• University of Glasgow Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
Middlesex University Featured Masters Courses
Cranfield University Featured Masters Courses
Coventry University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"gsk"×
0 miles

Masters Degrees (Gsk)

  • "gsk" ×
  • clear all
Showing 1 to 15 of 21
Order by 
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice. Read more
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice.

You will encounter the latest technologies available to the process industries and will be exposed to a broad range of crucial operations. Hands-on exposure is our key to success.

The programme uses credit accumulation and offers advanced modules covering a broad range of modern process engineering, technical and management topics.

Core study areas include applied engineering practice, downstream processing, research and communication, applied heterogeneous catalysis and a research project.

The research project is conducted over two semesters and involves individual students working closely with a member of the academic staff on a topic of current interest. Recent examples, include water purification by advanced oxidation processes, affinity separation of metals, pesticides and organics from drinking water, biodiesel processing and liquid mixing in pharmaceutical reactors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Programme modules

Compulsory Modules
Semester 1:
- Applied Engineering Practice
- Downstream Processing
- Research and Communication

Semester 2:
- Applied Heterogeneous Catalysis

Semester 1 and 2:
- MSc Project

Optional Modules (select four)
Semester 1:
- Chemical Product Design
- Colloid Engineering and Nano-science
- Filtration
- Hazard Identification and Risk Management

Semester 2:
- Mixing of Fluids and Particles
- Advanced Computational Methods for Modelling

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Read less
This is a science-based programme, for pharmacists and other chemical graduates, concerned with the quality assurance and quality control of products as molecular entities. Read more
This is a science-based programme, for pharmacists and other chemical graduates, concerned with the quality assurance and quality control of products as molecular entities. The course utilises research-focused laboratories for hands-on time with a range of modern techniques and instruments. In many cases the programme leads to further research, work in R&D laboratories and employment within regulatory agencies.

Key benefits

- King's is ranked 4th in the world for Pharmacy & Pharmacology (QS World University Rankings by Subject 2016)

- Located in the centre of London housed in an institute that is renowned for its international research profile.

- Well equipped laboratories allowing students lots of 'hands-on' time for a range of modern techniques and instruments.

- Students learn about Quality Assurance (QA), Quality Control (QC) and regulatory affairs which are crucial aspects when working in industry.

- Opportunity to undertake an extended project of interest in the laboratories of internationally rated scientists.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/pharmaceutical-analysis-and-quality-control-msc.aspx

Course detail

- Description -

Our advanced programme is concerned with the science and application of modern and traditional techniques for analysis of pharmaceutical products to support the discovery and development of better medicines and provide regulatory data ensuring product integrity.

- Course purpose -

To provide pharmacists and other chemical or related science graduates with the necessary knowledge and expertise in pharmaceutical analysis and the scientific principles underlying quality control for a career in the pharmaceutical industry, health service, research institutes or regulatory authorities. The programme is science-based concerned with the Quality Assurance (QA) and Quality Control (QC) of products as molecular entities.

- Course format and assessment -

Lectures; laboratory classes; tutorials; laboratory-based research project or dissertation; modules assessed by coursework and written examination.

Student destinations

Recent graduates have gone on to work in analytical laboratories for several pharmaceutical companies including Pfizer, GSK and Novartis. Others have taken up positions in government regulatory agencies; overseas students have returned to similar positions in their home countries.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship. Read more
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship.

It builds on the Department’s established strengths in computer modelling, process systems engineering, reaction engineering, numerical modelling, computational fluid dynamics, finite element modelling, process control and development of software for process technologies.

Teaching is augmented by staff from other departments and has an emphasis on design activities.

The programme aims to provide in-depth understanding of the IT skills required for advanced chemical processes and raise students’ awareness of the basic concepts of entrepreneurship, planning a new business, marketing, risk, and financial management and exit strategy.

