• Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Leeds Featured Masters Courses
University of Sussex Featured Masters Courses
University College London Featured Masters Courses
"gravity"×
0 miles

Masters Degrees (Gravity)

  • "gravity" ×
  • clear all
Showing 1 to 15 of 26
Order by 
The course provides an introduction to the physical principles and mathematical techniques of current research in general relativity, quantum gravity, particle physics, quantum field theory, quantum information theory, cosmology and the early universe. Read more

Overview

The course provides an introduction to the physical principles and mathematical techniques of current research in general relativity, quantum gravity, particle physics, quantum field theory, quantum information theory, cosmology and the early universe.

The programme of study includes a taught component of closely-related modules in this popular area of mathematical physics. The course also includes a substantial project that will allow students to develop their interest and expertise in a specific topic at the frontier of current research, and develop their skills in writing a full scientific report.

The course will provide training in advanced methods in mathematics and physics which have applications in a wide variety of scientific careers and provide students with enhanced employability compared with undergraduate Bachelors degrees. In particular, it will provide training appropriate for students preparing to study for a PhD in the research areas listed above. For those currently in employment, the course will provide a route back to academic study.

Key facts:

- The course is taught jointly by the School of Mathematical Sciences and the School of Physics and Astronomy.

- Dissertation topics are chosen from among active research themes of the Particle Theory group, the Quantum Gravity group and the Quantum Information group.

- In addition to the lectures there are several related series of research-level seminars to which masters students are welcomed.

- The University of Nottingham is ranked in the top 1% of all universities worldwide.

Module details

Advanced Gravity

Black Holes

Differential Geometry

Gravity

Gravity, Particles and Fields Dissertation

Introduction to Quantum Information Science

Modern Cosmology

Quantum Field Theory

English language requirements for international students

IELTS: 6.0 (with no less than 5.5 in any element)

Further information



Read less
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more
Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.
- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).
- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.
- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.
- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.
- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.
Possible careers for mathematicians include:
- Researcher (at research centres or within corporations)
- Teacher (at all levels from middle school to university)
- Risk model validator
- Consultant
- ICT developer / software developer
- Policy maker
- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:
1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.
2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics

Read less
A physics programme that covers the inner workings of the universe from the smallest to the largest scale. Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. Read more

Master's specialisation in Particle and Astrophysics

A physics programme that covers the inner workings of the universe from the smallest to the largest scale
Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. In this Master’s specialisation you’ll dive into these extreme worlds and unravel questions like: What did our universe look like in the earliest stages of its existence? What are the most elementary particles that the universe consists of? And how will it evolve?
If you are fascinated by the extreme densities, gravities, and magnetic fields that can be found only in space, or by the formation, evolution, and composition of astrophysical objects, you can focus on the Astrophysics branch within this specialisation. Would you rather study particle interactions and take part in the search for new particles – for example during an internship at CERN - then you can choose a programme full of High Energy Physics. And for students with a major interest in the theories and predictions underlying all experimental work, we offer an extensive programme in mathematical or theoretical physics.
Whatever direction you choose, you’ll learn to solve complex problems and think in an abstract way. This means that you’ll be highly appealing to employers in academia and business. Previous students have, for example, found jobs at Shell, ASML, Philips and space research institute SRON.

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Why study Particle and Astrophysics at Radboud University?

- This Master’s specialisation provides you with a thorough background in High Energy Physics, Astrophysics, and Mathematical Physics and the interface between them.
- Apart from the mandatory programme, there’s plenty of room to adapt the programme to your specific interests.
- The programme offers the opportunity to perform theoretical or experimental research.
- During this specialisation it is possible to participate in large-scale research projects, like the Large Hadron Collider at CERN or the LOFAR telescope.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university, at an institute (think of ESA and CERN) or at a company. However, many of our students end up in other business or government positions as well. Whatever job you aspire, you can certainly make use of the fact that you have learned:
- Thinking in an abstract way
- Solving complex problems
- Using statistics
- Computer programming
- Giving presentations

Some of our alumni now work as:
- National project manager at EU Universe Awareness
- Actuarial trainee at Talent & Pro
- Associate Private Equity at HAL Investments
- Consultant at Accenture
- ECO Operations Manager at Ofgem
- Scientist at SRON Netherlands Institute for Space Research
- Technology strategy Manager at Accenture

