• Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
University of Cambridge Featured Masters Courses
FindA University Ltd Featured Masters Courses
Cass Business School Featured Masters Courses
University of Leeds Featured Masters Courses
"hardware" AND "engineeri…×
0 miles

Masters Degrees (Hardware Engineering)

We have 218 Masters Degrees (Hardware Engineering)

  • "hardware" AND "engineering" ×
  • clear all
Showing 1 to 15 of 218
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has an excellent reputation for civil engineering, the department is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

Key Features of MSc in Civil Engineering

The MSc Civil Engineering course aims to provide advanced training in civil engineering analysis and design, particularly in modelling and analysis techniques.

As a student on the MSc Civil Engineering course you will be provided with in-depth knowledge and exposure to conventional and innovative ideas and techniques to enable you to develop sound solutions to civil engineering problems.

Through the MSc Civil Engineering course, you will also be provided with practical computer experience through the use of computational techniques, using modern software, to provide a solution to a range of current practical civil engineering applications. This will enable you to apply the approach with confidence in an industrial context.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

As a student on the Master's course in Civil Engineering, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Modules

Modules on the MSc Civil Engineering course typically include:

Water and Wastewater Infrastructure

Finite Element Computational Analysis

Advanced Structural Design

Fluid-Structure Interaction

Entrepreneurship for Engineers

Computational Plasticity

Numerical Methods for Partial Differential Equations

Computational Case Study

Reservoir Modelling and Simulation

Dynamics and Transient Analysis

Coastal Engineering

Coastal Processes and Engineering

Flood Risk Management

Accreditation

The MSc Civil Engineering course at Swansea University is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

Strong interaction and cooperation is forged with the construction industry and relevant member institutions of the Joint Board of Moderators (JBM), particularly the Institution of Civil Engineers (ICE) and the Institution of Structural Engineers (IStructE).

These companies actively engaged with Civil Engineering at Swansea University: Atkins, Arup, Balfour Beatty Civil Engineering Ltd, Black and Veatch Ltd, City and Council of Swansea, Dean and Dyball, Halcrow UK, Hyder (Cardiff), Interserve Ltd, the Institution of Civil Engineers (ICE), Laing O’Rourke, Mott MacDonald Group Ltd, Veryard Opus.

Career Prospects

The civil engineering sector is one of the largest employers in the UK and demand is strong for civil engineering graduates. Thie MSc Civil Engineering course also equips you with the skills to be involved in other engineering projects and provides an excellent basis for a professional career in structural, municipal and allied engineering fields.

The MSc Civil Engineering is suitable for those who would like to prepare for an active and responsible career in civil engineering design and construction. Practising engineers will have the chance to improve their understanding of civil engineering by attending individual course modules.

Student Quotes

“I decided to study at the College of Engineering as it is a highly reputable engineering department.

My favourite memories of the course are the practical aspects and the lab work. Group projects have given me the opportunity to work in a team to overcome engineering-based problems. Studying at the College of Engineering has given me a good knowledge of engineering principles and has helped me to apply this to real life problems.

As part of my time here, I took part in the IAESTE programme. I worked with the Department of Civil Engineering at the University of Manipal, Southern India, on a development project involving an irrigation system.

My future plan is to get some experience in an engineering firm, and hopefully, this experience will allow me to work abroad for an NGO on further development projects."

Thomas Dunn, MSc Civil Engineering



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has been at the forefront of international research in the area of civil and computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. Swansea University provides an excellent base for your research as a MSc by Research student in Civil Engineering.

Key Features of MSc by Research Civil Engineering

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Civil Engineering students benefit from the Zienkiewicz Centre for Computational Engineering at Swansea University which has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Research within Engineering at Swansea University is multidisciplinary in nature, incorporating our strengths in research areas across the Engineering disciplines including Civil Engineering.

Computational mechanics forms the basis for the majority of the MSc by Research projects within this civil engineering discipline.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc by Research in Civil Engineering typically lasts one year full-time, two to three years part-time. This Civil Engineering research programme is an individual research project written up in a thesis of 30,000 words.

Links with industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Civil Engineering Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Research in Civil Engineering

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation

Solid Mechanics

Finite Element Computational Analysis

Advanced Fluid Mechanics

Computational Plasticity

Fluid-Structure Interaction

Nonlinear Continuum Mechanics

Computational Fluid Dynamics

Dynamics and Transient Analysis

Computational Case Study

Communication Skills for Research Engineers

Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

With our close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises, Swansea University provides an excellent base for your research as a MSc by Research student in Mechanical Engineering.