Core study areas include process systems engineering and applied IT practice, research and communication, modelling and analysis of chemical engineering systems and a research project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Programme modules

Core Modules
Semester 1:
- Process Systems Engineering and Applied IT Practice
- Research and Communication

Semester 2:
- Advanced Computational Methods for Modelling and Analysis of Chemical Engineering Systems

Semester 1 and 2:
- MSc Project

Optional Modules (select three)
Semester 1:
- Chemical Product Design
- Filtration
- Downstream Processing
- Colloid Engineering and Nano-science
- Hazard Identification and Risk Assessment

Semester 2:
- Mixing of Fluids and Particles

Optional Management Modules (select two)
Semester 1:
- Enterprise Technology

Semester 2:
- Entrepreneurship and Small Business Planning
- Strategic Management for Construction

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Read less
This course is designed with industry in mind. We have also partnered with Engineering Materials and Physics to encompass the breadth of modern polymer science and technology. Read more

About the course

This course is designed with industry in mind. We have also partnered with Engineering Materials and Physics to encompass the breadth of modern polymer science and technology. You’ll become the kind of high-calibre polymer science graduate needed to develop new products and processes in a variety of industries.

Through a combination of theory and practice, we’ll teach you about polymer synthesis, physics, characterisation and the latest developments in polymer research. When you design and conduct your own extended research project, you can look in more detail at the areas you’re most interested in and learn how to communicate your science to the chemical community.

Your future

Our graduates are highly valued in the chemical and pharmaceutical sector. They work all over the world for companies including AkzoNobel, Amgen, AstraZeneca, Corus, Dow Chemicals, GSK, Smith and Nephew and Syngenta. Many move on to PhD study, then careers in research or teaching.

Chemistry is vital to the way we live. It helps power industry and drive economic growth. Polymer science contributes to advances in everything from biology to engineering and medicine. As a researcher in industry or academia you could be involved in work that improves lives and changes the way we see the world.

Learn from world-class research

Top-quality research directly informs our teaching. The 2014 Research Excellence Framework (REF) rates 98 per cent of our work world-class or internationally excellent. You’ll learn about the very latest developments from experts in theory and spectroscopy, synthesis, analytical science, chemical biology and materials.

Labs, equipment and training

We’ll train you to use our modern analytical instrumentation. We have NMR spectroscopy, mass spectrometry, x-ray crystallography, polymer characterisation methods and advanced microscopy. We also have a team of technicians to assist with spectroscopic services. There are labs for molecular biology, protein chemistry, polymer/colloid synthesis and materials characterisation.

Core modules

Fundamental Polymer Chemistry; The Physics of Polymers; Biopolymers and Biomaterials; Polymer Characterisation and Analysis; Research and Presentation Skills and Polymer Laboratory Skills; Extended Research Project.

Examples of optional modules

Smart Polymers and Polymeric Materials; Polymers with Controlled Structures; Design and Manufacture of Composites; Polymer Fibre Composite Materials; Macromolecules at Interfaces and Structured Organic Films; Electronics and Photonics.

Teaching and assessment

We use a mixture of lectures, practicals, workshops and individual research projects. The optional modules in the second semester enable you to specialise in two specific areas of polymer science. You can also tailor your research project to your particular interests.

For all taught modules, written exams contribute 75 per cent towards your final grade. The other 25 per cent comes from continuous assessment, which might include essays on specialised topics or assessed workshops. You also produce a 15,000-word dissertation based on your research project.

Your research project

This can be based in an academic group at the University, or in industry. If it’s industry- based, the topic is usually suggested by the company you’re working with. You may be expected to liaise closely with the company to organise your project.

Read less
If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. Read more

Your programme of study

If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. This industry area is rapidly expanding due to new discoveries across biotechnology, biologics, Internet of Things, customised drug treatments and diagnostics at source. This has lead to many new companies being formed, customised and small batch medicines apart from large batch pharmaceutical research and production.

University of Aberdeen is world renowned in this area with the invention of Insulin to treat diabetes which won a Nobel Prize and strengths in medical research areas which also include food and nutrition and disease treatment. You learn about bio-business and the university has strong links with GSK, Pfizer, and AstraZeneca plus Novabiotics and others.

In our MSc in Drug Discovery and Development we train students in major areas of biochemical and molecular pharmacology and therapeutics relevant to the drug discovery and development business. This includes training in molecular pharmacology, drug metabolism and toxicology, therapeutics, pharmacokinetics, pharmcovigilance, regulatory affairs and clinical pharmacology.

