• Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
De Montfort University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Leeds Featured Masters Courses
Swansea University Featured Masters Courses
"grid"×
0 miles

Masters Degrees (Grid)

We have 88 Masters Degrees (Grid)

  • "grid" ×
  • clear all
Showing 1 to 15 of 88
Order by 
The MSc in Smart Grid Demand Management (See http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/ ) has been designed to progress students with an Electrical or Mechanical Engineering background to an expert in the understanding of a smart grid. Read more

Overview

The MSc in Smart Grid Demand Management (See http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/ ) has been designed to progress students with an Electrical or Mechanical Engineering background to an expert in the understanding of a smart grid. By following a carefully selected set of courses covering energy resources (fossil and renewable), conversion technologies, electrical power generation, energy storage technologies, demand management, and energy economics. Graduates of this programme will be confident in all aspects of this subject. With a clear focus on smart Grid and Demand Management the programme provides;
- Knowledge and understanding of advanced scientific and mathematical principles relevant to the understanding, analysis and modelling of a smart grid.
- An understanding of fundamental facts, concepts, and technologies for demand management and energy storage.
- Knowledge and skill to apply engineering principles to design a system, component or process
- An ability to undertake independent research.
- Professional attitudes to implementation of safety and concepts embodied by sustainability.
- An ability to communicate effectively
- Familiarity with the application of relevant computer tools to the profession.

All aspects of the smart grid are integrated in a dedicated smart grid modelling course, which provides the mathematical and computational skills to model a smart grid. This course is unique to this programme and will give graduates the skills they need to enhance their career prospects.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 5 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Smart Grid Demand Management MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

Semester One - All courses are Mandatory
- B51ET Foundations of Energy
This course provides the foundations for the quantitative analysis of energy resources and conversion efficiencies through various technologies. It also places energy production and consumption into the wider field of environmental and socio-economic factors

- B51GE Renewable Energy Technologies
This course introduces the range of Renewable Energy resources together with established and emerging technologies. It provides the skills for a quantitative assessment of the Renewable Energy resources and the expected energy and power output from typical or specific installations.

- B31GA Electrical Power Systems
This course covers the operation of interconnected electrical power systems. Such interconnected power systems combine a number of different components, generators, transmission lines, transformers and motors, which must be appreciated to understand the operation of the interconnected system.

- C21EN Environmental and Energy Economics
This course introduces students to the core concepts and methods of modern economics, and environmental and energy economics in particular.

Semester Two – All courses are Mandatory
- B31GG Smart grid modeling
This course introduces the mathematical skills to model the operation of an electricity or energy network at a statistical and dynamical level, incorporating key elements of a smart grid, including technological constraints, economic drivers and information exchange.

- B31GB Distributed Generation
This course equips students with an understanding of the role of distributed generation in electrical energy networks. It provides students with an overview of distributed generation techniques and describes the contribution of distributed generation to network security. The course introduces the economics of distributed generation and the assessment of distributed generation schemes. It introduces students to the concept of intermittent sources and their contribution to capacity in electrical power systems and provides a detailed review of the reliability, fault and stability studies of distributed generation schemes.

- B51GK Demand Management and Energy Storage
This course provides students with an overview of demand-side management and its contribution to network capacity and security. It reviews energy storage technologies and their contribution to the integration of renewable generation and the operation of large-scale electrical network. It introduces students to the methods of interfacing energy storage mechanisms to electrical networks. The course describes the contribution energy storage technology can make to transportation and industry

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B31VZ MSc Project
An individual project led by a research active member of staff or an industrial partner on a topic relevant to smart grid technology, demand management technologies or approaches or smart grid/ electricity / energy systems modelling.

English language requirements

If you are not from a UKBA recognised English speaking country, we will need to see evidence of your English language ability. If your first degree was taught in English a letter from them confirming this will be sufficient. Otherwise the minimum requirement for English language is IELTS 6.5 or equivalent, with a minimum of 5.5 in each skill.

The University offers a range English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)
- 3 weeks English refreshers course (for students who meet the English condition for the MSc but wish to refresh their English skills prior to starting).

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/

Read less
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems. Read more

Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems.

You’ll study core power engineering topics such as power electronic converters, machines and control alongside modules specific to renewable energy sources, on topics like power system modelling, analysis and power converters.

