• Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
University of Manchester Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Swansea University Featured Masters Courses
"green" AND "chemistry"×
0 miles

Masters Degrees (Green Chemistry)

We have 21 Masters Degrees (Green Chemistry)

  • "green" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 21
Order by 
The first course of its kind to be accredited by the Royal Society of Chemistry, this taught Masters course is designed to equip you with the necessary skills in green chemistry and green chemical technology to prepare you for a range of different careers in research, process development, environmental services, manufacturing, law, consultancy and government. Read more
The first course of its kind to be accredited by the Royal Society of Chemistry, this taught Masters course is designed to equip you with the necessary skills in green chemistry and green chemical technology to prepare you for a range of different careers in research, process development, environmental services, manufacturing, law, consultancy and government.

Course Content

The MSc is a one year full time course consisting of taught material and a substantial research project. Teaching is delivered by academic experts within the Department of Chemistry as well as external experts from other academic institutions and industry. The Teaching component of the course is delivered via a mix of lectures, workshops, seminars and practical work. You will learn about the key principles of green chemistry and the importance of sustainable technology in a variety of areas. In addition to this, you will also have the opportunity to enhance your transferable skills.

Assessment methods include a closed examination, written assignments, presentations, posters and practical work.

Our Students

The MSc course has been running for over ten years over which time there has been a large increase in the range of nationalities represented. The content of the course is globally relevant and so attracts applications from around the world from people keen to develop their own knowledge to pass on when they return to their home country. Students have an opportunity not only to benefit from the degree that will aid them in their future career in industry or elsewhere but also to experience the cultural and social attractions that the university and the city can offer.

Students who have previously studied the MSc programme have come from France, Spain, Ireland, Tanzania, Nigeria, Oman, Thailand, Malta, Lithuania, Brunei, China and Malaysia to name but few – the full range can be seen on the map below. The diversity of our students enriches the cultural experience for all members of the group.

Career Destinations

The course will be of benefit to students who wish to follow a range of career paths including those in chemistry-based industries:
-Speciality chemical and associated manufacturing industries
-Fine chemical and associated manufacturing industries
-Catalyst development
-Pharmaceutical industry in either a research or process-development role
-Chemical formulation
-Chemical user companies along the entire supply chain including retail
-Government departments and science laboratories
-University academic career
-University research career, in particular as a route to PhD research
-Environmental monitoring and evaluation
-Legal services and other organisations

Research Project

A key part of the MSc in Green Chemistry is the research project. The whole course is 180 credits and the research project accounts for 100 of these so is a very significant part of the programme.

Students are able to choose from a range of project areas in order to carry out research in their area of interest. Projects will be supervised by an academic member of staff, and may also involve collaboration with industry. Projects are chosen in the early stages of the course and you will be allocated to a PAG - Project Area Group - that corresponds with larger research projects that are currently taking place within the Green Chemistry Centre.

Projects can vary each year, but examples of recent MSc students' research includes:
-Production of natural flavours and fragrances using biocatalysis in scCO2
-Clean synthetic strategies for production of pharmaceuticals
-Extraction and utilisation of high value chemicals from food waste
-Starbon technology for catalysis
-Microwave assisted pyrolysis of wood pellets
-Bio-derived platform molecules

The research project module is assessed by a substantial written report by each student, a PAG report and an oral presentation on your individual research.

Read less
The MSc Chemical Research (Green Chemistry) course has been tailored to meet the demands of graduating chemists who wish to further their training in chemical research or who wish to use this qualification as a route into a PhD programme. Read more
The MSc Chemical Research (Green Chemistry) course has been tailored to meet the demands of graduating chemists who wish to further their training in chemical research or who wish to use this qualification as a route into a PhD programme.

The course is designed to match the professional demand for highly-skilled personnel in industry and provides specific training in core areas of chemistry as well as specialised expertise in Green Chemistry.

Read less
Chemistry plays a pivotal role in determining the quality of modern life. The chemicals industry and other related industries supply us with a huge variety of essential products, from plastics to pharmaceuticals. Read more
Chemistry plays a pivotal role in determining the quality of modern life.

The chemicals industry and other related industries supply us with a huge variety of essential products, from plastics to pharmaceuticals.

However, these industries have the potential to seriously damage our environment.

This has resulted in a growing demand from society for a reduced reliance on fossil fuels and for greener manufacturing processes.

There is also a need for future innovations to be built on more sustainable foundations.

Green chemistry therefore serves to promote the design and efficient use of environmentally benign chemicals and chemical processes.