Courses listed for the programme

Semester 1
Introduction to Bio-Business and Commercialisation of Bioscience Research
Drug Metabolism and Toxicology
Generic Skills
Basic Skills - Introduction
Small Molecule Drug Discovery

Semester 2
Advanced Bio- Business and the Commercialisation of Bioscience Research 2
Pharmokinetics
Basic Research Methods
Biologic Drug Discovery

Semester 3
Research Project

Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/55/drug-discovery-and-development/

Why study at Aberdeen?

• We work closely with industry and our research strengths have spanned over 50 years with many coming from the inception of the
University
• The degree will give you the skills and knowledge to work in the pharmaceutical industry but you may wish to continue your
research towards drug discovery and start up
• You learn bio-business but you also learn how bio-business is commercialised

Where you study

• University of Aberdeen
• September
• 12 months or 24 months

International Student Fees 2017/2018

Find out about fees:
https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:
• Your Accommodation
• Campus Facilities
• Aberdeen City
• Student Support
• Clubs and Societies

Find out more about living in Aberdeen:
https://abdn.ac.uk/study/student-life

Living costs
https://www.abdn.ac.uk/study/international/finance.php

Read less
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

You will gain an overview of the drug development process from concept to market, gaining hands-on experience of pharmaceutical formulation and drug delivery.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skills
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Principles of Product Analysis and Validation
-Drug Delivery and Targeting

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less
This course is one of our three specialist pharmacy MSc courses (MSc in Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (MSc in Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

During this course, you will gain the skills and knowledge required as a pharmacist - the ability to provide effective pharmaceutical formulation strategies for current and future drug therapies and medicinal products.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skill
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Principles of Product Analysis and Validation
-Pharmacology

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less
This is one of three related MSc programmes in pharmaceutical sciences offered by King's College London. The programmes have been designed to help you develop advanced laboratory skills and techniques for application within the pharmaceutical industry and research institutes. Read more
This is one of three related MSc programmes in pharmaceutical sciences offered by King's College London. The programmes have been designed to help you develop advanced laboratory skills and techniques for application within the pharmaceutical industry and research institutes.

The programmes are designed for graduates in pharmacy, chemistry or related sciences who wish to progress their careers within the pharmaceutical industry, in research and development, drug information or registration departments. The programmes are also suitable for those who wish to work in research institutes, hospital pharmacy, or with drug licensing or regulatory authorities. They also offer a solid foundation for students wishing to enter into research degree programmes.

Key benefits:

- King's is ranked 4th in the world for Pharmacy & Pharmacology (QS World University Rankings by Subject 2016)

- A programme of study in London focused on the discovery and development of biopharmaceuticals, therapeutic peptides, protein, monoclonal antibodies and nucleic acids.

- Links with the pharmaceutical industry in terms of visiting lecturers and site visits.

- A six-month research project.

- Combined teaching with the MSc Pharmaceutical Technology and Pharmaceutical Analysis & Quality Control programmes provides a broad education in the pharmaceutical sciences and allows student flexibility.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/biopharmaceuticals-msc.aspx

Course detail

This advanced programme provides an introduction to the principles of biopharmaceutics and pharmaceutical analysis, offering specialisation in the more biological aspects of the pharmaceutical sciences with an emphasis on drug metabolism and biochemical toxicology.

- Course purpose -

To provide chemical, life science and pharmacy graduates with scientific knowledge and expertise in the areas of biopharmaceutical discovery and development required for a career in the pharmaceutical industry, research institutes or regulatory authorities.

- Course format and assessment -

Lectures; small group tutorials; laboratory classes; laboratory-based research project (or in some instances a critical review of the scientific literature). Each taught module is assessed by a written examination (70 per cent) and coursework (30 per cent).

Modules include:

- Principles Of Chemical Analysis Techniques, Numerical Methods And Regulatory Affairs
- Principles Of Drug Delivery And Disposition
- Research Project/dissertation - Pharmaceutical Sciences

Career prospects

Recent graduates have gone on to take PhD studies; to work in R&D laboratories in the pharmaceutical industry and Biopharmaceutical Industry (including Pfizer, GSK and Novartis); or small Biotech companies. Overseas students have returned to similar positions in their home countries.