At the same time, you’ll study a unique set of modules on the efficient generation of electricity from solar and wind power, as well as integrating renewable generators into micro-grids, with stability analysis and active power management. Power electronics design is covered in depth, including conventional and emerging converter topologies and advances in semiconductor power devices.

You’ll be prepared to meet the renewable energy challenges of the 21st century in a wide range of careers.

School of Electronic and Electrical Engineering

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of research project, you may also have access to our labs in ultrasound and bioelectronics or our Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

Core modules that run throughout the year will allow you to take part in different lab-based projects and explore different forms of renewable energy as well as how they can be integrated into electricity systems. You’ll also consider how renewable source-powered generations can be integrated into the grid and analysis and design of control systems.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

You’ll complete your studies with three optional modules, selecting one from each of three pairs that cover different topics. If you have no experience of c-programming you’ll take a module that develops those skills, or another focusing on software development. You’ll choose between Power Electronics and Drives and Electric Drives and take another module from Energy Management and Conservation and Energy in Buildings.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in power electronics, power engineering and control and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Electrical Engineering and Renewable Energy Systems module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mini Projects and Laboratory 15 credits
  • Grid-Connected Microgeneration Systems 15 credits
  • Micro-grid Laboratory 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Control Systems Design 15 credits
  • Main Project 45 credits

Optional modules

  • Energy Management and Conservation 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Drives 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Electrical Engineering and Renewable Energy Systems MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students on this programme have included:

  • Power Flow Control of a Distribution Network using FACTS Devices
  • Module Integrated Converters for Photovoltaic Energy Systems
  • Modelling and Control of Parallel Connected Inverters
  • Power Regulation in the Power System using an Energy Storage Device
  • Application of Current Source Converters to Power Flow Control in a Power System
  • Control of a Renewable Energy System based Microgrid having an Energy Storage System as Backup
  • Control of a Grid Connected Wind Energy System under Abnormal Operating Conditions
  • DC-AC Inverter for grid-side connection of an induction generator
  • Modelling and control of a DC motor simulating a wind turbine

Career opportunities

Renewable energy and efficient power conversion systems are of immense importance worldwide and graduates of this course can expect to find jobs in a wide variety of industries including the electronics, automotive, transport, construction, industrial automation, power utility, energy, oil and environmental sectors.

You’ll be well-placed to develop practical solutions to the problem of integrating renewable energy systems into established electricity distribution networks. You should be able to contribute to strategic planning, systems implementation and operation of sustainable power generation systems.

This programme is also excellent preparation for PhD study. 



Read less
This course runs in Germany. This course covers a range of essential topics related to distributed computing systems. Yet these modules are not isolated; each one takes its place in the field in relation to others. Read more

About the course

This course runs in Germany.

This course covers a range of essential topics related to distributed computing systems. Yet these modules are not isolated; each one takes its place in the field in relation to others.

The emphasis in the course is to build the connections between topics, enabling software engineers to achieve co-operation between distinct autonomous systems under constraints of cost and performance requirements.

The course is suitable for:

Recent graduates in Electrical or Electronic Engineering or Computer Science, who wish to develop their skills in the field of distributed computing systems.
Practicing engineers and computer professionals who wish to develop their knowledge in this area.
People with suitable mathematical, scientific or other engineering qualifications, usually with some relevant experience, who wish to enter this field.

Aims

The past few years have witnessed that Grid computing is evolving as a promising large-scale distributed computing infrastructure for scientists and engineers around the world to share various resources on the Internet including computers, software, data, instruments.

Many countries around the world have invested heavily on the development of the Grid computing infrastructure. Many IT companies have been actively involved in Grid development. Grid computing has been applied in a variety of areas such as particle physics, bio-informatics, finance, social science and manufacturing. The IT industry has seen the Grid computing infrastructure as the next generation of the Internet.

The aim of the programme is to equip high quality and ambitious graduates with the necessary advanced technical and professional skills for an enhanced career either in industry or leading edge research in the area of distributed computing systems.

Specifically, the main objectives of the programme are:

To critically appraise advanced technologies for developing distributed systems;
To practically examine the development of large scale distributed systems;
To critically investigate the problems and pitfalls of distributed systems in business, commerce, and industry.