Working at a company

Other previous students have found jobs at for example:
- Shell
- KNMI
- Liander
- NXP
- ASML
- Philips
- McKinsey
- DSM
- Solvay
- Unilever
- AkzoNobel

Researchers in the field of Particle and Astrophysics develop advanced detector techniques that are often also useful for other applications. This resulted in numerous spin-off companies in for example medical equipment and detectors for industrial processes:
- Medipix
- Amsterdam Scientific Instruments
- Omics2Image
- InnoSeis

PhD positions

At Radboud University, there are typically a few PhD positions per year available in the field of Particle and Astrophysics. Many of our students attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In the Particle and Astrophysics specialisation, you’ll discover both the largest and the smallest scales in the universe. Apart from Astrophysics and High Energy Physics, this specialisation is also aimed at the interface between them: experiments and theory related to the Big Bang, general relativity, dark matter, etc. As all relevant research departments are present at Radboud University – and closely work together – you’re free to choose any focus within this specialisation. For example:

- High energy physics
You’ll dive into particle physics and answer questions about the most fundamental building blocks of matter: leptons and quarks. The goal is to understand particle interactions and look for signs of physics beyond the standard model by confronting theoretical predictions with experimental observations.

- Astrophysics
The Astrophysics department concentrates on the physics of compact objects, such as neutron stars and black holes, and the environments in which they occur. This includes understanding the formation and evolution of galaxies. While galaxies may contain of up to a hundred billion stars, most of their mass actually appears to be in the form of unseen ‘dark matter’, whose nature remains one of the greatest mysteries of modern physics.

- Mathematical physics
Research often starts with predictions, based on mathematical models. That’s why we’ll provide you with a theoretical background, including topics such as the properties of our space-time, quantum gravity and noncommutative geometry.

- Observations and theory
The Universe is an excellent laboratory: it tells us how the physical laws work under conditions of ultra-high temperature, pressure, magnetic fields, and gravity. In this specialisation you’ll learn how to decode that information, making use of advanced telescopes and observatories. Moreover, we’ll provide you with a thorough theoretical background in particle and astrophysics. After you’ve got acquainted with both methods, you can choose to focus more on theoretical physics or experimental physics.

- Personal approach
If you’re not yet sure what focus within this specialisation would best fit your interests, you can always ask one of the teachers to help you during your Master’s. Based on the courses that you like and your research ambitions, they can provide you with advice about electives and the internship(s).

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Read less
UNB’s Mathematics and Statistics department offers top percentile research programs, plus the chance to study advanced topics with internationally-recognized faculty. Read more
UNB’s Mathematics and Statistics department offers top percentile research programs, plus the chance to study advanced topics with internationally-recognized faculty. It all adds up to a positive university experience, equating to happier students and better job prospects. We generally have around 20 graduate students in a variety of research areas and we host several post-doctoral researchers.

Our graduate programs prepare students for successful careers in government, academia, research and consulting firms, financial and healthcare institutions, engineering and technology firms, as well as respected positions in data security, computer design and cosmology.

Our department is home to the Applied Statistics Centre, which provides statistical consultation for UNB researchers and the community at large, as well as the Centre for Noncommutative Geometry and Topology, which is an international research consortium that includes many renowned mathematicians.

Research Areas

-Algebra & Algebraic Geometry
-Combinatorics
-General Relativity
-Cosmology
-Quantum Gravity & Modified Gravity
-String Theory
-Scientific Computation
-Mathematical Ecology & Epidemiology
-Biological Invasions
-Nonlinear Differential & Delay Differential Equations
-Random Effects & Mixture Models
-Longitudinal Analysis
-Validation of Complex Models for Random Pattern

Read less
Geophysics is the remote study of the Earth through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electromagnetic, and electrical methods. Read more

Overview

Geophysics is the remote study of the Earth through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electromagnetic, and electrical methods. It is a key element of oil, gas and mineral exploration, environmental and archaeological assessment, and engineering site investigation.

This course prepares you to embark on a career in resource exploration, environmental and engineering geophysics. Running for over 50 years it is well-established and has strong links to industry. It provides you with a broad range of practical skills, underpinned by a theoretical understanding that equips you to become a professional in your chosen field. You will also undertake a four-month individual project, mostly in association with an external company or institute and often in their offices.

Demand for geophysicists continues to be high and this well-established programme has an exceptionally good record of job placement for both UK/EU and overseas students.