How to apply:

http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The School is equipped with a range of state-of-the-art equipment, which would help provide relevant practical experience for the students. Read more
The School is equipped with a range of state-of-the-art equipment, which would help provide relevant practical experience for the students. Therefore the course aims to help students develop the necessary knowledge and practical skills to work in various areas within the pharmaceutical industry, including formulation, regulatory, and analytical services. Students will have a holistic view on the drug development process and be able to solve common pharmaceutical problems by critically evaluating and discussing the scientific literature.

The course is offered on a one year full-time basis, taught over three terms. It includes six taught modules in the first two terms in which all lecture material will be provided on our VLE to enable access.

INDUSTRY LINKS

GSK, Quay Pharma, Rosemont Pharmaceuticals Ltd. and MHRA etc.

LEARNING ENVIRONMENT AND ASSESSMENT

The MSc programme is delivered not only via the conventional means of face-to-face lectures, workshops, tutorials and seminars, but the use of online technologies such as videos and discussion forum would also help integrate students’ learning into their normal daily activities.

Practical classes, problem-based-learning exercises related to industrial challenges and reflective activities throughout the course would also help develop students’ ability to solve pharmaceutical problems practically and provide students an opportunity to apply their knowledge into practice, particularly in relation to the need for appropriate formulation design and development, and how these factors affect clinical outcomes in practice.

A variety of assessment methods will be used for this MSc course, including essays, oral presentations, posters, written examinations and laboratory reports.

OPPORTUNITIES

Students on the course have opportunities to visit our industrial collaborators who specialise in liquid and solid dosage forms, which aim to provide an insight to students about the pharmaceutical industry and the various roles available in industry. Guest lectures and workshops provided at UCLan from the pharmaceutical industry and regulatory bodies also supplement the various modules studied in the course.

Graduate careers include: formulation scientist, PhD research student, and quality control technician.

Graduates may apply for further PhD study at UCLan or other institutions following completion of the MSc Programme. Alternatively, graduates aim to find jobs in the pharmaceutical industry as a formulation scientist, regulatory affairs officer and other roles in industry.

Eligible students may also be able to conduct their MSc research project in collaboration with an industrial partner in semester 3 as part of their MSc studies. This could be in the UK or overseas, subject to availability and agreement with the industrial organisation.

FACILITIES

The specifically designed Pharmaceutical Sciences laboratories have excellent facilities to carry out teaching and research in pharmaceutical sciences. For example, a single-punch tablet press and powder encapsulation equipment help provide practical experience of small scale solid dosage form manufacturing. Other specialist equipment such as coating and spray drying instrument also help enhance students’ learning experience at the University. The characterisation of various dosage forms in accordance to the BP or USP methods can also be carried out using dissolution, disintegration, friability testers etc.

Various advanced drug delivery devices for pulmonary, oral and transdermal applications are also available for both teaching and research at the School. Students would also be able to use the superb analytical instrument available at the University for their practical classes and research project.

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

Degree information

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored for graduate scientists, engineers, or biochemical engineers. Students undertake modules to the value of 180 credits. The programme offers three different pathways (for graduate scientists, engineers, or biochemical engineers) and consists of core taught modules (120 credits) and a research or design project (60 credits).

Core modules for graduate scientists

-Advanced Bioreactor Engineering

-Bioprocess Synthesis and Process Mapping

-Bioprocess Validation and Quality Control

-Commercialisation of Bioprocess Research

-Fluid Flow and Mixing in Bioprocesses

-Heat and Mass Transfers in Bioprocesses

-Integrated Downstream Processing

-Mammalian Cell Culture and Stem Cell Processing

Core modules for graduate engineers

-Advanced Bioreactor Engineering

-Bioprocess Validation and Quality Control**

-Cellular Functioning from Genome to Proteome

-Commercialisation of Bioprocess Research

-Integrated Downstream Processing

-Mammalian Cell Culture and Stem Cell Processing

-Metabolic Processes and Regulation

-Structural Biology and Functional Protein Engineering

-Bioprocess Microfluidics*

-Bioprocess Systems Engineering*

-Bioprocessing and Clinical Translation*

-Cell Therapy Biology*

-Industrial Synthetic Biology*

-Sustainable Bioprocesses and Biorefineries*

-Vaccine Bioprocess Development*

*Core module for graduate biochemical engineers; **core module for both graduate engineers and graduate biochemical engineers

Research project/design project

All MSc students submit a 10,000-word dissertation in either Bioprocess Design (graduate scientists) or Bioprocess Research (graduate engineers and graduate biochemical engineers).