Course Content

Compulsory Modules:

Computer Networks
Network Security and Encryption
Distributed Systems Architecture
Project and Personal Management
High Performance Computing and Big Data
Software Engineering
Embedded Systems Engineering
Intelligent Systems
Dissertation

Special Features

Electronic and Computer Engineering is one of the largest disciplines in the University, with a portfolio of research contracts totalling £7.5 million, and has strong links with industry.

The laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.

We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:

Media Communications
Wireless Networks and Communications
Power Systems
Electronic Systems
Sensors and Instrumentation.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Distributed Computing Systems Engineering is accredited by the Institution of Engineering and Technology (IET).

Read less
This course recognises the need for skilled graduates to address the world’s major issues in electrical energy and power systems. Read more

Why this course?

This course recognises the need for skilled graduates to address the world’s major issues in electrical energy and power systems. It offers an integrated programme focusing on:
- the design, operation and analysis of power supply systems
- power plant
- renewables and industrial electrical equipment relating to a liberalised power supply industry
- globalised markets and environmental drivers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/electricalpowerengineeringwithbusiness/

You’ll study

There’s two semesters of compulsory and optional classes, followed by a three-month summer research project in your chosen area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners, including ScottishPower, Smarter Grid Solutions and SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces, including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies, including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Accreditation

The course is fully accredited by the professional body, the Institution of Engineering and Technology (IET).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises of approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.
You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Iberdrola, National Grid, ScottishPower, SSE, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1500 to 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.
Employment prospects are excellent, with recent graduates operating in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as ScottishPower Energy Networks, Aker Solutions, National Grid & EDF Energy. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.

How much will I earn?

Salaries for electrical engineers start at around £20,000 to £25,000. Experienced or incorporated engineers can earn between £28,000 and £40,000. A chartered electrical engineer can earn higher salaries of £40,000 to £55,000 or more.*

*information is intended only as a guide. Figures taken from Prospects.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
Your programme of study. Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Read more

Your programme of study

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas.Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Semester 1

Electrical Systems for Renewable Energy

Renewable Energy 1 (Solar and Geothermal)

Renewable Energy 2 (Biomass)

Fundamental Concepts in Safety Engineering

Semester 2

Renewable Energy 3 (Wind, Marine and Hydro)

Energy Conversion and Storage

Renewable Energy Integration to Grid

Legislation, Planning and Economics

Semester 3

Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/278/renewable-energy-engineering/

or online delivery at:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/

Why study at Aberdeen?

  • You study with industry professionals and industry lead projects to encourage and challenge you in practical application
  • The full supply of energy is covered in the programme from the initial harvesting to the conversion methods required to link to grid
  • You can study your degree at University of Aberdeen or online to fit flexibly with your needs
  • You learn within a lab setting with industry visits and events in a global sector community

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

• Online option available

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that online fees may offer a different structure

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry. Read more

Why this course?

This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry.

This course offers engineering graduates the opportunity to study at one of Europe's largest and leading University power and energy technology groups - the Institute for Energy & Environment.

The Institute is home to over 200 staff and researchers conducting strategic and applied research in key technical and policy aspects of energy systems. It houses the Centres for Doctoral Training in Wind & Marine Energy Systems, and Future Power Networks and Smart Grids, which are dedicated to pioneering research and advanced skills training.

On this course you'll develop and enhance your technical expertise of wind energy and deepen your understanding of engineering, political and economic contexts of wind power. This course will provide an advanced level of knowledge to address current and future challenges of this exciting and dynamic sector.

With links to key UK and global business and industry energy partners, you’ll have unique access to companies at the forefront of wind energy developments.

See https://www.strath.ac.uk/courses/postgraduatetaught/windenergysystems/

You’ll study

Two semesters of compulsory and optional classes, followed by a three-month specialist research project. There’s the opportunity to carry this out through our competitive MSc industrial internships.
The internships are offered in collaboration with selected department industry partners eg ScottishPower, Smarter Grid Solutions, SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for MSc. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

Individual modules are delivered by academic leaders, and with links to key UK and global industry energy partners, you'll have unique access to companies at the forefront of wind energy developments. 

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Atkins Global, BAE Systems, Iberdrola, National Grid, ScottishPower, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

With the European Wind Energy Association (EWEA) forecasting UK/EU employment in wind energy related jobs to double to more than 500,000 by 2020, graduates of this course have excellent career prospects.

