into further study, such as completion of a PhD.

Educational aims of the programme

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Programme Learning Outcomes

Knowledge and understanding

  • A systematic understanding of Nuclear Science and Applications in an academic and professional context together with a critical awareness of current problems and / or new insights
  • A comprehensive understanding of techniques applicable to their own research project in Nuclear Science and / or its application
  • Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
  • An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
  • Familiarity with generic issues in management and safety and their application to nuclear science and applications in a professional context

Intellectual / cognitive skills

  • The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. Graduates should be able to evaluate the significance of their results in this context
  • The ability to evaluate critically current research and advanced scholarship in the discipline of nuclear science
  • The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills

  • The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
  • The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
  • Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills

  • Identify and resolve problems arising from lectures and experimental work
  • Make effective use of resources and interaction with others to enhance and motivate self-study
  • Make use of sources of material for development of learning and research such as journals, books and the internet
  • Take responsibility for personal and professional development


Read less
Your programme of study. If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Read more

Your programme of study

If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Did you know the first MRI (Magnetic Resonance Imaging) scanner was invented at Aberdeen over 30 years ago? Major innovations to this technology are still being researched at Aberdeen today. You learn everything you need to know as an advanced grounding in medical physics such as understanding anatomy and how cells are altered by disease. You look at the engineering behind MRI and other visual scanning techniques to understand how applications are made in areas such as nuclear, Positron, Tomography, Radio diagnosis (X-ray), MRI and Ultrasound. You understand radiation and you apply electronics and computing to medical physics. The degree ensures plenty of practical understanding and application and you learn MRI within the department that built it.

If you want to work within imaging and medical physics to pursue a medical career in hospitals, industry and healthcare and diagnose disease by different methods of imaging the degree in Medical Physics will help you towards this goal. You can also develop your own research portfolio and PhD from this MSc and work within academia to pursue innovation in the discipline.

You receive a thorough academic grounding in Medical Physics, are exposed to its practice in a hospital environment, and complete a short research project. Many graduates take up careers in health service medical physics, either in the UK or their home country. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. You can also work as a researcher, risk manager, radiation physics specialist and within the medical device industry in product development and innovation.

Courses listed for the programme

Semester 1

  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Radiation in Medicine
  • Computing and Electronics in Medicine
  • Generic Skills

Semester 2

  • Radiation and Radiation Physics
  • Nuclear Medicine and Post Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Electronics and Instrumentation
  • Medical Image Processing and Analysis
  • Diagnostic Radiology and Radiation Protection

Semester 3

  • Project Programmes in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You are taught by renowned researchers with opportunity to contribute to the expanding research portfolio
  • You learn in a cutting edge medical facility adjacent to the teaching hospital including a PET-CT scanner, radiotherapy centre and linac treatment machines, plus MRI scanners
  • The MRI scanner was invented and developed at University of Aberdeen

Where you study

  • University of Aberdeen
  • 12 months or 24 months
  • Full time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Physics PGCE helps students to develop the professional skills and knowledge they need to teach all aspects of science to pupils up to age 16, and prepares physics student teachers to teach the 11-16 age range. Read more

The Physics PGCE helps students to develop the professional skills and knowledge they need to teach all aspects of science to pupils up to age 16, and prepares physics student teachers to teach the 11-16 age range. We are committed to creative and interactive approaches to teaching science to promote student engagement and learning.

About this programme

Students will acquire a critical understanding of current debates and issues relating to science education, and will be guided and supported in developing their subject knowledge. We expect students to engage with reading and research into science education and to regularly reflect upon their own progress, towards meeting the teaching standards across the 11–16 age range.

Students undertake two level 7 (Master’s-level) modules of 30 credits each, totaling 60 credits. These can be carried forward onto full Master’s programmes at the IOE.

The Secondary PGCE consists of three core modules: two Master’s-level (level 7) modules, which are assessed through written assignments, and the Professional Practice module, which is assessed by the observation of practical teaching in placement schools.

Completion of the Professional Practice module and the two level 7 (Master’s level) modules (60 credits) will result in the award of a Postgraduate Certificate of Education (PGCE). Completion of the Professional Practice module and one or two level 6 (undergraduate/Bachelor’s level) modules, will lead to the Professional Graduate Certificate of Education (PgCE).

Core modules

  • Science Education in the Broader Context (30 Master's-level credits)
  • Wider Educational Studies - Physics (30 Master's-level credits)
  • Professional Practice

Optional modules

  • There are no optional modules for this programme

Placement

Students will undertake at least two placements (120 days) at a school or college, during which time their teaching practice will be supported by a school subject tutor and mentor. 