Key Features of MSc by Research in Mechanical Engineering

Across the UK and overseas in Mechanical Engineering, there is or has been recent work at Swansea University with companies such as:

Astra-Zeneca

British Aerospace

Qinetiq

GKN

Rolls-Royce

SKF

Freeport

One Steel

Barrick Gold

Research within Engineering at Swansea University is multidisciplinary in nature, incorporating our strengths in research areas across the Engineering disciplines including Mechanical Engineering.

Computational mechanics forms the basis for the majority of the MSc by Research projects within the Mechanical Engineering discipline.

Mechanical Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc by Research in Mechanical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Mechanical Engineering at Swansea University has extensive laboratory and computing facilities for both teaching and research purposes.

In the mechanical laboratories are two large rotating rigs. One is used to study the dynamics of high speed machinery whilst the other is devoted to the analysis of heat transfer in turbine blade.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with industry

Mechanical Engineering at Swansea University has a close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises. Across the UK and overseas, there is or has been recent work with companies such as:

Astra-Zeneca

British Aerospace

Qinetiq

GKN

Rolls-Royce

SKF

Freeport

One Steel

Barrick Gold

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation
- Practical guidance and feedback from industrial automation experts from around the world
- Live knowledge from the extensive experience of expert instructors
- Credibility and respect as the local industrial automation expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Next intake is scheduled for June 27, 2016. Applications now open; places are limited.

Now also available on Campus.

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

ENTRANCE REQUIREMENTS

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:
a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.
b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.
c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):
• Industrial Automation
• Industrial Engineering
• Instrumentation, Control and Automation
• Mechanical Engineering
• Mechanical and Material Systems
• Mechatronic Systems
• Manufacturing and Management Systems
• Electrical Engineering
• Electronic and Communication Systems
• Chemical and Process Engineering
• Robotics
• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation
- Practical guidance and feedback from industrial automation experts from around the world
- Live knowledge from the extensive experience of expert instructors
- Credibility and respect as the local industrial automation expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Perth Campus next intake is scheduled for June 27, 2016. Applications now open; places are limited.

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

ENTRANCE REQUIREMENTS

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:
a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.
b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.
c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):
• Industrial Automation
• Industrial Engineering
• Instrumentation, Control and Automation
• Mechanical Engineering
• Mechanical and Material Systems
• Mechatronic Systems
• Manufacturing and Management Systems
• Electrical Engineering
• Electronic and Communication Systems
• Chemical and Process Engineering
• Robotics
• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications. Read more

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Space Engineering aims to provide a high-level postgraduate qualification relating to the design of space missions using satellites. Study is taken to a high level, in both theory and practice, in the specialist areas of space physics, mechanics, orbits, and space-propulsion systems, as well as the system and electronic design of space vehicles.

This is a multi-disciplinary programme, and projects are often closely associated with ongoing space projects carried out by Surrey Satellite Technology, plc.

This is a large local company that builds satellites commercially and carries out industrially-sponsored research. Graduates from this programme are in demand in the UK and European Space Industries.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This Masters in Computer Systems Engineering exposes students to state-of-the-art miniaturised and mobile computer systems and smart device technology, allowing them to acquire the complementary hardware and software knowledge and skills required for understanding and designing such systems. Read more
This Masters in Computer Systems Engineering exposes students to state-of-the-art miniaturised and mobile computer systems and smart device technology, allowing them to acquire the complementary hardware and software knowledge and skills required for understanding and designing such systems.

Why this programme

◾You will be taught jointly by the Schools of Engineering and Computing Science. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾If you are a computer engineering graduate, this programme will enhance your knowledge; if you are an electronic engineering graduate you can focus on developing your software skills; or if you are computer science graduate you can focus on developing your hardware skills.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Computer Systems Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses
◾Digital signal processing
◾Either networked systems or computer communications
◾Human–computer interaction
◾Software and requirements engineering
◾MSc project.

Optional courses typically include
◾Advanced operating systems
◾Artificial intelligence
◾Computer architecture
◾Digital communications 4
◾Human-centred security
◾Information retrieval
◾Internet technology
◾Microwave and millimetre wave circuit design
◾Optical communications
◾Real time embedded programming
◾Safety critical systems.