The UK electricity supply industry is currently undergoing a challenging transition driven by the need to meet the Government's binding European targets to provide 15% of the UK's total primary energy consumption from renewable energy sources by 2020.

Graduates of this course have unique access to key UK and global industry energy partners, who are committed to fulfilling these UK Government targets. These companies offer a diverse range of professional and technical employment opportunities in everything from research and development, construction and maintenance, to technical analysis and project design. Companies include Siemens Energy, Sgurr Energy, DNV GL, ScottishPower Renewables and SSE.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
This is the UK’s first two-year full-time MSc in Advanced Electrical Power Engineering. To be an effective power engineer you need a good knowledge of underpinning technologies and user and application requirements. Read more

Why this course?

This is the UK’s first two-year full-time MSc in Advanced Electrical Power Engineering.

To be an effective power engineer you need a good knowledge of underpinning technologies and user and application requirements. You also require a firm understanding of the business and regulatory landscape that national and multinational power and utility companies must work within.

This course brings together advanced expertise in all aspects of electrical energy and power systems, complemented by studies in electricity markets and power systems economics.

The course is designed to provide the advanced training you need for a career in the dynamic power and energy sectors.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedelectricalpowerengineering/

You’ll study

- Year 1
You'll take a selection of compulsory and optional taught classes. This is combined with training in business and project management skills and research methodologies and techniques.
Potential Year 2 research projects are explored during this year through completion of a mini-project, with a final topic agreed for the start of Year 2.

- Year 2
You'll undertake a major research project within the electrical power and energy disciplines. You'll also select a number of advanced taught modules designed to broaden your understanding of your chosen topic.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

Guest lectures

Guest presentations are a regular feature of the courses. These are often done by industry partners or department alumni. Speakers will share with you how they have put their knowledge and learning into practice in the world of work.

Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Iberdrola, National Grid, ScottishPower, SSE, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules in Year 1. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the Year 2 research project consists of four elements, with individual criteria:
1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.
2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.
3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.
4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Careers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the high growth power and energy sectors.

Employment prospects are excellent, with recent graduates working in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as Iberdrola, EDF Energy and China State Grid. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.

How much will I earn?

Salaries for electrical engineers start at around £20,000 to £25,000. Experienced or incorporated engineers can earn between £28,000 and £40,000. A chartered electrical engineer can earn higher salaries of £40,000 to £55,000 or more.*

*Information is intended only as a guide.

Read less
Your programme of study. If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. Read more

Your programme of study

If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. It is a great way to study a degree from a known and trusted brand with exactly the same content as the on campus version but delivered entirely online.

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas. Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Year 1

Renewable Energy 2 (Biomass)

Fundamental Safety Engineering and Risk Management Concepts

Energy Conversation and Storage

Legislation, Planning and Economics

Year 2

Electrical Systems for Renewable Energy

Renewable Energy 1 (Solar and Geothermal)

Renewable Energy Integration to Grid

Renewable Energy 3 (Wind, Marine and Hydro)

Year 3

Individual Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/

or if you want to study on campus:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/278/renewable-energy-engineering/

Why study at Aberdeen?

  • You are taught by industry professionals and the engineering department each are highly regarded in their fields
  • The programme is delivered flexibly so you can choose how best to study with various options at your disposal
  • You cover energy harvesting methods and their integration into the grid plus planning and economics, ideal for enterprise and innovation
  • The sector is driven by a need which shows no signs of stopping in terms of necessity to life so there are plenty of opportunities

Where you study

  • Online
  • 5 Months or 27 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about fees from the product page:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Related Degrees

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/258/project-management/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/283/reservoir-engineering/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/288/safety-and-reliability-engineering-for-oil-and-gas/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/317/subsea-engineering/



Read less
This MSc programme in Sustainable Electrical Power aims to produce graduates capable of leading teams which will operate, control, design, regulate and manage the power systems and networks of the future. Read more

About the course

This MSc programme in Sustainable Electrical Power aims to produce graduates capable of leading teams which will operate, control, design, regulate and manage the power systems and networks of the future.

The course equips graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

-Power system engineering – using state-of-the-art computational tools and methods.
-Design of sustainable electrical power systems and networks.
-Regulatory frameworks for, and operation of, power systems and electricity markets.

The programme features practical workshops and the option of an industry-based dissertation. Students benefit from our high performance lab and computing facilities, including a grid-enabled cluster of processors. We’re also home to a world leading research group, the Brunel Institute of Power Systems.

