• Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
University of St Andrews Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Greenwich Featured Masters Courses
Cardiff University Featured Masters Courses
"ground" AND "water"×
0 miles

Masters Degrees (Ground Water)

  • "ground" AND "water" ×
  • clear all
Showing 1 to 15 of 32
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Desalination and Water Re-use at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Desalination and Water Re-use at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University is a world-leader in the area of desalination for water treatment.

Key Features of Desalination and Water Re-use Programme

Pressure is increasing on our limited water resources. With more people requiring clean water, effective solutions need to come from reusing water in the most efficient way.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment.

The Centre benefits from world-leading expertise in the area of desalination for water treatment.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) research areas, broadly speaking, fit into one of three categories:

- Drinking water treatment: improved methods of portable water treatment, with a view to meeting tightening regulations at cheaper capital and operating costs.
- Waste-water treatment: technologies for the efficient removal of environmentally harmful materials and thus reduced emissions per output of discharge.
- Process-water treatment: methods for the treatment of process streams enabling the recycling of water and valuable chemical intermediates.

The MSc by Research Desalination and Water Re-use has a wide range of subject choices including:

- Modelling membrane processes
- Membrane and process characterisation
- Hazardous substances
- Ozonation and Advanced Oxidation Processes (AOPs)
- Pilot scale studies

MSc by Research in Desalination and Water Re-us typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Desalination and Water Re-use programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

The Desalination and Water Re-use programme also benefits from the facilities at the Centre for Water Advanced Technologies and Environmental Research (CWATER) at Swansea University.

Links with industry

One of the major strengths of Desalination and Water Re-use at Swansea University is the close and extensive involvement with local, national and international engineering companies. The Desalination and Water Re-use programme has links with the following companies:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
The environmental impact of oil and gas exploration, production and distribution is critical and mistakes of the past have left disastrous consequences. Read more
The environmental impact of oil and gas exploration, production and distribution is critical and mistakes of the past have left disastrous consequences.

The MSc Energy & Environmental Management (Oil & Gas) gives you the opportunity to analyse problems such as ground water pollution and contaminated land and the health and social issues they raise.

This course has several different available start dates and study methods:
SEPTEMBER 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02587-1PTA-1718/Energy_&_Environmental_Management_(Oil_&_Gas)_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02587-1PTAB-1617/Energy_&_Environmental_Management_(Oil_and_Gas)_January?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2017 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02553-1FTAB-1617/Energy_&_Environmental_Management_(Oil_&_Gas)_January?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02553-1FTAB-1718/Energy_&_Environmental_Management_(Oil_&_Gas)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02587-1PTAB-1718/Energy_&_Environmental_Management_(Oil_&_Gas)_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

The oil and gas industries are widely affected by a growing range of factors, including shifting global economics, an evolving global energy mix and environmental issues.

There is an increasing demand for those working in the industries to develop an intelligent awareness of this complex business environment and to grasp the ways in which these changes will affect organisations.

Developed in conjunction with industry, the School of Engineering and Built Environment at GCU offers a suite of programmes designed to provide the knowledge required for a range of professional careers within the oil and gas industry.

The environmental impact assessment of oil and gasexploration, production and distribution is absolutelycrucial. Mistakes of the past which has left disastrous consequences such as ground water pollution, contaminated land, health and social problems, must not be repeated. This programme produces graduates that are aware of these problems, are capable of analysing the problems and offering solutions taking into account the local circumstances.

Why Choose This Programme?

With increasing environmental legislation and regulation, commercial and industrial organisations, local authorities and public bodies, all require some environmental input to their activities. The environment offers opportunities to those who understand the issues involved and have a vision broad enough to grasp their inter-disciplinary nature. Thus, the programme offers students the challenge to broaden their understanding of environmental issues in the context of their previous backgrounds and qualifications.

Assessment Methods

The taught modules are assessed by coursework only or a combination of coursework and examination. The MSc project is assessed by project reports, practical operation and an electronic presentation.