Projects

◾In addition to taught work and practical assignments you will also complete a joint research project worth 60 credits in one of the state-of-the-art laboratories in the schools.
◾This extended project is an integral part of the MSc programme: many of these are linked to industry while others are related to research in either of the participating Schools.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Computer Systems Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾As computer systems have reduced in size, and are increasingly mobile with more complex functionalities, they are now a fundamental component of smart device technology.
◾This postgraduate programme is particularly suited to acquiring the complementary hardware and software knowledge and skills required for understanding and designing such systems.
◾The programme makes use of the combined resources and complementary expertise of the engineering and computing science staff to deliver a curriculum which is relevant to the needs of industry.
◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Computer Systems Engineering include: IBM, J.P. Morgan, Amazon, Adobe and Red Hat.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the computer/software industry.
◾The Computer Systems Engineering MSc programme also provides excellent preparation for those wanting to pursue a PhD in a similar research field.

Career prospects

Career opportunities include positions in software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence and services for the heavy industries, for example generator and industrial motor control systems, etc.

Read less
This MSc course in Advanced Electronic and Electrical Engineering is specifically designed for students who wish to pursue a broad programme of advanced studies, whilst also offering a wide range of specialist modules which open a variety of career pathways on graduation. Read more

About the course

This MSc course in Advanced Electronic and Electrical Engineering is specifically designed for students who wish to pursue a broad programme of advanced studies, whilst also offering a wide range of specialist modules which open a variety of career pathways on graduation. The distinctive feature of the MSc is its flexible structure – you are able to customise the content of your programme to meet your academic interests and career aspirations. Core modules are used to ensure there is depth and breadth in key areas of electronic and electrical engineering – notably sensors and instrumentation, control, photonics, sustainable power systems, telecommunications, intelligent systems, medical systems, integrated circuits and embedded systems.

Aims

Having an advanced, broad level of engineering knowledge and skills is a prerequisite for improving your career options in a demanding and dynamic sector. The course allows graduates with an electronic and electrical engineering background to further develop their skills as well as allowing able students from other numerate degree backgrounds to build up strong expertise in this area to complement their original undergraduate studies.
On the MSC programme you will:
Gain the in-depth knowledge you need to resolve new, complex and unusual challenges across a range of electrical and electronics issues.
Develop imagination, initiative and creativity to allow you to problem solve effectively.
Become work ready for a career with leading engineering organisations.

Women in Engineering Scholarships

Both the Government and Brunel University are keen to promote women taking up degrees in Engineering, and we are offering exciting scholarships linked to a bespoke mentoring programme to eligible Home / EU applicants. Please read more about these Women in Engineering Scholarships. http://www.brunel.ac.uk/study/postgraduate-fees-and-funding/funding

Course Content

Core Modules

Project Management
Advanced Analogue Electronics & Photonics
Applied Sensors, Instrumentation and Control
AEEE Group Project
Power Electronics and FACTS

Optional Modules

Choose three modules with at least one from:
Analogue Integrated Circuit Design
Embedded Systems Engineering
DSP for Communications
Intelligent Systems
Project/Dissertation

Special Features

The Electronic and Computer Engineering discipline is one of the largest in the University, with a portfolio of research contracts totalling £7.5 million, and has strong links with industry.
We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:
Media Communications
Wireless Networks and Communications
Brunel Institute for Power Systems
Electronic Systems
Sensors and Instrumentation
Our laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.
This course is accredited by the Institution of Engineering and Technology (IET).

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Teaching and Assessment

Teaching

This course in Advanced Electronic and Electrical Engineering blends lectures, tutorials, laboratories, individual and group projects with presentations and a major research based dissertation project.
External lectures and research seminars will be used to enhance the student experience and highlight the application of the technologies in industry.

Assessment

You will be assessed on your written assignments, presentations, examinations and a major dissertation project.
The course comprises a blend of lectures, tutorials, laboratories, individual and group projects, presentations and a major research-based dissertation project, with external lectures and research seminars used to enhance your experience and highlight the application of the technologies in industry.

Read less
Move up the hierarchy. Whether you are looking to move up the hierarchy in your engineering career, are interested in developing analytical skills through applied research, or both, Massey’s Master of Engineering Studies unique aspects will give you a step up. Read more

Move up the hierarchy

Whether you are looking to move up the hierarchy in your engineering career, are interested in developing analytical skills through applied research, or both, Massey’s Master of Engineering Studies unique aspects will give you a step up.