During school placements, you may teach: 

Key Stage 3: science (including elements of physics, chemistry, biology) 

Key Stage 4: science (all areas) or physics (depending on school placement) 

Key Stage 5: AS/A2 level physics

Teaching and learning

The Physics Secondary PGCE is delivered via keynote lectures, seminars, workshops, tutorials and directed study days at the IOE as well as time spent in placement schools or colleges. Assessment is by practical teaching observation, assignments and a portfolio (which links with continuing professional development in the induction year).

Further information on modules and programme structure is available on the department website: PGCE Physics

Funding

Bursaries are available for some subject programmes to students who meet the eligibility criteria. To find out what funding may be available to you, please visit the Department for Education funding page.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the UCL Scholarships and Funding website.

Careers

Graduates of this programme are currently working across schools in London and around the UK as teachers, heads of departments and heads of year. Some graduates decide to pursue an academic science education route by pursuing Master's or doctoral level study.

Employability

Graduates of the Secondary PGCE programme are highly employable and sought after by schools and colleges in London and beyond. Almost all graduates secure their first teaching post by the time they finish the PGCE programme. Graduates of the programme also have great career prospects, with many becoming Head of Department or a Head of Year within 2-5 years, often acting, in their schools, as mentors to new PGCE student teachers. Many of our graduates become senior teachers (such as Assistant Headteachers or Head of a Faculty) in 5-8 years of graduating, and some are now Headteachers. Others have developed their careers as subject specialist teachers and educators, both becoming lead teachers in the classroom and researching, writing and advising other teachers themselves. The Secondary PGCE Programme is a springboard into a rewarding career, not just as a skilled teacher, but as an educational leader.

Why study this programme at UCL?

Students on the Physics PGCE work with a team of expert subject tutors who have all previously been classroom teachers and are actively involved with science education research, curriculum development and consultancy.

During teaching practice, student teachers benefit from the support of subject specialist mentors within our network of over 200 schools throughout Greater London and beyond, ensuring each has the opportunity to become a skilled and confident teacher.

The Physics PGCE offers unique opportunities including teaching sessions at museums and Kew Gardens, and residential trips, developing students’ understanding of learning science outside the classroom.

Accreditation:

Students who successfully complete this programme will be recommended for Qualified Teacher Status (QTS).



Read less
Management of environmental, health and safety issues has changed significantly in the past twenty years. The emergence of voluntary standards and codes of conduct, including international standards, coupled with the need to manage costs and limited resources has resulted in a trend to move beyond regulatory compliance. Read more

Program overview

Management of environmental, health and safety issues has changed significantly in the past twenty years. The emergence of voluntary standards and codes of conduct, including international standards, coupled with the need to manage costs and limited resources has resulted in a trend to move beyond regulatory compliance. Now, companies work toward sustainability through the use of integrated environmental, health and safety management systems, which are woven into key business processes. Although they are distinct disciplines, environmental management, occupational health, and workplace safety share many technical, regulatory, and organizational characteristics. Today's professionals now need to be educated in all three areas.

Graduates are employed by Fortune 100 companies, environmental, health and safety consultancies, universities, and government agencies such as the EPA, OSHA, and NYSDEC.

Plan of study

The MS degree in environmental, health and safety management provides students with a solid foundation in the managerial aspects of developing and implementing environmental, health and safety management systems that can move organizations toward a more sustainable and socially responsible future. In addition, students gain a solid technical foundation in air emissions, wastewater, solid and hazardous waste, occupational safety and occupational health (industrial hygiene). Elements of sustainability are integrated into most of the core courses and some electives

The program consists of 33 credit hours and may be completed entirely through online learning, or via a combination of online and traditional on-campus courses. The curriculum consists of core courses, professional electives, and a choice of a graduate thesis, project, or exam.

Professional electives

Professional electives are subject to availability and include Fire Protection, Occupational Health, Solid and Hazardous Waste Management, Industrial Wastewater Management, Air Emissions Management, Occupational Safety, Mechanical and Electrical Controls and Standards, EHS Law, EHS Accounting and Finance, EHS Project Management, and Organizational Behavior and Leadership. Additional professional electives are available in topics such as business management, quality, sustainability, and other areas.

Curriculum

Course sequences differs according to thesis/project/exam option, see website for a particular option's module details: http://www.rit.edu/programs/environmental-health-and-safety-management-ms

Other admission requirements

-Have completed at least 9 semester hours of college-level course work in the sciences, with at least 3 semester credit hours in each of the following categories: chemistry, biology, and physics.
-Submit two professional recommendations.
-Submit two writing samples to demonstrate written communication skills.
-Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
-Submit a clearly written one-page statement of purpose.
-Submit a current resume or curriculum vitae.
-Complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). A minimum score of 570 (paper-based) or 88 (Internet-based) is required. Scores from the International English Language Testing System (IELTS) will be accepted in place of the TOEFL exam. Minimum acceptable scores will vary; however, the absolute minimum score for an unconditional acceptance is 6.5. It is recommended that international students begin the program in the fall semester.