Career Opportunities

Graduates of this programme can expect to find work as environmental specialists within the oil and gas industry and a wide range of sectors often related to various previous qualifications. Graduates of the MSc Energy & Environmental Management have gone on to work for: regulators such as Scottish Environmental Protection Agency (SEPA); various local authorities; and national and international consultancy companies, including Carl Bro Group, ERS Land Regeneration and Valpack.

Read less
Our MSc in Advanced Geotechnical Engineering is a European-Accredited Engineering Master Degree programme. It will give you the skills you need to address real-world ground engineering problems and the technological challenges faced every day by the geotechnical engineering profession. Read more
Our MSc in Advanced Geotechnical Engineering is a European-Accredited Engineering Master Degree programme.

It will give you the skills you need to address real-world ground engineering problems and the technological challenges faced every day by the geotechnical engineering profession.

PROGRAMME OVERVIEW

The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering.

Topics include deep foundations in urban areas, tunnelling, foundations for energy infrastructure, deep water energy resources exploration and field monitoring.

During your studies you will have the opportunity to apply the knowledge and practical understanding of scientific methodology you have acquired on a research project under the guidance and advice of an experienced supervisor.

This will help you develop the skills to acquire, analyse, and critically evaluate data, and then draw valid, defendable conclusions that can withstand professional scrutiny.

Graduates are highly employable, and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over one academic year (full-time) and between two and five academic years (part-time or distance learning). It consists of eight taught modules and a dissertation.

On successful completion of this MSc programme students will be deemed to have completed the further learning necessary to combine with a suitable BEng (Hons) degree fulfilling the academic base for the professional qualification of Chartered Engineer.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Deep Foundations and Earth Retaining Structures
-Soil-Structure Interaction

Selected Structural Engineering Group Modules
-Subsea Engineering
-Structural Safety and Reliability
-Earthquake Engineering

Selected Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Selected Infrastructure Engineering Group Modules
-Infrastructure Systems Interdependencies and Resilience
-Infrastructure Investment and Financing
-Infrastructure Asset Management
-Sustainability and Infrastructure

Selected Water and Environmental Engineering Group Modules
-Groundwater Control
-Water Resources Management and Hydraulic Modelling
-Dissertation project

Students must choose eight modules from those listed above. For the main and subsidiary awards there are restrictions on the choice of modules within each module group. These are outlined in the table above.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of some of the challenges faced during the analysis, design and construction of foundation and geotechnical structures
-The ability to select and apply most appropriate analysis methodology for problems in ground engineering including advanced and new methods
-The ability to design foundations in a variety of ground conditions
-A working knowledge of the key UK, European and some International standards and codes of practice associated with the analysis and design of foundations and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK, European and International standards and codes of practice relating to ground engineering
-A knowledge and understanding of the construction of different types of geotechnical structure on different ground conditions
-A comprehensive understanding of the principles of engineering mechanics underpinning ground engineering
-The ability to understand the limitations of ground analysis methods
-The knowledge and understanding to work with information that may be uncertain or incomplete
-A knowledge and understanding of ground engineering in a commercial/business context
-Knowledge and understanding of sustainable development related to ground engineering
-A knowledge and understanding of the common and less common materials used in ground engineering
-An understanding of construction management
-A critical awareness of new developments and research needs in ground engineering

Intellectual / cognitive skills
-The ability to apply fundamental knowledge to investigate new and emerging ground engineering problems
-A critical awareness of new developments in the field of ground engineering
-The ability to critically evaluate ground engineering design principles and concepts
-The awareness of the commercial, social and environmental impacts associated with foundations
-An awareness and ability to make general evaluations of risk associated with the design and construction of foundations including health and safety, environmental and commercial risk

Professional practical skills
-The ability to interpret and apply the appropriate UK, European and some International standards and codes of practice to foundation design for both familiar and unfamiliar situations
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-The ability to apply the appropriate analysis methodologies to common ground engineering problems as well as unfamiliar problems
-The ability to collect and analyse research data
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to generate innovative foundation design
-The awareness of professional and ethical conduct

Key / transferable skills
-Oral and written communication (presentation skills)
-Synthesis and graphical presentation of data
-3D spatial awareness
-Use of sketching and engineering drafting
-Use of word processor, spreadsheet, drawing/presentation
-Technical report writing
-Independent learning skills
-Ability to develop, monitor and update a plan
-Reviewing, assessing, and critical thinking skills
-Teamwork, leadership and negotiation skills
-Time management

[[GLOBAL OPPORTUNITIES[[
We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Membrane Technology at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Membrane Technology at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University is a world-leader in the area of membrane technologies for water treatment.