Aims

Sustainable energy is a vital, growing sector and this newly designed MSc programme meets industry’s demand for engineers with advanced knowledge of sustainable electrical power and energy generation systems.

The course is suitable for:
- Graduates in power or electrical engineering, physical sciences, or related disciplines who aspire to work in the electrical power industry, especially within the renewable energy sector.
- Industrially experienced graduate engineers and managers who recognise the importance of developing new analytical and critical skills, and state-of-the-art methodologies associated with the development sustainable electrical power systems.

Course Content

Compulsory Modules:

Energy Economics and Power Markets
Power System Operation and Management
Power Electronics and FACTS
Power System Analysis and Security
Sustainable Power Generation
Power System Stability and Control
Project Management
Sustainable Electrical Power Workshop
Project & Dissertation

Special Features

All students enrolled in the course have the opportunity to develop real-world skills with the best globally available, cutting-edge power analysis software and tools. The course is also supported by a wide range of application oriented power engineering experiments carried out in a modern well-equipped practical power systems laboratory.

The Brunel Institute of Power Systems is an internationally leading research group specialising in the optimal design, operation and modelling of power systems, as well as in the economics of electricity markets.

Our high performance computing capability is considerable including a recently installed grid-enabled cluster of processors consisting of 20 dual processor nodes with dual Gigabit Ethernet interfaces.

Major power system software are available including MATLAB/SIMULINK, Orcad, PSCAD, DigSILENT, IPSA, ETAP, and PowerWorld.

Electronic and Computer Engineering is one of the largest disciplines at Brunel University, with a portfolio of research contracts totalling £7.5 million and strong links with industry.

Our laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.

We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:

-Media Communications
-Wireless Networks and Communications
-Power Systems
-Electronic Systems
-Sensors and Instrumentation.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Power Engineering and Sustainable Energy at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Power Engineering and Sustainable Energy at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The Master's course in Power Engineering and Sustainable Energy places strong emphasis on state-of-the-art semiconductor devices and technologies, advanced power electronics and drives, and advanced power systems. The Power Engineering and Sustainable Energy course also covers conventional and renewable energy generation technologies. Exciting new developments such as wide band gap electronics, energy harvesting, solar cells and biofuels are discussed and recent developments in power electronics are highlighted.

Key Features of MSc in Power Engineering and Sustainable Energy

The College of Engineering has an international reputation for electrical and electronics research for energy and advanced semiconductor materials and devices.

Greenhouse gas emission and, consequently, global warming are threatening the global economy and world as we know it. A non-rational use of electrical energy largely contributes to these.

Sustainable energy generation and utilisation is a vital industry in today’s energy thirsty world. Energy generation and conversion, in the most efficient way possible, is the key to reducing carbon emissions. It is an essential element of novel energy power generation system and future transportation systems. The core of an energy conversion system is the power electronics converter which in one hand ensures the maximum power capture from any energy source and on another hand controls the power quality delivered to grid. Therefore the converter parameters such as efficiency, reliability and costs are directly affecting the performance of an energy system.

Transmission and distribution systems will encounter many challenges in the near future. Decentralisation of generation and storage systems has emerged as a promising solution. Consequently, in the near future, a power grid will no longer be a mono-directional energy flow system but a bi-directional one, requiring a much more complex management.

The MSc in Power Engineering and Sustainable Energy is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Power Engineering and Sustainable Energy students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Power Engineering and Sustainable Energy scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Power Engineering and Sustainable Energy course can vary each year but you could expect to study:

Advanced Power Electronics and Drives

Power Semiconductor Devices

Advanced Power Systems

Energy and Power Engineering Laboratory

Power Generation Systems

Modern Control Systems

Wide Band-Gap Electronics

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Optimisation

Facilities

The new home of MSc in Power Engineering and Sustainable Energy is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Our new WOLFSON Foundation funded Power Electronics and Power System (PEPS) laboratory well-appointed with the state-of the-art equipment supports student research projects.

Careers

Employment in growing renewable energy sector, power electronic and semiconductor sector, electric/hybrid vehicle industry.

The MSc Power Engineering and Sustainable Energy is for graduates who may want to extend their technical knowledge and for professional applicants be provided with fast-track career development. This MSc addresses the skills shortage within the power electronics for renewable energy sector.