This course is designed to introduce you to all aspects of sustainable chemical practices, with nine months dedicated to a research project in a green chemistry area.

Graduates of this course can expect to have all the necessary skills and experience to apply green chemical technologies in either commercial or academic laboratories, the research project in particular equipping them admirably for PhD studies.

Read less
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Read more
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Students are integrated into the research culture of the Department by joining a research group, supervised by one of our academic staff, in one of the following areas of Chemistry:

Biological:

with a focus on enzymes, nucleic acids, protein folding and misfolding, and physical techniques; with relevance to health and disease, drug discovery, sensors, nanotechnology, ageing and energy research applications.

Materials Chemistry:

including surfaces, interfaces, polymers, nanoparticles and nanoporous materials, self assembly, and biomaterials, with applications relevant to: oil recovery and separation, catalysis, photovoltaics, fuel cells and batteries, crystallization and pharmaceutical formulation, gas sorption, energy, functional materials, biocompatible materials, computer memory, and sensors.

Physical Chemistry:

including atmospheric sciences, surfaces and interfaces, materials, and physical and chemical aspects of the behaviour of biopolymers and other soft systems.

Synthetic Chemistry:

including complex molecule synthesis, synthetic catalysis, synthetic assembly, synthetic biology and medicine, new technology for efficient synthesis, green synthesis, and preparation of new materials.

Theory, Modelling and Informatics:

including quantum dynamics, modelling soft materials, protein folding and binding, biomolecules in motion, pharmacological activity, molecular switches, redox chemistry, designing bioactive molecule and drugs, chemical biology, crystallography, and simulation of spectroscopic studies.

Potential supervisors and their area of research expertise may be found at Department of Chemistry (Research): http://www.ch.cam.ac.uk/research

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcchmpmch

Course detail

Educational aims of the MPhil programme:

- to give students with relevant experience at first degree level the opportunity to carry out focussed research in the discipline under close supervision; and

- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests and a broader set of transferable skills.

Learning Outcomes

By the end of the programme, students will have:

- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research and research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

The MPhil involves minimal formal teaching. Students may attend the Department's programme of research seminars and other graduate courses, including the Transferable Skills programme that forms part of the PhD programme. Informal opportunities to develop research skills also exist through mentoring and other opportunities by fellow students and members of staff. However, most research training is provided within the research group structure and all students are assigned a research supervisor.

All graduate students receive termly reports written by their supervisors.

Assessment

The scheme of examination for the MPhil in Chemistry shall consist of a thesis, of not more than 15,000 words in length, exclusive of tables, footnotes, bibliography, and appendices, on a subject approved by the Degree Committee for the Faculty of Physics and Chemistry, submitted for examination at the end of 11 months. The examination shall include an oral examination on the thesis and on the general field of knowledge within which it falls. The thesis shall provide evidence to satisfy the Examiners that a candidate can design and carry out investigations, assess and interpret the results obtained, and place the work in the wider perspectives of the subject.

Continuing

The Department offers a PhD in Chemistry course and MPhil students can apply to continue as a graduate student on this course.

MPhil students currently studying a relevant course at the University of Cambridge will need to pass their MPhil course (if examined only by thesis) or obtain a minimum merit (if there is a marked element) in order to be eligible to continue onto the PhD in Chemistry.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Organizations are seeking to create new products and consumers are demanding green alternatives. This has given rise to many opportunities to develop green, sustainable products and chemistries to replace oil-based products and fuels. Read more

Organizations are seeking to create new products and consumers are demanding green alternatives. This has given rise to many opportunities to develop green, sustainable products and chemistries to replace oil-based products and fuels. These include pharmaceuticals, food packaging, clothing and building materials, as well as cutting-edge carbon nanofibers and biofuels. UBC is a world leader in creating innovative value from forest biomass, and graduates of this program will take their place as technical leaders and sector specialists in this growing industry.

The Master of Engineering Leadership (MEL) in Green Bio-Products is an intensive one-year degree program that will equip you with the technical and leadership skills required to contribute to the growing bio-economy. The project-based curriculum covers all stages of the industry value chain. Graduates will gain a comprehensive and integrated understanding of the chemistry and anatomy of the tree and its role as one of the most prolific forms of biomass. While 60 per cent of your classes will focus on your technical specialization, the remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

What Makes The Program Unique?

The MEL in Green Bio-Products degree was developed in close collaboration with industry partners, who told us they need to hire leaders with cross-functional technical and business skills to develop innovative solutions, manage teams and direct projects.