Key Features of MSc by Research in Membrane Technology

Pressure is increasing on our limited water resources. With more people requiring clean water, effective solutions need to come from reusing water in the most efficient way. The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment.

The Centre benefits from world-leading expertise in the area of membrane technologies for water treatment.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) research areas, broadly speaking, fit into one of three categories:

- Drinking water treatment: improved methods of portable water treatment, with a view to meeting tightening regulations at cheaper capital and operating costs.
- Waste-water treatment: technologies for the efficient removal of environmentally harmful materials and thus reduced emissions per output of discharge.
- Process-water treatment: methods for the treatment of process streams enabling the recycling of water and valuable chemical intermediates.

The MSc by Research in Membrane Technology has a wide range of subject choices including:

Modelling membrane processes
Membrane and process characterisation
Hazardous substances
Bioprocessing
Development of new membranes
Ozonation and Advanced Oxidation Processes (AOPs)
Pilot scale studies

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Links with industry

One of the major strengths of Membrane Technology at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Read more
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in:
-Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data.
-Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.
-Making systematic and innovative use of investigation or experimentation to discover new knowledge.
-Reporting results in a clear and logical manner.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The six study lines are as follows:
Aerosol Physics
Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods. As a graduate of this line you will be an expert in the most recent theoretical concepts, measurement techniques and computational methods applied in aerosol research.

Geophysics of the Hydrosphere
Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes.

Meteorology
Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example. As a graduate of the meteorology line, you will be an expert in atmospheric phenomena who can produce valuable new information and share your knowledge.

Biogeochemical Cycles
Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Remote Sensing
Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry. As a graduate of the remote sensing line you will have broad expertise in the operational principles of remote sensing instruments as well as methods of data collection, analysis and interpretation.

Atmospheric Chemistry and Analysis
Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods. As a graduate of this line you will have understanding of the chemical processes of the atmosphere and the latest environmental analytical methods, so you will have vital skills for environmental research.

Programme Structure

The basic degree in the Programme is the Master of Science (MSc). The scope of the degree is 120 credits (ECTS). As a prerequisite you will need to have a relevant Bachelor’s degree. The possible major subjects are Physics, Meteorology, Geophysics, Chemistry, and Forest Ecology. The programme is designed to be completed in two years. Studies in ATM-MP consist of various courses and project work: lecture courses, seminars, laboratory work and intensive courses.

Your first year of studies will consist mainly of lecture courses. During the second year, you must also participate in the seminar course and give a presentation yourself. There is also a project course, which may contain laboratory work, data analysis, or theoretical or model studies. You will have to prepare a short, written report of the project. There are also several summer and winter schools as well as field courses for students in the Programme. Many of the courses take place at the Hyytiälä Forestry Field Station in Southern Finland. The intensive courses typically last 5–12 days and include a concise daily programme with lectures, exercises and group work.

Career Prospects

There is a global need for experts with multidisciplinary education in atmospheric and environmental issues. Governmental environmental agencies need people who are able to interpret new scientific results as a basis for future legislation. Industry, transportation and businesses need to be able to adapt to new regulations.

As a Master of Science graduating from the Programme you will have a strong background of working with environmental issues. You will have the ability to find innovative solutions to complex problems in the field of environmental sciences, climate change and weather forecasting. Graduates of the Programme have found employment in Meteorological Institutes and Environmental Administration in Finland and other countries, companies manufacturing instrumentation for atmospheric and environmental measurements and analysis, and consultancy companies. The Master's degree in ATM-MP also gives you a good background if you intend to proceed to doctoral level studies.