Find out more about the Master of Engineering Studies parent structure.

The Master of Engineering Studies (Electronics and Computer Engineering) is a high-quality programme combining taught and research courses at a postgraduate level. It is a 120 credit qualification able to be completed in one year full-time. 

If you are already working, or your research experience is limited, this qualification will give you the learning you need to take your career to the next level or pursue more in-depth postgraduate research. 

This qualification will help you become an excellent electronic and computer engineer. You will be multi-disciplinary, have excellent practical skills and be able to design, develop and manage both software and hardware projects. You will be capable of working in a team environment to solve problems from the device level to networks, communication systems and embedded systems.

Hands-on practice as you learn

There is a strong emphasis on embedding computing & electronics technologies in every-day consumer products and the importance of the user interface.

Solve real-world problems

While you will gain a thorough knowledge of the fundamental principles of engineering, the Master of Engineering Studies emphasises the application of your engineering learnings to complex real-world industrial problems. Massey staff have strong relationships with industry and you can utilise these to find projects of relevance to you. 

Unique specialities

The degree will help you gain expertise in an area outside of the focus of your undergraduate qualification, or current employment, or help you progress your career in your area of interest.

Advanced problem-solving skills

An integral part of your learning will be the experience working in a team environment to solve problems at a variety of conceptual levels.

You’ll gain the ability to learn independently, analyse industry needs and propose and validate tangible technical solutions, identify when your knowledge of a problem is lacking, and be able access and use the information required.

Access to broad expertise and equipment

As an engineering student at Massey University, you gain access to engineering and advanced technology-related expertise as well as a huge range of equipment and knowledge such as 3D printers and world class mechanical and electronic workshops, state-of-the art microscopic and genomic facilities, horticulture and agriculture expertise, extensive farm networks and a broad range of science, health, business and humanities-related staff. This unique capacity will enable you to build machines and devices for testing hypotheses and develop products in a modern multidisciplinary engineering context.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Engineering Studies will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. It takes you to a new level in knowledge, expertise, and the critical analytic skills needed to define a problem and develop, test, and validate engineering solutions. In fact, the world engineering originates from Latin ingenium, meaning "cleverness."



Read less
Ideal for you if you are a professional with a background in computer engineering, communication systems or electronic/electrical engineering, and provides you with the skills and knowledge needed to move into computer networking. Read more

Ideal for you if you are a professional with a background in computer engineering, communication systems or electronic/electrical engineering, and provides you with the skills and knowledge needed to move into computer networking. It is particularly useful for people working in companies that rely on constant innovation in electronics, computer engineering and communications.

Computer networks currently provide the infrastructure for most, businesses, educational institutions, retailers, manufacturers and public services. Many companies rely increasingly on computer and network engineering, which is now a global discipline.

This course is hardware and software based, and examines the design, specification, and integration of current and next generation computer and communications network technologies.

This course provides an opportunity for you to

  • increase the depth of your technical knowledge
  • develop your computer hardware and software skills
  • gain a thorough working knowledge of computer engineering
  • study the latest technologies used in modern day computer networking systems and their applications
  • gain the skills needed to design, develop and maintain computer network systems

You may wish to expand your current knowledge and expertise if you already have computer networking skills or possibly move into a new area of engineering and have the necessary entry requirements for this course.

Professional recognition

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – September start – typically 12 or 18 months

Full time – January start – typically 12 or 18 months

Part time – September start – typically 36 months

Part time – January start – typically 36 months

The course is based around two main themes, communication and networks, and computer engineering. You study eight modules plus a major project.

Communications and network modules

At least three from

  • communication engineering
  • communication media
  • communication networks
  • network applications

Computer engineering modules

At least three from

  • microprocessor engineering
  • object-oriented methods
  • operating systems
  • software engineering

Option modules

Up to two from

  • applicable artificial intelligence
  • digital signal processing
  • embedded systems
  • mixed signal design
  • electrical energy systems
  • efficient machines and electromagnetic applications

Project (equivalent to four modules)

You undertake a major project under the supervision of a tutor.