Students will develop the sector-relevant cross-disciplinary technical skills in demand by top employers. Distinct from other programs in Canada and internationally, the combination of technical expertise and leadership development makes the MEL in Green Bio-Products program unique and highly relevant in today’s business environment.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:

-Leadership fundamentals

-Giving and receiving feedback

-Learning how to deliver a successful pitch

-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Career Options

Our graduates will be in high demand locally, nationally and internationally, equipped to take on challenging roles in this rapidly evolving sector. They will be participating in developing advanced technical processes, product ideation and take on senior management roles. As a graduate of this program, you will have the skills to take your career to the next level – working as an industry leader who is a peer to your engineering team members and confidently managing projects.



Read less
Catalysis lies at the heart of many chemical processes, from living systems to large-scale industrial reactors. By understanding and applying catalysts, we can make processes faster, cleaner and more sustainable. Read more
Catalysis lies at the heart of many chemical processes, from living systems to large-scale industrial reactors. By understanding and applying catalysts, we can make processes faster, cleaner and more sustainable. Specialists in catalysis are particularly sought after in industry, as more efficient processes can lead to less waste and cost savings.

Our MSc in Catalysis will provide you with a sound foundation in catalysis theory and its applications. We will explore three branches of catalysis – heterogeneous, homogeneous and biological – and you will be given the opportunity to specialise in the area you are most interested in. You will be trained to use a range of laboratory equipment and techniques for testing and characterising catalysts.

Distinctive features:

• Based on the research undertaken in the School of Chemistry and the Cardiff Catalysis Institute.

• Available on a one-year full-time or three-year part-time basis.

• Specialise in heterogeneous, homogeneous or biological catalysis for your research project.

• Tailor the degree to your interests with our range of optional modules.

• Opportunity to carry out research at an overseas partner university.

Structure

This course may be taken on a one-year full-time or three-year part-time basis.

There are two parts to the degree. Part one is comprised of core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with a foundation in the theory of heterogeneous, homogeneous and biological catalysis. Optional modules will allow you to specialise in your area of interest.

On progression to part two, you will carry out a summer research project in our research laboratories or one of our partner universities. We will make a range of project options available to you from the three areas of catalysis, molecular modelling, or computational chemistry.

If you are on the one-year full-time degree option, you will undertake all modules and your research project in one year.
If you are studying this course on a three-year part-time basis, you will take half the taught modules in year one.

Core modules:

Catalysis and Electrocatalysis
Biocatalysis I - Modern Approaches to Biocatalysts
Colloquium
Catalyst Design Study
Preparation and Evaluation of Heterogeneous Catalysts
Mechanism and Ligand Design in Homogeneous Catalysis
Practical Catalytic Chemistry
Key Skills for Postgraduate Chemists
Research Project

Optional modules:

Modelling of Biological Macromolecules
Applications To Materials Science
Bioinorganic Chemistry
Modern Catalytic Processes
Advanced Techniques in Organic and Biological Chemistry
Molecular Modelling
Catalytic Materials for Green Chemistry

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, tutorials, practicals and self-directed learning.

Your research project will be carried out in research laboratories under the supervision of an academic member of staff with interests in a similar field.

Modules relating to computing frequently take place in our computer rooms, while practical work and your research project will be undertaken in our laboratories.

Students will also benefit of the weekly seminars organised by the School of Chemistry, where leading experts in various scientific fields are invited to present their work.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies, and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported. Many of our staff operate an open door policy and meetings can be arranged at mutually convenient times to discuss your work.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries. In addition to the library facilities the University has extensive electronic resources of text books and research journals that can be accessed online.

Feedback:

We offer written and oral feedback, depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are usually happy to give advice and guidance on your progress.

Assessment

Taught modules are assessed in a variety of different ways depending on the module content and learning outcomes (found in the module descriptions). We use course work, assessed workshops, presentations and examinations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

Upon completion of this course, there are usually two career streams open to graduates: research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Other past graduates have found employment in industry with companies such as Johnson Matthey, Thales, Hexion, BAE Systems in the UK, as well as international companies such as Haldor Topsøe, Denmark and the National Science and Technology Development Agency in Thailand.

Placements

There is the opportunity to undertake the research project overseas in one of our partner institutions allowing you to expand your range of chemistry knowledge, laboratory skills and professional network.

Read less
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries. Read more
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries.

Formulation is a vital activity central to manufacturing in a wide range of industries. The course encompasses polymer and colloid science, building understanding of the physical and chemical interactions between multiple components in complex formulations, leading to a competitive advantage in product development and quality control.