Applicants with acceptable professional certification(s) and/or work experience may have pre-requisite science course work waived.

Applicants without formal academic training or documented experience in air emmisions, waste water, solid and hazardous waste, occupational health, or occupational safety may be required to take professional electives in these areas.

Students without related work experience may complete a graduate cooperative education placement during their program of study. Graduate Record Examination (GRE) scores are not required; however, applicants may submit test scores to support their candidacy.

Additional information

Transfer credit:
With the permission of the department, relevant graduate course work may be transferred into the program, per the maximum number of credit hours allowed.

International students:
International students enrolled in courses at the RIT campus are required to take at least two traditional classroom courses and one or two online courses per semester. In addition, international students are solely responsible for meeting the requirements of their government and other sponsors, as applicable.

Read less
Physics is central to everyday life. As a physics teacher, you will share your knowledge and enthusiasm with young pupils and prepare them for a range of important careers. Read more

Physics is central to everyday life. As a physics teacher, you will share your knowledge and enthusiasm with young pupils and prepare them for a range of important careers.

Our Postgraduate/Professional Graduate Certificate in Education (PGCE) is designed to prepare you to become a professional, competent and reflective secondary school teacher of science, with physics as a specialist subject. Your studies will focus on addressing the needs of pupils aged eleven to sixteen and beyond.

As part of your PGCE, you will have the opportunity to gain 60 Master's level credits and gain Qualified Teacher Status.

The Institute of Physics

You will have the opportunity to work alongside experienced trainers from the Institute of Physics. These trainers are always willing to give ideas on planning, engaging and stimulating physics which is practical to motivate children and promote curiosity in science. This also includes input from colleagues sharing their experience - from research and pedagogy - in supporting the teaching of physics in secondary schools.

Degree structure

Our one-year programme is comprised of two elements: 60 days of university-based teaching and 120 days of school-based experience. Your practical teaching experience is gained in two main schools. Here you will be allocated subject-specialist mentors who will offer dedicated feedback and guidance. During both placements you will have the opportunity to develop your science and physics teaching with the support of a specialist teacher.

Learning and experience

The quality of teacher training in Secondary education was rated as "Good" in Ofsted report for Initial Teacher Education 2016. The report found that "Scientists appreciate the enhancement groups where they further build on their knowledge by sharing each other's expertise. As a consequence, the trainees' and NQTs' enthusiasm and confidence in the subjects they teach motivate and inspire pupils to learn and make progress."

Our university based workshops also offer strong support. You will have easy access to tutors as well as online materials. Here we cover all aspects of the National Curriculum and address all relevant government standards. Other topics of study will include planning lessons, assessment of pupils and classroom management. There is also the opportunity to work collaboratively with students from other subject areas.

During your time with us you will develop and hone your teaching skills, learning how to address the needs of secondary school pupils within the context of the curriculum at Key Stage 3 and 4.

You will also develop your expertise, practical knowledge and theoretical understanding of science. By the end of which you will be fully equipped to be formally assessed against the national standards for Qualified Teacher Status (QTS).

Ranking

  • 98% indicated that the programme prepared them for teaching learners across a range of abilities.
  • 98% indicated that the programme helped them secure employment
  • 84% employed within 6 months of completing the programme (SED 2015-16)

Full time

Year 1

Students are required to study the following compulsory courses.

Assessment

Progress will be assessed through a professional portfolio, written assignments and observation of classroom teaching. In order to qualify as a teacher, you need to meet the standards for Qualified Teacher Status, as set out by the National College for Teaching and Leadership.

Careers

Graduates are equipped for careers working in secondary schools and other educational settings, such as:

  • Teaching science and/or physics in a secondary school
  • Head of science
  • Teaching and learning responsibilities for cross-curricular projects
  • STEM involvement and collaboration.


Read less
This program is pending final approval by the Ministry of Advanced Education. Medical physicists are health care professionals with specialized training in the medical applications of physics. Read more

This program is pending final approval by the Ministry of Advanced Education.

Medical physicists are health care professionals with specialized training in the medical applications of physics. Their work often involves the use of x-rays and accelerated charged particles, radioactive substances, ultrasound, magnetic and electric fields, infra-red and ultraviolet light, heat and lasers in diagnosis and therapy. Most medical physicists work in hospital diagnostic imaging departments, cancer treatment facilities, or hospital-based research establishments. Others work in universities, government, and industry.