Internationalization

The Programme offers an international study environment with more than 30% of the students and teaching staff coming from abroad.

The ATM-MP is part of a Nordic Nordplus network in Atmosphere-Biosphere Studies, which gives you good opportunities to take courses currently in fourteen Nordic and Baltic universities. There are also several Erasmus agreements with European universities. The PanEurasian Experiment (PEEX) project provides you with opportunities to carry out part of your studies especially in China and Russia.

Research Focus

All the units teaching in the Programme belong to the National Centre of Excellence (FCoE) in Atmospheric Science – From Molecular and Biological processes to the Global Climate (ATM), which is a multidisciplinary team of the Departments of Physics, Forest Sciences and Chemistry at the University of Helsinki, the Department of Applied Physics at the University of Eastern Finland (Kuopio) and the Finnish Meteorological Institute.

The main objective of FCoE ATM is to quantify the feedbacks between the atmosphere and biosphere in a changing climate. The main focus of the research is on investigating the following topics:
1. Understanding the climatic feedbacks and forcing mechanisms related to aerosols, clouds, precipitation and biogeochemical cycles.
2. Developing, refining and utilising the newest measurement and modelling techniques, from quantum chemistry to observations and models of global earth systems.
3. Creating a comprehensive understanding of the role of atmospheric clusters and aerosol particles in regional and global biogeochemical cycles of water, carbon, sulphur, nitrogen and their linkages to atmospheric chemistry.
4. Integrating the results in the context of understanding regional and global Earth systems.

In addition to the research focus of FCoE, current research in hydrospheric geophysics at Helsinki University has an emphasis on cryology, with a focus on the effect of aerosols on Indian glaciers, the impact of climate change on the Arctic environment, the dynamics of the Austfonna ice cap in Svalbard, and the winter season in the coastal zone of the Baltic Sea.

Read less
The Water and Wastewater Engineering programme is ideal for individuals who want to make a real difference to delivering reliable water supplies, or to maintaining and enhancing river and ground water quality. Read more
The Water and Wastewater Engineering programme is ideal for individuals who want to make a real difference to delivering reliable water supplies, or to maintaining and enhancing river and ground water quality. The programme is suitable for those from non-engineering and engineering disciplines alike: all we require is a science or engineering degree qualification combined with a keen interest in water and wastewater. Treatment processes play a key role in delivering safe, reliable supplies of water to households, industry and agriculture and in safeguarding the quality of water in rivers, lakes, aquifers and around coastal areas. Well educated, skilled and experienced graduates are required to operate and manage vital water and wastewater treatment services.

Read less
This course offers a cross-disciplinary approach to the study of environmental management, policy and sustainable development. You’ll gain knowledge of major environmental issues and understand the methods in which environmental considerations and climate change are used in development and planning decisions. Read more

Why this course?

This course offers a cross-disciplinary approach to the study of environmental management, policy and sustainable development.

You’ll gain knowledge of major environmental issues and understand the methods in which environmental considerations and climate change are used in development and planning decisions.

There’s a strong demand for graduates with environmental management and policy-making skills. We’ve seen our graduates capitalise upon a wide range of employment within the private, public and voluntary sectors.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/sustainabilityenvironmentalstudies/

Work Placement

As part of the class Independent Study in Collaboration with Industry you can apply to work with industry projects. One of the projects is the Carbon Clinic. This is an innovative collaborative project between the Carbon Trust and the University. It aims to provide support to small and medium sized enterprises (SMEs) to reduce their carbon footprint and give you practical experience on environmental responsibilities within a business.

Facilities

In our Department of Civil & Environmental Engineering we have invested £6 million in state-of-the-art laboratories which cover core areas of activity including geomechanics, microbiology, analytical chemistry and structural design.

- Field investigation
We are equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- electrical resistivity tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We are equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
- pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software & numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Open Access

Home students can also choose to study through Open Access. This is initially a non-graduating route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification.

This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes.