You'll learn the trade secrets behind successful formulation,dealing with issues such as product stability, controlling flocculation, rheology and compatibility issues with multi-component systems. Whichever industry sector you're interested in working within, you'll develop the skills to deign formulations for a wealth of scenarios, for example food, cosmetics, pharmaceuticals and more.

Key Course Features

-You will develop skills to design formulations for a wealth of industrial scenarios - from food, cosmetics and personal care, pharmaceuticals, paper production, inks and coatings, oil drilling and mining to name just a few.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-On this course you will learn the trade secrets behind successful formulation - dealing with issues such as product stability (stabilising emulsions and dispersions), controlling flocculation, rheology (flow properties, mouthfeel, gelation), and overcoming compatibility issues with multi component systems. You'll be introduced to modelling, new trends in processing and high throughput formulation.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit Research Project. The taught element is delivered by a varied programme including lectures, seminars, and practical classes and may be studied on a full time or part time basis to suit you.

There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Research Methods
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding interactions between polymer, solvent, and surfactant molecules with particles and surfaces. You will:
-Review the range of formulation types found in various industrial sectors, and their components.
-Master analytical techniques used to optimise product formulation, including measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS) and particle sizing techniques such as digital imaging and laser diffraction (to measure aggregates, flocs and emulsion droplets)
-Discover Green Chemistry and eco-formulation- exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels, and particulate systems including fillers, additives and dispersants.

A module in Research Methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well quipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focused Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a formulation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The Effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase Separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Read less
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. Read more
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. The content reflects global interest in sustainably-derived polymers which are increasing in demand in a variety of applications including food and beverages, pharmaceutical, cosmetics, personal care, paints and inks.

Our specialist course will equip you with the knowledge to understand the behaviour of both naturally occurring and synthetic water soluble polymers at the molecular level, and how this influences their bulk behaviour. Lectures are reinforced and expanded by study of real-life polymer systems in the laboratory.

You'll learn about the vital roles played by polymers in a rage of products, gain knowledge of biopolymer modification, polymer synthesis and a range of specialist characterisation techniques. During your research project you'll work with specialists from manufacturing industries and perform a programme of experiments designed to help you develop your skills.

Key Course Features

-You will learn about the vital roles played by polymers in a diverse range of high value products – e.g in mayonnaise, sun tan lotion, wound gels, liquid pharmaceuticals, paper, ink, water based paints and flotation aids in mining to name just a few.
-You’ll gain first-hand knowledge of biopolymer modification, polymer synthesis, and a wide range of specialist characterisation techniques.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-Through case studies and your research project you will learn how to apply acquired knowledge in real world industrial scenarios, leading the way to success in subsequent employment.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit research project. The taught element is delivered by a varied programme including lectures, seminars, practical classes and may be studied on a full time or part time basis to suit you. There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Polymer Characterisation Case Study
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding polymer molecules themselves, and the way they interact with each other, and with solvents, surfactants, particles and surfaces.

You will:
-Study the basic principles of polymer characterisation through a range of analytical techniques including FT-IR, UV-vis, NMR, ESR and fluorescence spectroscopy.
-Master the measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS), and gel electrophoresis.
-Use particle sizing techniques such as digital imaging and laser diffraction to measure aggregates, flocs and emulsion droplets.
-Discover Green Chemistry - exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels.
-A module in research methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well equipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focussed Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a polymer application /characterisation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous Masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Career Prospects

The EU is the leading chemical production area in the world and the chemical industry is the UK's largest manufacturing export sector.

MSc Polymer and Biopolymer Science combines delivery of key theoretical knowledge with hands-on application in extraction, modification and testing of polymers / biopolymers.

You’ll learn how to develop experiments at bench scale through to processes at pilot and manufacturing scale. A Masters degree in Polymer & Biopolymer Science from Glyndwr University gives you the skills employers are looking for.

You'll be ready to step confidently into a world of manufacturing with a wealth of information and skills to offer. The course provides excellent career opportunities across a wide range of industrial sectors. Graduates can expect to obtain a research and development position in areas related to biomedical devices, pharmaceutical formulation, food and beverages, petroleum recovery, agrochemicals, functional polymers/speciality chemicals, inks, paints and coatings or cosmetics and personal care products.

The course also provides a direct route to doctoral study, for those wishing to undertake further research training or pursue an academic career.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
In our search for better medicines to improve healthcare in an ageing population, for safer agrochemicals to aid food production for a growing population, and for advanced materials for new technologies, it may come as no surprise to acknowledge that chemistry plays a dominant role. Read more

Course overview

In our search for better medicines to improve healthcare in an ageing population, for safer agrochemicals to aid food production for a growing population, and for advanced materials for new technologies, it may come as no surprise to acknowledge that chemistry plays a dominant role. Without chemistry, the necessary scientific advances will simply not be made to meet these global challenges and to secure our future.