Assessment

By final examination, coursework and project reports

Employability

Information technology, communications, computer networks and electronics are among some of the fastest growing areas of the economy. By completing this course, you gain a thorough understanding of computer networking systems with the knowledge and expertise to enable you to apply your skills within many areas of industry, or take up a position in higher education or research.



Read less
This post-graduate programme aims at forming engineers endowed with a rich cultural basis and able to develop and exploit the methods and tools of computer science with engineering attitude, to tackle a wide spectrum of applications. Read more

Mission and Goals

This post-graduate programme aims at forming engineers endowed with a rich cultural basis and able to develop and exploit the methods and tools of computer science with engineering attitude, to tackle a wide spectrum of applications. The Degree programme develops the ability to design and implement hardware and software systems, which find application in the area of industry and services, either private or public. Graduates are also able to plan and manage complex projects thanks to a deep knowledge of engineering methodologies and technologies.
A Computing Systems Engineer, however, is not only a designer of applications and systems, but is potentially able to develop new technologies or to find innovative applications.

The programme is taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-milano/

Career Opportunities

The main professional areas targeted by our graduates are innovation and development of production, advanced design, and management of complex systems, either as independent professionals or as members of manufacturing or service enterprises, or in the public administration.
Graduates will find their jobs in the areas of hardware or software production, digital media providers, automation and robotics, information systems and computer networks, services and public administration.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Computer_science_and_engineering_MI_01.pdf
The programme provides the student with a comprehensive background on state-of-the art technologies, with a strong connection with leading edge research. Through an interdisciplinary approach, it forms engineers endowed with a rich cultural basis and able to develop and exploit the methods and tools of computer science with an engineering attitude, to tackle a wide spectrum of applications. The MSc develops the student’s ability to design and implement hardware and software systems, which find application in the area of industry and services. Graduates are highly skilled professionals who can plan and manage complex projects thanks to a deep knowledge of engineering methodologies and technologies.
The programme is taught in English.

Subjects

Key subjects available:
- Advanced Databases, Big Data Analysis and Information Systems
- Advanced Software Engineering
- Artificial Intelligence, Machine Learning and Soft Computing
- Computer Ethics
- Design of Safety-critical, Concurrent and Real-time Systems
- Distributed Systems and Middleware Technologies
- High Performance Computer Architectures and Embedded System Design
- Pervasive Computing
- Robotics and Image Analysis
- Web, and Multimedia Technologies, Videogames Design

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-milano/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-milano/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
In the first semester of the programme, graduates from a range of backgrounds are brought up-to-speed on core knowledge in engineering, biology and research practice. Read more

In the first semester of the programme, graduates from a range of backgrounds are brought up-to-speed on core knowledge in engineering, biology and research practice.

This is followed by specialist modules in the second semester on human movement analysis, prostheses, implants, physiological measurements and rehabilitation, as well as numerous computer methods applied across the discipline.

The course makes use of different approaches to teaching, including traditional lectures and tutorials, off-site visits to museums and hospitals, and lab work (particularly in the Human Movement and Instrumentation modules).

The core lecturing team is supplemented by leading figures from hospitals and industry.

Programme structure

This programme is studied full-time over one academic year and part-time over two academic years. It consists of eight taught modules and a research project.

All modules are taught on the University main campus, with the exception of visits to the health care industry (e.g. commercial companies and NHS hospitals).

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The course aims:

  • To educate engineering, physical science, life science, medical and paramedical graduates in the broad base of knowledge required for a Biomedical Engineering career in industry, healthcare or research in the United Kingdom, Europe and the rest of the world
  • To underpin the knowledge base with a wide range of practical sessions including laboratory/experimental work and applied visits to expert health care facilities and biomedical engineering industry
  • To develop skills in critical review and evaluation of the current approaches in biomedical engineering
  • To build on these through an MSc research project in which further experimental, analytical, computational, and/or design skills will be acquired

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • Demonstrate breadth and depth of awareness and understanding of issues at the forefront of Biomedical Engineering
  • Demonstrate broad knowledge in Human Biology, Instrumentation, Biomechanics, and Professional and Research skills
  • Demonstrate specialist knowledge in Implants, Motion analysis and rehabilitation, and Medical signals
  • Understand how to apply engineering principles to conceptually challenging (bio)medical problems
  • Appreciate the limitations in the current understanding of clinical problems and inherent in adopted solutions
  • Understand routes/requirements for personal development in biomedical engineering including state registration
  • Understand key elements of the concept of ethics and patient-professional relationships, recognise, analyse and respond to the complex ethical issues

