This course recognises the need for skilled graduates to address the world’s major issues in electrical energy and power systems. It offers an integrated programme focusing on:
The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.
There’s two semesters of compulsory and optional classes, followed by a three-month summer research project in your chosen area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.
The internships are offered in collaboration with selected department industry partners, including ScottishPower, Smarter Grid Solutions and SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.
You'll have exclusive access to our extensive computing network and purpose built teaching spaces, including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies, including:
You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.
The Institution of Engineering & Technology (IET) - this programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme.
We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises of approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.
You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Iberdrola, National Grid, ScottishPower, SSE, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.
A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.
Assessment of the summer research project/internship consists of four elements, with individual criteria:
The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.
Employment prospects are excellent, with recent graduates operating in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as ScottishPower Energy Networks, Aker Solutions, National Grid & EDF Energy. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.
Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.
You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas.Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.
Semester 1
Semester 2
Semester 3
Find out more detail by visiting the programme web page
• Online option available
Find out about international fees:
Find out more about fees on the programme page
*Please be advised that some programmes also have additional costs.
View all funding options on our funding database via the programme page and the latest postgraduate opportunities
Find out more about:
Find out more about living in Aberdeen and living costs
Other engineering disciplines you may be interested in:
This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry.
This course offers engineering graduates the opportunity to study at one of Europe's largest and leading University power and energy technology groups - the Institute for Energy & Environment.
The Institute is home to over 200 staff and researchers conducting strategic and applied research in the key technical and policy aspects of energy systems. It also houses the UK’s only Government funded Centres for Doctoral Training in Wind & Marine Energy Systems, and Future Power Networks and Smart Grids, both of which are dedicated to pioneering research and advanced skills training.
On this course you'll develop and enhance your technical expertise of wind energy and deepen your understanding of the engineering, political and economic contexts of wind power. This course will provide you with an advanced level of knowledge to address the current and future challenges of this exciting and dynamic sector.
With links to key UK and global business and industry energy partners, you’ll have unique access to companies at the forefront of wind energy developments.
There are two semesters of compulsory and optional classes, followed by a three-month research project in a specialist area. There’s the opportunity to carry this out through our department's competitive MSc industrial internships.
The internships are offered in collaboration with selected department industry partners eg ScottishPower, Smarter Grid Solutions, SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.
You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.
We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
Individual modules are delivered by academic leaders, and with links to key UK and global industry energy partners, you'll have unique access to companies at the forefront of wind energy developments.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.
You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Atkins Global, BAE Systems, Iberdrola, National Grid, ScottishPower, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.
A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.
Assessment of the summer research project/internship consists of four elements, with individual criteria:
With the European Wind Energy Association (EWEA) forecasting UK/EU employment in wind energy related jobs to double to more than 500,000 by 2020, graduates of this course have excellent career prospects.
The UK electricity supply industry is currently undergoing a challenging transition driven by the need to meet the Government's binding European targets to provide 15% of the UK's total primary energy consumption from renewable energy sources by 2020.
Graduates of this course have unique access to key UK and global industry energy partners, who are committed to fulfilling these UK Government targets. These companies offer a diverse range of professional and technical employment opportunities in everything from research and development, construction and maintenance, to technical analysis and project design. Companies include Siemens Energy, Sgurr Energy, DNV GL, ScottishPower Renewables and SSE.
If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. It is a great way to study a degree from a known and trusted brand with exactly the same content as the on campus version but delivered entirely online.
Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.
You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas. Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.
Year 1
Year 2
Year 3
Find out more detail by visiting the programme web page
or if you want to study on campus find out more
Find out about international fees:
Find out more about fees on the programme page
*Please be advised that some programmes also have additional costs.
View all funding options on our funding database via the programme page and the latest postgraduate opportunities
Other engineering disciplines you may be interested in:
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Power Engineering and Sustainable Energy at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).
The Master's course in Power Engineering and Sustainable Energy places strong emphasis on state-of-the-art semiconductor devices and technologies, advanced power electronics and drives, and advanced power systems. The Power Engineering and Sustainable Energy course also covers conventional and renewable energy generation technologies. Exciting new developments such as wide band gap electronics, energy harvesting, solar cells and biofuels are discussed and recent developments in power electronics are highlighted.