Chemistry is often viewed as demanding in its need for energy and natural resources. We have to ensure that chemistry is safe, efficient and, above all, sustainable – chemistry that is benign by design. Sustainability is an issue facing the entire global chemicals industry, our vision is to train a new generation of scientists to find innovative 'green' resource and energy efficient solutions that have the lowest possible environmental impact; demonstrate social responsibility; and make a positive contribution to economic growth.

This course builds upon our international track record in green chemistry, particularly in the fields of synthetic chemistry, catalysis, new technologies, materials science, process engineering and entrepeneurship. Course material covers all aspects of modern green and sustainable chemistry including feedstocks, energy, sustainable synthesis (including biocatalysis) and industrial process design. Formal lectures are complemented by a 60 credit project based in our world-leading research laboratories and designed to reinforce and apply many of the concepts delivered during lectures. This MSc programme is highly interdisciplinary. It capitalises on strong established links between Chemistry, the Faculty of Engineering, and the Nottingham Business School to provide both breadth and depth in the scope of the MSc degree.

Course details

The principle objective of this MSc Green and Sustainable Chemistry is to train the next generation of scientists to appreciate, assess and address the challenges of sustainability across chemistry using industries through the implementation of robust, innovative science and technology.

Candidates will, therefore, develop an excellent operating knowledge of contemporary methods of synthesis, analysis and process design optimized for both energy and reaction mass efficiency. Graduates will be equipped with the tools and experience to critically evaluate comparable reaction pathways and make evidenced decision in the design and execution of efficient chemical processes key to the pharmaceutical, agrochemical, fine chemical and other chemical using industries. Furthermore, upon completing this degree, students will be able to make effective use of electronic communication and information search & retrieval to facilitate the development and dissemination of key critical skills with which to assess and analyse complex problems.

Further information



Read less
The Chemistry Department offers students the opportunity to study in the traditional areas of analytical, inorganic, organic, and physical chemistry as well as in the growing cross-disciplinary areas such as bioanalytical, bioinorganic, bioorganic and biophysical chemistry; electrochemistry; environmental chemistry; and materials chemistry. Read more
The Chemistry Department offers students the opportunity to study in the traditional areas of analytical, inorganic, organic, and physical chemistry as well as in the growing cross-disciplinary areas such as bioanalytical, bioinorganic, bioorganic and biophysical chemistry; electrochemistry; environmental chemistry; and materials chemistry.
Students work closely with their faculty mentor, but have wide opportunities to interact with faculty in other disciplines including geology, physics, materials/mechanical engineering and biology.
The Chemistry Department has several research facilities which include Spectroscopy, Chromatography, LCQ Mass Spec, Laser Spectroscopy, X-Ray, and Thermal. Additionally Binghamton University hosts several research centers, which included the Institute for Materials Research and the Center for Advanced Sensors and Environmental Systems (CASE), where students in the chemistry programs conduct interdisciplinary research.
Recent doctoral graduates have gone on to post doctoral appointments at Cornell University, an associate professorship at at Russell Sage College, and appointments and fellowships at the National Institute of Health, Atotech, Warner Babcock Institute for Green Chemistry, and Masinde Muliro University of Science and Technology.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores: For international applicants: To be competitive, a minimum combined (verbal + quantitative) GRE General Test score of 1200 is recommended (equivalent to a score of 310 on the new system)
- GRE Subject Test in Chemistry requested

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores
----Chemistry applicant minimum TOEFL scores:
*80 on the Internet-based exam
*To be competitive, a score of 90 is recommended
*550 on the paper exam
*To be competitive, a score of 577 is recommended
----Chemistry applicant minimum IELTS score:
*6.5, with no band below 5.0
----Chemistry applicant minimum PTE Academic score:
*53
*To be competitive, a score of 61 is recommended

Read less
Industrial Biotechnology. The recently-established Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique collaborative Masters in Industrial Biotechnology (IB). Read more
Industrial Biotechnology

The recently-established Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique collaborative Masters in Industrial Biotechnology (IB). IBioIC has committed to creating the next generation of IB-skilled practitioners and the Masters programme is pivotal to delivering this aim.

The course will equip graduates with key skills which will enable them to pursue
a research-based career in industry and which may serve as a means of progression towards a PhD.