Links with industry

BT, Siemens, Plessey, GE Lighting, Schlumberger, Cogsys, Morganite, Newbridge Networks, Alstom, City Technology, BNR Europe, Philips, SWALEC, DERA, BTG, X-Fab, ZETEX Diodes, IQE, IBM, TSMC, IR, Toyota, Hitachi.

As a student on the MSc Power Engineering and Sustainable Energy course, you will learn about numerical simulation techniques and have the opportunity to visit electronics industries with links to Swansea.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
This MSc is specifically designed for students who wish to pursue advanced studies across the broad range of subjects relevant to electronic and electrical engineering. Read more

Why this course?

This MSc is specifically designed for students who wish to pursue advanced studies across the broad range of subjects relevant to electronic and electrical engineering.

You can select classes from the extensive range of postgraduate taught courses delivered by our Department of Electronic & Electrical Engineering. This unique flexible structure allows you to build a personalised MSc programme that meets your academic interests and career aspirations.

The course can lead to a wide range of career opportunities. Recent graduates have gained well paid positions in:
- electrical supply industries
- telecommunications and IT
- consulting and design companies
- healthcare and aerospace

See the website https://www.strath.ac.uk/courses/postgraduatetaught/electronicelectricalengineering/

You’ll study

There’s two semesters of compulsory and optional classes, followed by a three-month research project in your chosen area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners, including ScottishPower, Smarter Grid Solutions and SSE. You'll address engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose-built teaching spaces, including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Accreditation

The course is fully accredited by the professional body, the Institution of Engineering and Technology (IET). This means that you'll meet the educational requirements to become a “Chartered Engineer” – a must for your future engineering career.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises of approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.
You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Siemens, Rolls-Royce, Xilinx, Selex ES and Mott MacDonald are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.
Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

The flexible structure of the course means graduates are able to design their own personalised programme to suit individual interests. Career opportunities are vast and include the electrical supply industries, oil and gas sector, telecommunications, IT, banking and finance, consulting and design companies, healthcare and aerospace.

Recent graduates have secured technical positions such as control engineers, design engineers and electronics engineers with organisations including GE, Jaguar LandRover and BP. They've also taken up managerial roles such as technology analysts, project managers and risk assessors with Morgan Stanley, Mott MacDonald and Atkins Global.

The MSc is also a great starting point for research within the department.

How much will I earn?

Salaries for electrical engineers start at around £20,000 to £25,000. Experienced or incorporated engineers can earn between £28,000 and £40,000. A chartered electrical engineer can earn higher salaries of £40,000 to £55,000 or more.*

*information is intended only as a guide. Figures taken from Prospects.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
This course has been designed to meet the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. Read more
This course has been designed to meet the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation.

Who is it for?

This course is suitable for both practicing engineers and those considering a career in engineering.

The course has been designed to provide an in-depth insight into the technical workings, management and economics of the electrical power industry.

Objectives

This programme has been designed to meet the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. The aims are to produce graduates of a high calibre with the right skills and knowledge who will be capable of leading teams involved in the operation, control, design, regulation and management of power systems and networks of the future.

The programme aims to:
-Provide you with the ability to critically evaluate methodologies, analytical procedures and research methods.
-Provide an advanced education in electrical power engineering.
-Give you the education, knowledge and the skills you need to make sound decisions in a rapidly changing electricity supply industry.
-Provide a sound understanding of the principles and techniques of electrical power engineering.
-Give a broad knowledge of the issues and problems faced by electrical power engineers.
-Give a solid working knowledge of the techniques used to solve these problems.
-Provide a foundation in power systems principles for graduates with an engineering background.
-Demonstrate the practical relevance of these principles to the operation of successful enterprises in the broad field of electrical power engineering.
-Familiarise professional engineers and graduates with the theory and application of new technologies applied to power systems.

Academic facilities

Students in City's Department of Electronic and Electrical Engineering benefit from a recent lab equipment upgrade worth £130,000. This includes photovoltaic trainers, three phase synchronous machines, AC motor speed control machines, single and three phase transformers, thryistor controllers, a power systems mainframe and power systems virtual instrumentation.

The equipment is essential in training students to be highly skilled professionals in the energy industry.

The photovoltaic trainer, for instance, is a desk-top instrument which teaches the fundamental principles of photovoltaic energy. The 'photovoltaic effect' is a method of energy generation which converts solar radiation into an electrical current using semiconductors arranged into solar cells.