The College of Engineering has an international reputation for electrical and electronics research for energy and advanced semiconductor materials and devices.
Greenhouse gas emission and, consequently, global warming are threatening the global economy and world as we know it. A non-rational use of electrical energy largely contributes to these.
Sustainable energy generation and utilisation is a vital industry in today’s energy thirsty world. Energy generation and conversion, in the most efficient way possible, is the key to reducing carbon emissions. It is an essential element of novel energy power generation system and future transportation systems. The core of an energy conversion system is the power electronics converter which in one hand ensures the maximum power capture from any energy source and on another hand controls the power quality delivered to grid. Therefore the converter parameters such as efficiency, reliability and costs are directly affecting the performance of an energy system.
Transmission and distribution systems will encounter many challenges in the near future. Decentralisation of generation and storage systems has emerged as a promising solution. Consequently, in the near future, a power grid will no longer be a mono-directional energy flow system but a bi-directional one, requiring a much more complex management.
The MSc in Power Engineering and Sustainable Energy is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Power Engineering and Sustainable Energy students must successfully complete Part One before being allowed to progress to Part Two.
Part-time Delivery mode
The part-time scheme is a version of the full-time equivalent MSc in Power Engineering and Sustainable Energy scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.
Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.
Modules on the MSc Power Engineering and Sustainable Energy course can vary each year but you could expect to study:
Advanced Power Electronics and Drives
Power Semiconductor Devices
Advanced Power Systems
Energy and Power Engineering Laboratory
Power Generation Systems
Modern Control Systems
Wide Band-Gap Electronics
Environmental Analysis and Legislation
Communication Skills for Research Engineers
Optimisation
The new home of MSc in Power Engineering and Sustainable Energy is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.
Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.
Our new WOLFSON Foundation funded Power Electronics and Power System (PEPS) laboratory well-appointed with the state-of the-art equipment supports student research projects.
Employment in growing renewable energy sector, power electronic and semiconductor sector, electric/hybrid vehicle industry.
The MSc Power Engineering and Sustainable Energy is for graduates who may want to extend their technical knowledge and for professional applicants be provided with fast-track career development. This MSc addresses the skills shortage within the power electronics for renewable energy sector.
BT, Siemens, Plessey, GE Lighting, Schlumberger, Cogsys, Morganite, Newbridge Networks, Alstom, City Technology, BNR Europe, Philips, SWALEC, DERA, BTG, X-Fab, ZETEX Diodes, IQE, IBM, TSMC, IR, Toyota, Hitachi.
As a student on the MSc Power Engineering and Sustainable Energy course, you will learn about numerical simulation techniques and have the opportunity to visit electronics industries with links to Swansea.
The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.
The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.
World-Leading Research
The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.
Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.
With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.
The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.
Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.
This MSc is specifically designed for students who wish to pursue advanced studies across the broad range of subjects relevant to electronic and electrical engineering.
You can select classes from the extensive range of postgraduate taught courses delivered by our Department of Electronic & Electrical Engineering. This unique flexible structure allows you to build a personalised MSc programme that meets your academic interests and career aspirations.
The course can lead to a wide range of career opportunities. Recent graduates have gained well paid positions in:
There’s two semesters of compulsory and optional classes, followed by a three-month research project in your chosen area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.
The internships are offered in collaboration with selected department industry partners, including ScottishPower, Smarter Grid Solutions and SSE. You'll address engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.
You'll have exclusive access to our extensive computing network and purpose-built teaching spaces, including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.
The Institution of Engineering & Technology (IET) - this programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme.
We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises of approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.
You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Siemens, Rolls-Royce, Xilinx, Selex ES and Mott MacDonald are just a few examples of the industry partners you can engage with during your course.
A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.
Assessment of the summer research project/internship consists of four elements, with individual criteria:
The flexible structure of the course means graduates are able to design their own personalised programme to suit individual interests. Career opportunities are vast and include the electrical supply industries, oil and gas sector, telecommunications, IT, banking and finance, consulting and design companies, healthcare and aerospace.