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Top career destinations for this degree:

-PhD Degree/Further Studies(Imperial College London, UCL, Cambridge)

-Consultancy (PwC)

-Bioprocess/Biopharma Industry (GSK, Eli Lilley, Synthace)

-Financial Sector

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensure that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers.

Visit the Biochemical Engineering Open Days page on the University College London website for more details on opportunities to come and see our facilities and speak to the team!



Read less
The School is equipped with a range of state-of-the-art equipment, which would help provide relevant practical experience for the students. Read more
The School is equipped with a range of state-of-the-art equipment, which would help provide relevant practical experience for the students. Therefore the course aims to help students develop the necessary knowledge and practical skills to work in various areas within the pharmaceutical industry, including formulation, regulatory, and analytical services. Students will have a holistic view on the drug development process and be able to solve common pharmaceutical problems by critically evaluating and discussing the scientific literature.

The course is offered on a one year full-time basis, taught over three terms. It includes six taught modules in the first two terms in which all lecture material will be provided on our VLE to enable access.

INDUSTRY LINKS

GSK, Quay Pharma, Rosemont Pharmaceuticals Ltd. and MHRA etc.

LEARNING ENVIRONMENT AND ASSESSMENT

The MSc programme is delivered not only via the conventional means of face-to-face lectures, workshops, tutorials and seminars, but the use of online technologies such as videos and discussion forum would also help integrate students’ learning into their normal daily activities.

Practical classes, problem-based-learning exercises related to industrial challenges and reflective activities throughout the course would also help develop students’ ability to solve pharmaceutical problems practically and provide students an opportunity to apply their knowledge into practice, particularly in relation to the need for appropriate formulation design and development, and how these factors affect clinical outcomes in practice.

A variety of assessment methods will be used for this MSc course, including essays, oral presentations, posters, written examinations and laboratory reports.

OPPORTUNITIES

Students on the course have opportunities to visit our industrial collaborators who specialise in liquid and solid dosage forms, which aim to provide an insight to students about the pharmaceutical industry and the various roles available in industry. Guest lectures and workshops provided at UCLan from the pharmaceutical industry and regulatory bodies also supplement the various modules studied in the course.

Graduate careers include: formulation scientist, PhD research student, and quality control technician.

Graduates may apply for further PhD study at UCLan or other institutions following completion of the MSc Programme. Alternatively, graduates aim to find jobs in the pharmaceutical industry as a formulation scientist, regulatory affairs officer and other roles in industry.

Eligible students may also be able to conduct their MSc research project in collaboration with an industrial partner in semester 3 as part of their MSc studies. This could be in the UK or overseas, subject to availability and agreement with the industrial organisation.

FACILITIES

The specifically designed Pharmaceutical Sciences laboratories have excellent facilities to carry out teaching and research in pharmaceutical sciences. For example, a single-punch tablet press and powder encapsulation equipment help provide practical experience of small scale solid dosage form manufacturing. Other specialist equipment such as coating and spray drying instrument also help enhance students’ learning experience at the University. The characterisation of various dosage forms in accordance to the BP or USP methods can also be carried out using dissolution, disintegration, friability testers etc.

Various advanced drug delivery devices for pulmonary, oral and transdermal applications are also available for both teaching and research at the School. Students would also be able to use the superb analytical instrument available at the University for their practical classes and research project.

Read less
This course provides specialist skills in core systems biology with a focus on the development of computational and mathematical research skills. Read more
This course provides specialist skills in core systems biology with a focus on the development of computational and mathematical research skills. It specialises in computational design, providing essential computing and engineering skills that allow you to develop software to program biological systems.