Course highlights:

• Network with energy, geophysical acquisition, processing and software companies, who visit regularly to engage and recruit our students.
• Undertake a four-month individual project, mostly in association with an external company or institute and often in their offices.
• Access our state-of-the-art computer suite that runs a comprehensive range of industry-standard software on hi-spec twin-screen workstations.
• Develop your field skills with our sector-leading portfolio of field geophysical equipment.
• Apply for an industry scholarships - we have the largest number of Masters-level geophysics industry scholarships available for UK/EU students.

Read less
This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. Read more
This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. In addition our graduates are highly sought after for further PhD research in the petroleum geosciences.

● Recognised by NERC - 5 MSc studentships each year covering fees, fieldwork and maintenance.
● Recognised by Industry - Industry scholarships
● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum industry.

The course covers the applications of basin dynamics and evolution to hydrocarbon exploration and production. The course is modular in form providing intensive learning and training in geophysics, tectonics and structural geology, sequence stratigraphy and sedimentology, hydrocarbon systems, reservoir geology, remote sensing and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in -
● 3D seismic interpretation and 3D visualization;
● Fault analysis and fault-sealing;
● Seismic sequence stratigraphy;
● Applied sedimentology;
● Well log analysis;
● Remote sensing analysis of satellite and radar imagery;
● Analysis of gravity and magnetic data;
● Numerical modelling of sedimentation and tectonics;
● Applied structural geology;
● Geological Fieldwork.

● Transferable skills learned during the course include
project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available


● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –
● Dedicated Modern Teaching Laboratories
● 14 Dual Screen Unix Seismic Workstations
● PC and Macintosh Workstations
● Internationally Recognised Structural Modelling Laboratories
● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger
● Southeast Asia Research Group – Tectonic Evolution and Basin Development in SE Asia – Professor Robert Hall
● Numerical Modelling Research Group – Numerical Modelling of Tectonics and Sedimentation – Dr Dave Waltham
● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

The 2005 MSc graduates went on to employment with Shell, BP, Amerada Hess, Gaz de France, OMV (Austria), Star Energy, First Africa Oil, Badley Ashton, ECL, PGS, Robertsons, PGL, Aceca, and to PhD research at Royal Holloway and Barcelona.
Since 2001, 85% of our graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html

Read less
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. Read more
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. In addition to successful employment in the international petroleum industry graduates from this course are employed in the international mining industry as well as being highly sought after for further PhD research in the geosciences.

● Recognised by Industry - Industry scholarships

● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum and remote sensing industries.

The course covers the applications of tectonics and structural geology to hydrocarbon exploration and production as well as to applied structural geology research in different terranes. The course is modular in form providing intensive learning and training in tectonics, applied structural geology, seismic interpretation of structural styles, tectonostratigraphic analysis, section balancing and reconstruction, remote sensing, crustal fluids and hydrocarbon systems, reservoir geology, and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in –
● Plate tectonics and terrane analysis;
● Applied structural analysis;
● 3D seismic interpretation and 3D visualization of structural styles;
● Fault analysis and fault-sealing;
● Tectonostratigraphic analysis;
● Scaled analogue modelling;
● Numerical modelling of structures;
● Remote sensing analysis of satellite and radar imagery;
● Analysis of gravity and magnetic data;
● Section balancing and reconstruction;
● Applied structural fieldwork.

● Transferable skills learned during the course include
project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available

● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –
● Dedicated Modern Teaching Laboratories
● Internationally Recognised Structural Modelling Laboratories
● 14 Dual Screen Unix Seismic Workstations
● PC and Macintosh Workstations
● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger
● Southeast Asia Research Group – tectonic evolution and basin development in SE Asia – Professor Robert Hall
● Numerical Modelling Research Group – Numerical modelling of tectonics and sedimentation – Dr Dave Waltham
● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

Our Tectonics MSc graduates have gained employment with Shell, BP, ECL, PGS, Sipetrol, PGL, Codelco, and to PhD research in a range of universities including Trieste, Barcelona, and Ulster universities.
Since 2001, 85% of our Petroleum Geosciences MSc graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html

Read less
This renowned MSc course is designed to prepare students for PhD study in fundamental theoretical physics by bridging the gap between an undergraduate course in physics or mathematics and the research frontier. Read more
This renowned MSc course is designed to prepare students for PhD study in fundamental theoretical physics by bridging the gap between an undergraduate course in physics or mathematics and the research frontier.