Recent graduates have secured technical positions such as control engineers, design engineers and electronics engineers with organisations including GE, Jaguar LandRover and BP. They've also taken up managerial roles such as technology analysts, project managers and risk assessors with Morgan Stanley, Mott MacDonald and Atkins Global.
The MSc is also a great starting point for research within the department.
This is the UK’s first two-year full-time MSc in Advanced Electrical Power Engineering.
To be an effective power engineer you need a good knowledge of underpinning technologies and user and application requirements. You also require a firm understanding of the business and regulatory landscape that national and multinational power and utility companies must work within.
This course brings together advanced expertise in all aspects of electrical energy and power systems, complemented by studies in electricity markets and power systems economics.
The course is designed to provide the advanced training you need for a career in the dynamic power and energy sectors.
Year 1
You'll take a selection of compulsory and optional taught classes. This is combined with training in business and project management skills and research methodologies and techniques.
Potential Year 2 research projects are explored during this year through completion of a mini-project, with a final topic agreed for the start of Year 2.
Year 2
You'll undertake a major research project within the electrical power and energy disciplines. You'll also select a number of advanced taught modules designed to broaden your understanding of your chosen topic.
You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.
We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.
You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.
A variety of assessment techniques are used throughout the course. You'll complete at least six modules in Year 1. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.
Assessment of the Year 2 research project consists of four elements, with individual criteria:
The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the high growth power and energy sectors.
Employment prospects are excellent, with recent graduates working in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as Iberdrola, EDF Energy and China State Grid. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.
Management decisions in the energy sector require profound understanding of the sector’s technical, economic, legal, and entrepreneurial peculiarities. Climate change, economic changes, public opinion, technological progress and regulation shape and limit the entrepreneurial leeway, but also offer often unforseen chances and opportunities. The industry therefore requires broadly skilled individuals who are experts in the field.
The master programme is taught over a period of three semesters. The first semester covers the technical, economic, entrepreneurial and legal foundations for management decisions in the energy sector; the second semester deepens this view and looks at business practises, primarily of grid-based utilities, and investment; the third semester broadens the view while simultaneously focusing on practise according to student’s individual interests. All semesters include lectures, tutorials, seminars as well as excursions, online materials related to practice and extracurricular activities. The master thesis due in the third semester concludes the programme.
1. Technology
This module deepens student’s knowledge of energy technologies and systems in the framework of today’s changing world.
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer
2. Economics
This module presents the economic basics for the understanding of energy markets and their regulation, the framework for operational Energy Management.
Prof. Dr. Georg Erdmann
3. Business
This module presents the foundations of business and discusses basic tools and applications in the context of the Energy industry.
Prof. Dr. Dodo zu Knyphausen-Aufseß
4. Energy Law
This module presents the legal framework of today’s Energy Markets on the global scale, the EU plane and Germany.
Prof. Dr. Dr. Dres. h.c. Franz Jürgen Säcker
5. Energy Grids
This module deals with the technical and managerial challenges of grid management in a changing energy environment, with a focus on transformation processes between different forms and sources of energy and the novel developments in demand response, IT, and metering.
Prof. Dr. Kai Strunz
6. Investments
This module looks at energy infrastructure from a financial point of view. Grids, storage facilities and power plants are large-scale long-term investments of national, if not international, scope and importance. How are such projects financed, how can they be insured, how can their risk be assessed, etc.
Prof. Dr. Christian von Hirschhausen
7. Management
This module looks at energetic aspects of enterprises and the implications of the changing energy landscape for industrial organisations. How to engineer efficiency and manage engineering efficiently, given changing energy markets and legal conditions?
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer
8a.Efficiency (compulsory elective)
In this sub-module, students look at physical projects and products such as buildings, plants, city planning, etc. and apply the knowledge gained in prior modules in practise.
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer
8b. Technology and Innovation Management (compulsory elective)
In this sub-module students look at innovations, team building, management processes, administrative, financial or theoretical issues in a specific practical context.
Prof. Dr. Jan Kratzer
9. Master thesis
Individual topics, individual supervisors.