Graduates of the M.Sc. in Medical Physics program will:

  • understand the physics of medical imaging and radiation oncology;
  • be able to apply medical physics theory to frontier research;
  • work effectively in clinical and research environments that include oncologists, radiologists, nuclear medicine physicians, cardiologists, neuroscientists, radiation therapy professionals and biomedical engineers;
  • be highly competitive in the Canadian and international medical physics labour markets.

What makes the program unique?

The program benefits from research strengths within the Vancouver area medical physics community, e.g. radiation therapy, magnetic resonance imaging (MRI) and nuclear medicine imaging (PET and SPECT) for brain, cardiac and cancer imaging, and high energy nuclear physics.

Research conducted within the program can directly contribute to provincial heath care initiatives through engagement of associate and adjunct faculty based in local health care institutions.

Both the MSc and PhD medical physicist are eligible to sit the Canadian College of Physicist in Medicine exam which awards the credential for clinical practice.



Read less
Are you passionate about helping young people to explore the fascinating world of physics? Do you want to be key in enabling them to understand how physics is fundamental to everyday life and isn’t as hard to understand as its reputation might lead them to believe? If so, our PGCE Secondary Physics is for you. Read more

Are you passionate about helping young people to explore the fascinating world of physics? Do you want to be key in enabling them to understand how physics is fundamental to everyday life and isn’t as hard to understand as its reputation might lead them to believe? If so, our PGCE Secondary Physics is for you.

What's covered in the course?

Our aim is to help you become a committed, confident and creative teacher so we’ll train you in the essential tools you need to kick-start your career in education. You’ll look at strategies and techniques to make the subject accessible, whether you’re leading practical experiments in electricity or introducing topics like astrophysics and nuclear physics.

As you progress, you’ll increase your ability to handle the ever-evolving teaching environment, and by the time your course is complete, you’ll be in a position to continue developing your understanding, knowledge and skills throughout your professional life.

After interview you may be advised you need to take a funded Subject Knowledge Enhancement (SKE) course, which we offer over 16 weeks, before you start your PGCE.

Assignments and school-centred activities are structured around the development of your School Experience Progress Journal (SEPJ) which demonstrates your progress against the nationally agreed competences (the Teachers’ Standards), which all teachers must meet throughout their career. A system of continuous review and assessment of progress in the SEPJ will support your growing ability to take responsibility for your own development.

Why Choose Us?

  • At least 120 days across a minimum of two placements, in line with the National College for Teaching and Learning (NCTL) requirements, supported by a subject mentor in your school and a personal development tutor at the University.
  • If you have a minimum of a 2:2 in your undergraduate degree, or a Master's or PhD, in a relevant subject, you may be eligible for a bursary from the NCTLFor 2017 entry this bursary is £25,000 if you have a 2:2 or 2:1, or a Master’s. A higher level bursary of £30,000 may be available if you have a First or PhD, or as a scholarship from the Institute of Physics (IOP) (subject to ability and meeting application deadlines).
  • We’re proud of our high employability rates, with 100 per cent of students in employment or further study six months after completing this course (latest DLHE survey report 2015/16).
  • If you accept an offer from us you’ll be able to take part in our free Skills Test ‘bootcamps’ to make sure you’re ready to start your PGCE in September.
  • You'll gain Master's level credits gained as part of this course that you can then use towards a full Master's degree, such as our Master’s in Teaching and Learning or Educational Leadership.

Entry requirements

You must have a good degree (minimum 2:2 but 2:1 or 1st preferred) from a UK higher education institution or equivalent, with a significant physics or physics-related content, for example from engineering disciplines or materials science. You must have a GCSE grade C or above (or equivalent) in both English language and mathematics prior to application and if you are offered an interview you will take a written test to assess your standard of English.

For entry onto a teaching course you will also be required to pass the Skills Tests in Literacy and Numeracy.

There is an expectation that you will have had some general experience of working with secondary age students in a school setting. In preparation for the selection interview stage of the recruitment process you are required to engage in a teaching episode, observed by an experienced qualified teacher.

As part of the selection procedure, the interview panel will expect you to demonstrate your knowledge of physical sciences and will assess personal qualities such as the potential to relate well to secondary age students, enthusiasm, sensitivity, communication skills and robustness and resilience for teaching.

Applicants must also meet The National College for Teaching and Leadership requirements for initial teacher training, which means being medically fit and successfully completing an enhanced disclosure via the Disclosure and Barring Service (DBS).

How to apply

All applications need to be made via the UCAS Teacher Training website.

Course code: 32XR



Read less

Show 10 15 30 per page



Cookie Policy    X