Intellectual / cognitive skills

  • Evaluate a wide range of applied engineering and clinical measurement and assessment tools
  • Design and implement a personal research project; this includes an ability to accurately assess/report on own/others work with justification and relate them to existing knowledge structures and methodologies, showing insight and understanding of alternative points of view
  • Carry out such research in a flexible, effective and productive manner, optimising use of available support, supervisory and equipment resources, demonstrating understanding of the complex underlying issues
  • Apply appropriate theory and quantitative methods to analyse problems

Professional practical skills

  • Make effective and accurate use of referencing across a range of different types of sources in line with standard conventions
  • Use/ apply basic and applied instrumentation hardware and software
  • Correctly use anthropometric measurement equipment and interpret results in the clinical context
  • Use/apply fundamental statistical analysis tools
  • Use advanced movement analysis hardware and software and interpret results in the clinical context
  • Use advanced finite element packages and other engineering software for computer simulation
  • Program in a high-level programming language and use built-in functions to tackle a range of problems
  • Use further specialist skills (laboratory-experimental, analytical, and computational) developed through the personal research project

Key / transferable skills

  • Identify, select, plan for, use and evaluate ICT applications and strategies to enhance the achievement of aims and desired outcomes
  • Undertake independent review, and research and development projects
  • Communicate effectively between engineering, scientific and clinical disciplines
  • Prepare relevant, clear project reports and presentations, selecting and adapting the appropriate format and style to convey information, attitudes and ideas to an appropriate standard and in such a way as to enhance understanding and engagement by academic/ professional audiences

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. Read more

Mission and goals

The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. She/he may take on full responsibility for designing, installing, testing and maintaining complex machines and systems. The goal of the Automation and Control Engineering programme is to provide the graduate with a strong background in fundamental scientific disciplines, such as mathematics and physics, in classical engineering fields, such as thermodynamics, mechanics, electric drives, automatic control, and in the disciplines of the information and telecommunication technology, like computer science, electronics, communication networks. Thanks to the interdisciplinary nature of her/his background, the graduate has all the necessary skills to design or manage systems resulting from the integration of highly diverse components and technologies. This flexibility both in the attitude and in the competences is a significant asset of the Automation and Control Engineer, in view of the large variety of possible applications, of the continuous and rapid evolution of the technologies, as well as of the dynamics of the job market.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Career opportunities

Automation and Control Engineering offers challenging and fulfilling careers for engineering technologists in design, research and development, and technical support, in many fields where automation and control are of paramount importance, such as: (a) industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems; (b) process industry (pulp and paper, energy production and conversion, chemical and petrochemical industry, etc.); (c) transportation systems (ground, marine and aerospace), concerning both the development of vehicles (cars, boats, helicopters, aircrafts, satellites), and the design, management and control of infrastructures; (d) transportation and distribution networks; (e) food industry; (f) electrical appliances and domotics; (g) environmental resources.

Typical companies where the automation and control engineers may operate include those producing and selling automation systems (both hardware and software); companies that use automated production plants or that manage highly complex services; engineering and consulting firms that design and project complex, economically challenging and technologically advanced plants and systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Automation_Engineering.pdf
This programme aims at providing the graduates with sound engineering skills to design, develop, implement and manage automation systems for manufacturing plants, industrial processes, mechatronic devices, distribution networks and environmental systems. Graduates have a strong background in the classical engineering fields and in the information and telecommunication technology. The interdisciplinary nature of this programme provides the graduates with all the skills to design/manage systems resulting from the integration of highly diverse technologies.
Graduates will have wide employment opportunities in many fields: industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems, process industry, transportation systems, transportation and distribution networks, food industry, electrical appliances, home automation and environmental resources.
The programme is taught in English.

Subjects

The mandatory courses are:
- Advanced and multivariable control
- Automation and control laboratory
- Computer aided manufacturing
- Dynamics of electrical machines and drives
- Dynamics of mechanical systems
- Model identification and data analysis
- Software engineering

Among the optional courses:
- Automation and control in vehicles
- Automation of energy systems
- Control of industrial robots
- Production systems control
- Safety in automation systems
- Thesis and final exam

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less

Show 10 15 30 per page



Cookie Policy    X