The degree is being operated in conjunction with 13 HEI's in Scotland and the Centre’s industry partners. It will be hosted by the University of Strathclyde.

Who might be interested?
The course provides an exciting opportunity for science and engineering graduates who are looking for a career in an emerging industry that is sustainable, green and essential to the global economy.

It is expected to appeal to applicants with a background in biology, biotechnology, chemistry, chemical engineering, molecular biology, synthetic biology or with related science or engineering qualifications.

The course is also likely to appeal to candidates with a primarily industrial background as a further training opportunity and as a means of becoming involved in this critically important field.

There are 30 fully funded places available (Home/EU students) and these will be judged on a case- by-case basis; please contact the Centre for details. Please note that the funding covers tuition fees only.

Read less
The Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique Masters in Industrial Biotechnology. IBioIC has committed to creating the next generation of skilled industrial biotechnologists. Read more

Why this course?

The Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique Masters in Industrial Biotechnology. IBioIC has committed to creating the next generation of skilled industrial biotechnologists.

The course meets industrial needs and is at the forefront of developments in science and engineering. It combines the expertise of staff from 13 academic institutions across Scotland. Our industrial partners also provide input to the course.

This is an exciting opportunity for science and engineering graduates who are looking for a career in an emerging industry that is sustainable, green and essential to the global economy.

The course will provide you with a strong foundation in basic industrial biotechnology. You’ll also cover advanced state-of-the-art topics in a wide range of industrial biotechnology-related areas. A three-month placement is offered, giving students the opportunity to gain valuable experience working with one of IBioIC’s industrial partners.

See the website

You’ll study

The taught classes are designed to give you a thorough understanding of the current developments in industrial biotechnology.
Two semesters of formal teaching are followed by an intensive research project. You'll carry this out with an industrial partner.
The taught classes cover the following areas and are taught by the following partners:

Core classes include:
- Industrial Biotechnology, Governance and Importance to the Bioeconomy (The Innogen Institute, Edinburgh University)
- Bioprocessing (Strathclyde University)
- Synthetic Biology (Glasgow University)
- Practical Systems Biology (Edinburgh University)
- Downstream Processing (Heriot Watt University)
- Applied Biocatalysis (Strathclyde University)

Elective classes include:
- Blue Biotechnology (SAMS, University of Highlands & Islands)
- Renewable Energy Technologies (Abertay University)
- Advanced Project Management (Strathclyde University)
- Supply Chain Management (Strathclyde University)
- Production Management (Heriot Watt University)
- Resource Efficient Formulation (University of the West of Scotland)

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) offers an excellent environment for research and teaching. It is located in a new building with several laboratories. All are fitted with modern equipment.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333+44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Two semesters of formal teaching are followed by an intensive research project, carried out with an industrial partner.

Assessment

The final assessment will be based on performance in exams, coursework and the research project. If necessary there may be a formal oral exam.

Careers

The course provides an exciting opportunity for science and engineering graduates who are looking for a career in an emerging industry that is sustainable, green and essential to the global economy.

Our students enjoyed successful placements with the following companies:
- Qnostics
- GSK
- Xanthella
- SeaBioTech
- Marine Biopolymers
- AMT
- Ingenza
- Unilever
- Innogen
- CRODA
- CelluComp
- NCIMB

A total of 70% of our 2014 cohort have found full-time jobs or have undertaken further study as a result of the experience gained throughout their placement.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Labelled by the European Institute of Innovation and Technology (EIT), AMIS is a Master program in Advanced Materials for Innovation and Sustainability which explores the theme of “Substitution of critical or toxic materials in products for optimized performance”. Read more

Labelled by the European Institute of Innovation and Technology (EIT), AMIS is a Master program in Advanced Materials for Innovation and Sustainability which explores the theme of “Substitution of critical or toxic materials in products for optimized performance”. It also covers the topics of “Material chain optimization for end-of-life products” and “Product and services design for the circular economy” - all of which are central themes of the AMIS. The primary focus of the AMIS program is metal and mineral raw materials. Bio-based and polymer materials are studied in view of their substitution potential. Other materials are also analyzed in the context of multimaterial product recycling. In addition, the AMIS program includes a solid package of courses and project work in innovation and entrepreneurship.

Program structure

Mobility is integrated within the two-year program, during which students study at two of the consortium partner universities. Upon completion of the program, graduates are awarded 120 ECTS and a double degree delivered by two of the five partner institutions where they studied. Students begin the Master program at Grenoble INP, Aalto University or T.U. Darmstadt. In their second year, students specialize in another partner university:

  • To attend the specialization year offered at the University of Bordeaux, prospective students must attend the first year at either Aalto University or the Technical University of Darmstadt.