Home students who do not meet the normal MSc entry requirements for this programme are welcome to apply through the Open Access route instead.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The MSc involves a curriculum of three core classes and a very wide range of optional classes. Each module is taught two to three hours per week over 8 to 12 weeks.

In addition, you'll also undertake a dissertation. Progress to the dissertation is dependent on performance in the instructional modules.

Careers

There’s a strong demand for graduates with environmental management and policymaking skills. As a graduate you may find yourself in a range of positions in:
- Private consultancies
- Government agencies
- Local authorities
- Environmental regulators, businesses and agencies

- Where are they now?
84% of our graduates are in work or further study.*

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Read more

Why this course?

Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Solving problems of air, land and water pollution and protecting society against natural disasters are also important aspects of civil engineering.

Engineering graduates are in high demand from recruiting companies worldwide.

This 18-month MSc course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments, with practical experience provided by the industrial placement.

The course has a significant design element based on the most up-to-date specialist design guidelines. This includes a major design project that integrates acquired knowledge and acts as a platform for structured self-learning.

This MSc in Civil Engineering with Industrial Placement is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, mathematics, physics and mechanical engineering may also be considered.

The MSc in Civil Engineering with Industrial Placement has three optional specialist streams:
- Structural Engineering & Project Management
- Geotechnical Engineering & Project Management
- Geoenvironmental Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineeringwithindustrialplacement/

Industrial placement

A wide range of companies, such as AECOM, ATKINS, CAPITA, CH2M HILL and ClimateXChange (Scotland’s Centre of Expertise on Climate Change), are offering placements exclusively for this MSc. A full list of companies can be provided upon request. The 8 to 12 weeks industrial placement will take place in the period from June to September.

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

In additional to the industrial placement you'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:
- geomechanics
- microbiology
- analytical chemistry
- structural design

- Field investigation
We’re equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software and numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).
For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:
- engineering consultancies, where the work normally involves planning and designing projects
- contractors, where you’ll be managing and overseeing works on-site
- working for utilities or local authorities
- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523*.

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Engineering graduates are in high demand from recruiting companies worldwide. This course has been designed to meet the needs of a broad range of engineering industries. Read more

Why this course?

Engineering graduates are in high demand from recruiting companies worldwide.

This course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments.

This one-year MSc in civil engineering is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, maths, physics and mechanical engineering may also be considered.

You can graduate with an MSc in Civil Engineering or choose to follow a specialist named stream:
- Civil Engineering with Structural Engineering & Project Management
- Civil Engineering with Geotechnical Engineering & Project Management
- Civil Engineering with Geoenvironmental Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineering/

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

You'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Placements

As part of the class Independent Study in Collaboration with Industry, you can apply to work with industry projects.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:
- geomechanics
- microbiology
- analytical chemistry
- structural design

- Field investigation
We’re equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
- pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software & numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Open Access

Home students can also choose to study through Open Access. This is initially a non-graduating route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification.

This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes.

Home students who do not meet the normal MSc entry requirements for this programme are welcome to apply through the Open Access route instead.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course has two semesters of taught classes. Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).
For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:
- engineering consultancies, where the work normally involves planning and designing projects
- contractors, where you’ll be managing and overseeing works on-site
- working for utilities or local authorities
- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
Guelph’s Water Resource Engineering program is the first of its kind in North America and with the number of prestigious NSERC chairs awarded to our faculty, it is also the most well recognized and respected of its kind. Read more
Guelph’s Water Resource Engineering program is the first of its kind in North America and with the number of prestigious NSERC chairs awarded to our faculty, it is also the most well recognized and respected of its kind. The School of Engineering is excited to offer you two new Graduate Diplomas:
• Modelling Applications in Water Resources Engineering
• Engineering Design of Sustainable Water Resource Systems

The diploma is an opportunity for:
• Canadian Engineering graduates who require further education to facilitate a change in their professional career
• Landed immigrants in Canada with an engineering background looking for Canadian educational experience