Teaching and learning

Modules are delivered by academics actively involved in energy related research, as well as visiting lecturers from the power industry who provide a valuable insight into the operation of energy companies.

Industry professionals give several seminars throughout the year. At least two industrial trips are organised per academic year.

Modules

The modules for this course are delivered over two semesters, with weekly lessons scheduled over two days a week. The third semester is spent completing a project that involves writing a dissertation and presenting findings. This course is organised into eight modules provided on a weekly basis.

Course content
-Introduction to Power Systems & Energy Management EPM874 (15 credits)
-Systems Modelling EPM744 (15 credits)
-Renewable Energy Fundamentals and Sustainable Energy Technologies EPM879 (15 credits)
-Transmission and Distribution Systems Management EPM875 (15 credits)
-Power Systems Design and Simulation EPM423 (15 credits)
-Power Electronics EPM501 (15 credits)
-Power Systems Protection and Grid Stability EPM990 (15 credits)
-Economics of the Power Industry EPM101 (15 credits)
-Dissertation EPM949 (60 credits)

Career prospects

Graduates are prepared for careers that encompass a variety of roles in the power industry, from technical aspects to management roles. Previously graduates have found jobs as engineers, managers and analysts in the power sector, with companies such as:
-OFGEM
-National Grid
-UK Power Networks
-EON
-EDF
-Vattenfall
-Caterpillar
-Railroad
-Graduates may also wish to further their research in the energy field by considering a PhD

Read less
Digital signal processing (DSP) is at the core of the communications revolution. Research is constantly being carried out to develop new DSP algorithms, allowing mobile broadband services, ‘Internet of Things’ applications and other technologies to be delivered to a growing number of users. Read more

Digital signal processing (DSP) is at the core of the communications revolution. Research is constantly being carried out to develop new DSP algorithms, allowing mobile broadband services, ‘Internet of Things’ applications and other technologies to be delivered to a growing number of users.

This programme will give you a thorough understanding of different aspects of DSP and as it relates to the communications landscape, as well as specialist knowledge from your choice of optional modules.

Our DSP lab will give you hands-on experience using the DSP technology that can be found in computers, cellular phones, GPS and other technologies, and you’ll learn from expert researchers at the forefront of their fields.

You’ll also benefit from specialist industrial lectures, allowing you to relate the theoretical and design aspects of communications and signal processing to practical problems and real-world constraints.

School Facilities

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives, ultrasound and bioelectronics.

There’s also a Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility. The Faculty is also home to the £4.3 million EPSRC National Facility for Innovative Robotic Systems, set to make us a world leader in robot design and construction.

Course content

Throughout the year you’ll study a set of core modules that give you an in-depth understanding of DSP, wireless communications, different optical communications networks and the complex issues around network security. If you don’t have any experience of c-programming you’ll also take a module that develops these skills; alternatively, you can choose between this module and another on software development.

You’ll also select optional modules that are tailored to your own interests or career plans – you could focus on embedded microprocessor systems, high-speed internet architecture or other topics. To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Communications and Signal Processing module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Wireless Communications Systems Design 15 credits
  • Digital Signal Processing for Communications 15 credits
  • Digital Wireless Communications Principles 15 credits
  • Optical Communications Networks 15 credits
  • Data Communications and Network Security 15 credits
  • Main Project 45 credits

Optional modules

  • Cellular Mobile Communication Systems 15 credits
  • High Speed Internet Architecture 15 credits
  • FPGA Design for System-on-Chip 15 credits
  • Embedded Microprocessor System Design 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Communications and Signal Processing MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects on the MSc in Communications and Signal Processing include:

  • Powerline communications for smart grid
  • Quantum key distribution over passive optical networks
  • Physical layer security using artificial noise
  • An energy-saving robot mobility diversity algorithm for wireless communications
  • Analysis and processing of physiological data from a smart watch to monitor health
  • Evaluation of wireless sensor networks for civil engineering applications
  • Cooperative wireless communications over fading channels
  • Carrier frequency offset compensation in OFDM for IEEE 802.11
  • Underlay spectrum access strategy in cognitive radio
  • Spectrum sensing for cognitive radio

Career opportunities

On completing this course, you will have obtained the skills that will lead to employment in any area of the communications/signal processing industry including optical networking, DSP design and implementation, cellular mobile, RF planning, broadband systems and general communications research and development.