Year 2 specializations are the following:

  • University of Bordeaux: Advanced Hybrid Materials: Composites and Ceramics by Design
  • T.U. Darmstadt: Functional Ceramics: Processing, Characterization and Properties
  • Aalto University: Nanomaterials and interfaces: Advanced Characterization and Modeling
  • University of Liège: Nanomaterials and Modeling
  • Grenoble INP: Materials Interfaces: Surfaces, Films & Coatings

SEMESTER 1 TO 4 CONTENT

Master 1: Basic level competencies.

Mandatory courses in:

  • Fundamentals of materials science
  • Applied materials
  • Modelling tools and materials
  • Innovation, business and entrepreneurship.

Joint collaboration courses with AMIS partners:

  • Inno project I: business model development and the commercialization process of new technologies.
  • Summer camp: a week intensive course working in teams on industry case studies to create and produce new ideas, innovative technologies, improved products or services.
  • Internship: work experience in a company or research organization to develop a solution-focused approach by translating innovations into feasible business solutions and commercializing new technologies.

Master 2: Specialization year.

Mandatory courses in:

  • Advanced functional materials with a specialization in material interfaces, nanomaterials, ceramics or hybrids.

Joint collaboration course with AMIS partners:

  • Practical work on various industrial projects integrated with innovation and entrepreneurship contents.
  • Inno project II: a specialized approach on business model development and commercialization process of new technologies.

Master thesis:

  • A research and development experience in material science jointly supervized by the home university professors and the host partners. The results of the Master thesis will be defended during a presentation. Certain subjets may lead to setting up a business or a spin-off.

Strengths of this Master program

  • Develop expertise in the field of innovative and sustainable advanced materials.
  • Meet, study and work with relevant academic and non-academic contacts in the innovation and entrepreneurship ecosystem.
  • Gain a holistic view on value and process chains.
  • Acquire transferable skills through modern teaching methods. These transferable skills include: entrepreneurship, negotiation techniques, intellectual property, problem solving, working cooperatively and creatively, co-designing, and life cycle approaches.

After this Master program?

As a resource engineer, students may continue in the following fields:

Freelance and entrepreneurship:

  • Create a business or become a consultant

Resource industry:

  • SMEs in chemistry, exploration, green energy, machinery and plant construction, metal working industry, ceramics, environmental economy (R&D, product development, management, production, marketing and sales)

Research:

  • Universities, research institutions, lecturer or managerial position
  • Circular economy
  • Production, analytics, management, marketing and sales

And also:

  • Science journalism, consulting, project development and management, advisor to policy makers, administration, specialist agencies and media.


Read less
The Water and Environmental Management MSc course provides training in the core scientific, technical and interdisciplinary skills that are essential in water resource and environmental management fields. Read more
The Water and Environmental Management MSc course provides training in the core scientific, technical and interdisciplinary skills that are essential in water resource and environmental management fields. You will acquire specialist knowledge and develop key analytical and scientific skills, particularly in the context of national and international environmental legislation.

Learning from and working alongside our world-leading academic researchers, you will benefit from expertise covering a range of disciplines relating to water resources and environmental management.

Our Aquatic Research Centre provides specialist multi-million pound facilities, including specialist water chemistry and microbiology laboratories, laboratory-scale water and wastewater treatment systems, an experimental river basin, a water efficiency laboratory, as well as a large pool of aquatic field equipment and computing facilities.

You have the choice from a wide range of optional modules in order to tailor the course to your interests and career aspirations. As part of this, there are opportunities for our students to conduct a placement with organisations involved in water resource and environmental management, including industrial members of the Green Growth Platform.

Accreditation

Accredited by the Joint Board of Moderators (JBM) as meeting the requirements for further learning for a chartered engineer (CEng)

Scholarships

Scholarships are available for this course. Please click the link below for more information.
https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Course structure

You will study four core modules and select from a range of option modules. These will allow you to specialise in the areas of the course that interest you the most.

As an MSc student, you will also undertake an individual dissertation project in an area of particular interest. Examples of subjects our students have completed their research project on include:

• an analysis of novel treatment technologies
• assessment of the potential for re-use of treated wastewater
• management of water resources in the UK and overseas.