The new Graduate Diplomas are unique because they draw upon specializations in the existing Water Resources Engineering program at the University of Guelph. Water Resources Engineering research involves investigations and design of systems for control and utilization of land and water resources as part of management of urban and rural watersheds. Research topics include:
• Water quality control and safety
• Resource use and ground water quality
• Hydrologic modelling
• Design and planning of urban water and sewage infrastructure,
• Rural waste treatment systems,
• Erosion control,
• Non-point source pollution control,
• Sediment and contaminant transport,
• Irrigation and drainage modeling

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on essential aspects of the subject:

- Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
- Engineering geology and site investigation
- Analysis, design and construction of foundations, retaining walls, tunnels, embankments and slopes including methods of ground reinforcement and improvement.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on four essential aspects of the subject:

Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
Engineering geology and site investigation
Analysis, design and construction of foundations, retaining walls, embankments and slopes including methods of ground reinforcement and improvement.
Managerial skills for the construction industry, including groundworks and risk management, BIM in infrastructure and infrastructure planning process.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation. Read more
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation.

The technical modules of the course aim to develop the understanding and application of advanced theoretical contents of the specialist subject.

Structural topics are taught in the two modules of Finite Elements and Stress Analysis, and Advanced Structural Design. The interaction of geotechnics and structures is covered in the Soil-Structure Engineering module. The Water Resources Systems Management module looks into the water engineering aspects. The transportation field is studied in the Highway and Railway Engineering and Operations module. The final module, Asset Management and Project Appraisal of Infrastructures examines the methods, merits and economics of repairs of existing structures.

You'll be required to complete an individual project into a specific area of the programme studied, providing you with the opportunity of pursuing a programme of independent study. The work is to be of an investigative nature having an experimental, analytical, computer-based or fieldwork input.

If you'd like any further information, please contact the course administrator, Ms. Jo Hillman: or call 020 7815 7106.

- Accreditation:
Joint Board of Moderators (ICE, IStructE, IHE, CIHT)

See the website http://www.lsbu.ac.uk/courses/course-finder/civil-engineering-msc

Modules

Teaching techniques include lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

- Advanced structural design
The module will use the European codes for safe and effective design of normal structural elements and structural systems. It will cover engineering principles and analytical techniques and using software.

- Soil-structure engineering
This module will acquaint the students with classical and modern methods for the analysis and design of structures which are embedded in the ground, specifically embedded retaining walls, piled foundations and tunnels.

- Finite elements and stress analysis
The module will equip the student with linear elastic analysis of thin-walled sections, 2D and 3D stress analysis and transformations. It will introduce the Finite Element method theory and use ANSYS software.

- Highway engineering and operation
The module covers the system characteristics and operations for highways before considering geometric alignment and construction of highways.

- Railway engineering and operation
This module will underpin understanding of railway system characteristics and operations, and provide skills in geometric design for railways.

- Water engineering
This module covers the concepts and theories of groundwater hydrology, the principles of groundwater flow, well hydraulics analysis and design, contaminants transport in the aquifer, and remediation technology of contaminated groundwater. There is an introduction to aspects of 3-dimensional groundwater flows using USGS MODFLOW and FEFLOW with practical.

- Project
This module is one third of the course and is an individually supervised piece of work that is typically either a research project or an innovative design exercise. The theme is related to topics covered on the course.

Employability

Employment prospects for graduates of these courses are very good, especially in view of the upturn in new infrastructure projects in the UK and overseas. Successful students enter into a variety of positions within the construction industry, ranging from working in a design office, with contractors and in local authorities.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

This degree is an accredited MSc (Technical) course by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Read less
Modern civil engineering professionals often require an extensive understanding of construction management due to the strategic benefits it can bring to both individuals and project teams. Read more

Overview

Modern civil engineering professionals often require an extensive understanding of construction management due to the strategic benefits it can bring to both individuals and project teams.

As the industry becomes more competitive, organisations and their clients are increasingly demanding the combined time, cost and quality assurances that good project management practice provides. Furthermore, the industry now recognises that there is a need for engineers to gain specialist technical knowledge which compliments their academic and professional background.