Graduates from our School have gone on to work for organisations such as the National Grid, Ericsson Telecommunications, Cisco Systems, AECOM, Deep Sea Electronics, Huawei, Intel Corp., the Technology and Strategy Board and many more.

This course is also an excellent base from which to pursue a PhD and possibly an academic career.



Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
This programme for graduates in electronic engineering or similar subjects will prepare you to become a senior manager or entrepreneur in global companies, where understanding technology and managing innovation in business are key to success. Read more

This programme for graduates in electronic engineering or similar subjects will prepare you to become a senior manager or entrepreneur in global companies, where understanding technology and managing innovation in business are key to success.

Jointly delivered by the School of Electronic and Electrical Engineering and Leeds University Business School, the course allows you to tailor the programme of studies to your needs, selecting optional modules from three engineering themes and four business themes. A set of core modules provides the foundation of your knowledge and skills.

You’ll be taught by leading experts in technology and in business management, with practical lab classes and project work allowing you to gain hands-on experience investigating and applying topics from your lectures and tutorials to real-life engineering and business situations.

This joint programme offers a unique opportunity to enhance both your technical and managerial skills.

The School of Electronic and Electrical Engineering is an exciting and stimulating environment where you’ll learn from leading researchers in areas pertinent to emerging and developing technologies. These technologies include future wireless and optical communications systems, renewable energy systems, ultrasound and bioelectronics systems, as well as nano, terahertz, and quantum technologies.

Leeds University Business School is also a leading international business school, globally, in the top 1%. It has world ranked programmes and internationally recognised teaching. You'll leave as a graduate of one of the top ten universities targeted by key employers such as Google, HSBC, Rolls-Royce and the Civil Services.

Course content

A set of compulsory modules form the core of the programme, developing your understanding of the electronics and technology industries as well as fundamental business management topics.

You’ll study the principles of managing innovation and gain an understanding of risk perception, as well as operations and supply chain management. A dissertation will allow you to research and gain an in-depth understanding of key issues in developing technologies. Your research project will allow you to study how a new technology in electronic, electrical or communications engineering is being applied to a commercial environment.

To complete your studies, you’ll gain additional specialist knowledge through your choice of optional modules related to a range of different themes. You don’t have to choose modules from within the same themes – you can study topics as diverse or as specialised as you want to reflect your own interests or career plans.

Themes include healthcare technologies, energy, information management and other topics that reflect the research strengths of both Leeds University Business School and the School of Electronic and Electrical Engineering. We will expect you to take one or two optional modules offered by LUBS.

Want to find out more about your modules?

Take a look at the Engineering, Technology and Business Management module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Engineering, Technology and Business Management Project 45 credits
  • Risk Perception and Communication 15 credits
  • Operations and Supply Chain Management 15 credits
  • Managing for Innovation 15 credits

Optional modules

  • Wireless Communications Systems Design 15 credits
  • Communication Network Design 15 credits
  • Optical Communications Networks 15 credits
  • Data Communications and Network Security 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Grid-Connected Microgeneration Systems 15 credits
  • Micro-grid Laboratory 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Electric Drives 15 credits
  • Control Systems Design 15 credits
  • Electric Power Generation and Distribution 15 credits
  • Digital Media Engineering 15 credits
  • Medical Electronics and E-Health 15 credits
  • Programming 15 credits
  • Software Development 15 credits
  • Effective Decision Making 15 credits
  • Strategic Management 15 credits
  • Managing Global Logistics and Supply Chains 15 credits
  • Managing and Designing Value Chain Networks 15 credits
  • Creative Industries Management 15 credits
  • Advanced Management Decision Making 15 credits
  • Information Tools for Organisations 15 credits
  • Challenges in Information Management 15 credits

For more information on typical modules, read Engineering Technology and Business Management MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Career opportunities

The combination of technical and business knowledge you’ll gain from this programme will leave you well-placed for senior roles in the electronics industry, with sectors including energy and power, telecommunications, consumer electronics and aerospace. Many such organisations need engineers with a deep understanding of business and management issues.

More and more graduates are also finding careers in a range of companies that are applying digital technologies to improve their business.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less

Show 10 15 30 per page



Cookie Policy    X