Syllabus

Core modules:

Water Resources Management
Water Treatment Technology
Wastewater Treatment Technology
Water Analysis

Optional modules:

Environmental Placement
Hydrogeology
Environmental Impact Assessment
Environmental Policy and Law
Geographical Information Systems (GIS)
Ecological Field Techniques
Issues in Ecology and Conservation
Systems for Environmental Management
Case Studies in Environmental Assessment and Management

Employability

Graduates are well equipped to apply for jobs with water companies, government agencies and regulatory bodies, environmental/civil engineering consultancies, and international non-governmental organisations. Graduates are also well equipped to secure PhD studentships to further their research ambitions.

Read less
One of the fundamental challenges associated with hydrocarbon production is ensuring the integrity of the assets used to extract and transport process fluids, particularly from effects such as internal corrosion. Read more

One of the fundamental challenges associated with hydrocarbon production is ensuring the integrity of the assets used to extract and transport process fluids, particularly from effects such as internal corrosion. As a result, the demand for qualified corrosion engineers with specific expertise in oilfield operations continues to grow.

This course is appropriate for professional engineers in industry who are seeking to expand their expertise, as well as graduate engineers or physical scientists looking to gain specialist knowledge relevant to the oil and gas sector.

The course develops your skills in measuring, predicting and managing corrosion as well as assessing asset integrity. Optional modules allow you to focus on topics relevant to your interests and career plans.

Taught by academic staff at the forefront of their fields, the course enables you to develop a range of skills and a solid knowledge base from which to launch an exciting career within the oil and gas industry.

You’ll learn in a stimulating research environment supported by world-class specialist facilities which support the individual project element of the programme. These include access to equipment such as high temperature/high pressure autoclaves, quartz crystal microbalance, erosion-corrosion rigs/flow loops, rotating cylinder electrodes/bubble cells, visualisation cells and potentiostats with AC/DC capabilities.

The projects are also supported by access to our corrosion lab’s own advanced surface analysis suite, containing optical microscopes, mini-sims, IR/UV spectroscopy techniques, atomic force microscopes and a nano-indenter.

Accreditation

This course is accredited by the Institute of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council.

Course content

Core modules in each semester provide you with a thorough understanding of key aspects of oilfield corrosion engineering. You’ll study topics which cover aspects such as material selection, chemical inhibition, surface engineering technologies, the principles of physical metallurgy, electrochemistry and corrosion management strategies for new or mature assets.

You’ll also select from optional modules that allow you to focus on specific topic areas such as tribology and its impact on mechanism design or engineering computation. Modules are also available through Leeds University Business School covering aspects of operations management, to prepare you for a range of roles in industry.

Throughout the programme you’ll complete your Professional Project – an independent piece of research on a topic within mechanical engineering that allows you to demonstrate your knowledge and skills. In the two taught semesters you’ll review the literature around a specific topic (chosen from an extensive list provided) and plan the project, before completing the design, analysis, computation, experimentation and writing up in the summer months.

Want to find out more information about your modules?

Take a look at the Oilfield Corrosion Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Metals and Alloys 15 credits
  • Materials Selection and Failure Analysis 15 credits
  • Oilfield Chemistry and Corrosion 15 credits
  • Advanced Oilfield Corrosion 15 credits
  • Surface Engineering 15 credits
  • Professional Project 75 credits

Optional modules

  • Materials Structures and Characterisation 15 credits
  • Risk Perception and Communication 15 credits
  • Effective Decision Making 15 credits
  • Managing for Innovation 15 credits
  • Engineering Computational Methods 15 credits
  • Introduction to Tribology 15 credits
  • Computational Fluid Dynamics Analysis 15 credits

For more information on typical modules, read Oilfield Corrosion Engineering MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, poster sessions, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Most projects are experimentally based and linked with companies within the oil and gas industry to ensure the topic of research is relevant to the field whilst also addressing a real-world problem.

Recent projects for MSc Oilfield Corrosion Engineering students have included:

  • Corrosion of wellbore materials under high temperature and pressure
  • Nanotechnology applications in oil and gas for advanced corrosion protection
  • Evaluation of green inhibitors
  • Understanding galvanic corrosion of welds in high shear conditions
  • Application of acoustic emission as a tool for predicting erosion severity
  • Development and testing of a novel, custom cell to understand top of line corrosion

Career opportunities

With this qualification, excellent career options are open to you to practise as a professional corrosion engineer and play a major role in ensuring the safe and efficient recovery of natural resources.

Graduates have gone on for a range of companies such as BP, Petronas, Wood Group Kenny and EM&I.

You’ll also be well prepared to continue with research in this field, either within industry or at PhD level within academia.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UKs leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website



Read less

Show 10 15 30 per page



Cookie Policy    X