This interdisciplinary course is based in the School of Computing Science and taught jointly with the Faculty of Medical Sciences and the School of Mathematics and Statistics. The course is ideal for students aiming for careers in industry or academia. We cater for students with a range of backgrounds, including Life Sciences, Computing Science, Mathematics and Engineering.

Computational Systems Biology is focused on the study of organisms from a holistic perspective. Computational design of biological systems is essential for allowing the construction of complex and large biological systems.

We provide a unique, multidisciplinary experience essential for understanding systems biology. The course draws together the highly-rated teaching and research expertise of our Schools of Computing Science, Mathematics and Statistics, Biology, and Cell and Molecular Biosciences. The course also has strong links with Newcastle's Centre for Integrated Systems Biology of Ageing and Nutrition (CISBAN).

Our course is designed for students from both biological and computational backgrounds. Prior experience with computers or computer programming is not required. Students with mathematical, engineering or other scientific backgrounds are also welcome to apply.

The course is part of a suite of related programmes that also include:
-Bioinformatics MSc
-Synthetic Biology MSc
-Computational Neuroscience and Neuroinformatics MSc

All four programmes share core modules, creating a tight-knit cohort. This encourages collaborations on projects undertaking interdisciplinary research.

Project work

Your five month research project gives you a real opportunity to develop your knowledge and skills in depth in Systems Biology. You have the opportunity to work closely with a leading research team in the School and there are opportunities to work on industry lead projects. You will have one-to-one supervision from an experienced member of the faculty, supported with supervision from associated senior researchers and industry partners as required.

The project can be carried out:
-With a research group at Newcastle University
-With an industrial sponsor
-With a research institute
-At your place of work

Placements

Students have a unique opportunity to complete a work placement with one of our industrial partners as part of their projects.

Previous students have found placements with organisations including:
-NHS Business Services Authority
-Waterstons
-Metropolitan Police
-Accenture
-IBM
-Network Rail
-Nissan
-GSK

Accreditation

We have a policy of seeking British Computer Society (BCS) accreditation for all of our degrees, so you can be assured that you will graduate with a degree that meets the standards set out by the IT industry. Studying a BCS-accredited degree provides the foundation for professional membership of the BCS on graduation and is the first step to becoming a chartered IT professional.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Read less
This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body. Read more
This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body.

Degree information

You will gain hands-on experience of molecular modelling and computer-based drug design, and analytical and synthetic techniques and be exposed to modern platforms for drug discovery and methods of drug synthesis.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (90 credits), two optional modules (30 credits) and a dissertation (60 credits).

Core modules
-Modern Aspects of Drug Discovery
-The Process of Drug Discovery and Development I
-The Process of Drug Discovery and Development II

Optional modules - students choose two from the following:
-Anticancer Personalised Medicines
-New Drug Targets in the CNS
-Pharmacogenics, Adverse Drug Reactions and Biomarkers
-Advanced Structure-based Drug Design

Dissertation/report
All students undertake a laboratory-based research project which is assessed at the end of the year by a written report and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials and seminars supported by the Blackboard e-learning system and practical classes. Assessment is through a combination of written examination and coursework. The research project is assessed by written report and oral presentation.

Careers

Students who complete the Drug Delivery and Development MSc will progress to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Top career destinations for this degree:
-Analytical Scientist, GSK (GlaxoSmithKline)
-Product Physician, AstraZeneca
-PhD in Medicinal Chemistry, University College London (UCL)

Why study this degree at UCL?

Lectures and seminars from industry-based scientists and visits to industrial and biotechnological research laboratories are key features of this programme.

Our graduates include international students from 24 different countries.

The programme covers marketing, licensing and the regulatory affairs that form an integral part of the development process.

Read less
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

Pharmacokinetics is a key aspect of drug safety and investigates the fate of a drug in the body, and how the substance is absorbed, distributed, metabolised and eliminated. Develop your skill and knowledge in the application of pharmacokinetics to the design and optimisation of new therapeutics. This course has been developed with an emphasis on describing mechanistic approaches to assessing and predicting the pharmacokinetics of drugs throughout the drug development process. You will encounter a broad range of experiences in the application of pharmacokinetics from early discovery and development, through to market authorisation and clinical applications.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skills
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Pharmacology

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less

Show 10 15 30 per page



Cookie Policy    X