These observations form the basis of the MSc/Postgraduate Diploma in Civil Engineering and Construction Management (See http://www.postgraduate.hw.ac.uk/prog/msc-civil-engineering-and-construction-management/ ); an essential core of construction management material augmented by a broad range of specialist civil engineering options.

Our students and graduates

Our students are recruited mainly from the civil engineering profession and are typically looking to broaden their knowledge base, extend their technical expertise or gain further learning to meet the needs of the professional institutions. Applicants from other backgrounds planning to develop a career in civil engineering and construction management will also be considered. Graduates of this programme are much sought after by employers, working in areas such as transport, water and wastewater engineering and the energy sector.

The Institute for Infrastructure and Environment (IIE)

This programme is delivered by Heriot Watt University’s Institute for Infrastructure and Environment (http://www.sbe.hw.ac.uk/research/institute-infrastructure-environment.htm) . As a Civil Engineering and Construction Management postgraduate student you will be part of the Institute’s Graduate School, connecting you with staff, research associates and fellow students engaging in cutting-edge research in areas such as water management, ultra-speed railways, construction materials, geomechanics and more.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Industry links

This programme is supported by our Civil Engineering Industry Advisory Committee, which includes representatives from major multi-national employers AECOM, Arup, Atkins, Balfour Beatty, Halcrow, Jacobs and WSP Group. This committee convenes regularly and advises on the programme content and structure, ensuring quality, up-to-date content and relevance to industry needs.

Teaching and research excellence

Our teaching staff is engaged in a wide range of research within the field of civil engineering and construction management, with at least 90% of our overall research activity in General Engineering confirmed as world-leading or internationally excellent in the UK's Research Excellence Framework (REF) of 2014. Our track record in teaching civil engineering is strong, with our undergraduate programme ranked 1st in Scotland in the 2014 National Student Survey. Over half of our teaching staff are chartered engineers.

With a history dating back to 1821, Heriot-Watt is one of the UK’s leading universities, and Scotland’s most international. Find out more about Heriot-Watt University’s reputation, rankings and international profile http://www.hw.ac.uk/about/reputation/key-facts.htm .

Programme content

The MSc / Postgraduate Diploma in Civil Engineering and Construction Management provides students with a combination of courses designed to improve their knowledge and understanding of advanced civil engineering and modern construction management theory and practice. The programme structure consists of four mandatory construction management courses (CM) which all students must complete. Students must also choose four civil engineering courses (CE) from a list of specialist topics as detailed below. MSc students also complete two research projects.

Course Choice Semester 1
· Project Management: Theory & Practice (CM) - Mandatory
· Value & Risk Management (CM) – Mandatory
· Indeterminate Structures (CE) - Optional
· Sustainability in Civil Engineering (CE) - Optional
· Ground Engineering (CE) - Optional
· Environmental Geotechnics (CE) - Optional

Course Choice Semester 2
· Project Management: Strategic Issues (CM) – Mandatory
· Construction Financial Management (CM) – Mandatory
· Safety, Risk & Reliability (CE) - Optional
· Foundation Engineering (CE) - Optional
· Water and Waste Water Treatment (CE) - Optional
· Urban Drainage Design and Analysis (CE) - Optional
· Earthquake Engineering (CE) - Optional

Find out more about programme content here http://www.postgraduate.hw.ac.uk/prog/msc-civil-engineering-and-construction-management/

Career opportunities

This programme uses experience from an internally recognised postgraduate qualification, (MSc Construction Management from Heriot-Watt University) and combines it with the high profile Heriot-Watt University Civil Engineering Postgraduate Programme to provide an internationally acclaimed Masters programme.

Recent graduates have been employed by a variety of national and international employers.

English language requirements

If English is not the applicant’s first language a minimum of IELTS 6.5 or equivalent is required with all elements passed at 6.0 or above.

Applicants who have previously successfully completed programmes delivered in the medium of English language may be considered and will be required to provide documentary evidence of this. Examples would be secondary school education or undergraduate degree programme. A minimum of at least one year of full time study (or equivalent) in the medium of English language will be required.

We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-civil-engineering-and-construction-management/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Civil Engineering and Construction Management. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X