The Theoretical Physics Group is internationally recognised for its contribution to our understanding of the unification of fundamental forces, the early universe, quantum gravity, supersymmetry, string theory, and quantum field theory.

The origins of the MSc course date back to the founding of the Theoretical Physics Group by Abdus Salam, one of Imperial’s Nobel Laureates.

Read less
Ranked 2nd in the UK by Research Fortnight, our geomatics research is ground breaking. We publish in leading international journals, at conferences, in the media and through educational outreach programmes. Read more

Course Overview

Ranked 2nd in the UK by Research Fortnight, our geomatics research is ground breaking. We publish in leading international journals, at conferences, in the media and through educational outreach programmes. Whether focusing on geodesy or geospatial engineering, you will work with experts to produce research of an international standard.

The School of Civil Engineering and Geosciences enjoys an international reputation for using the latest science to solve problems of global importance. Our research has significant relevance in non-academic settings and we regularly apply it through consultancy to industry, from the global offshore industry to local authorities and survey and engineering companies. We are a key part of the TSB Satellite Applications Catapult North East Centre of Excellence.

For geomatics we have MPhil and PhD supervision in the following areas:

Satellite geodesy: GPS and geophysical modelling; GPS/GNSS geodesy; precise orbit determination of altimetric and geodetic satellites; sea level; ice sheet mass balance; satellite altimetry; static and temporal gravity field and reference frame analyses from dedicated satellite missions; SAR interferometry; geophysical and industrial deformation monitoring; geodynamics and geohazards; integration of GPS and INS; engineering geodesy

Geospatial Engineering: geoinformatics and advanced GIS; geospatial algorithm development; spatial modelling including network modelling, cellular automata and agent based approaches to spatial complexity; multimedia cartography and information delivery; temporal GIS; geospatial data management; airborne and satellite remote sensing applied to environmental impact assessment; land use, vegetation and pollution monitoring; Earth observation of urban systems; photogrammetry; laser scanning; precise non-contact dimensional control

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Postgraduate Researcher Development Programme, doctoral training centres and Research Student Support Team.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/geomatics-mphil-phd/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/geomatics-mphil-phd/#howtoapply

Read less
We invite MPhil and PhD proposals in any of our research areas. In Pure Mathematics our two main fields are functional analysis and geometric algebra. Read more

Course overview

We invite MPhil and PhD proposals in any of our research areas. In Pure Mathematics our two main fields are functional analysis and geometric algebra. In Applied Mathematics our research is predominantly in fluid mechanics, astrophysics and cosmology.

Research Areas

Within each field of Pure Mathematics there are multiple subgroups. In analysis, one subgroup concentrates on operator theory and function theory, the other on Banach algebras, cohomology and modules. In algebra there are subgroups devoted to the study of infinite groups, and finite classical groups and their geometries

Our Applied Mathematics staff have research interests in: fluid dynamics, including numerical modelling of quantum fluids (superfluid liquid Helium and Bose-Einstein condensates); classical and astrophysical fluids (the Earth's core, planetary dynamos, accretion discs and galaxies); cosmology, including the very early universe and quantum gravity.

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Postgraduate Researcher Development Programme and Research Student Support Team.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/mathematics-mphil-phd/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/mathematics-mphil-phd/#howtoapply

Read less
If you are interested in the possibility of a research degree (PhD or Research Masters) in the School of Mathematical Sciences, we encourage you to become familiar with the range of research activity and expertise in the School. Read more
If you are interested in the possibility of a research degree (PhD or Research Masters) in the School of Mathematical Sciences, we encourage you to become familiar with the range of research activity and expertise in the School. In particular, we would encourage you to approach or contact members of the academic staff whose research area may be of particular interest.

The research of the School covers a wide range of areas including:

Analysis (Infinite-dimensional analysis, Functional Analysis, Potential Theory)
Algebra (Matrix Theory, K-theory, Quadratic and Hermitian Forms)
Discrete Mathematics (Coding, Cryptography, Number Theory)
Applied Mathematics (Fluid Dynamics, Computational Science, Meteorology, Biomathematics, Information Theory)
Theoretical Physics (Astrophysics, General Relativity, Quantum Gravity, Statistical Mechanics, Quantum Field Theory)
Statistics (Bayesian Statistics, Pharmaceutical, Medical and Educational Statistics, Environmental and ecological modelling, Epidemiology, Econometrics).

Please see our School Website for more details:
http://www.ucd.ie/mathstat

Read less
The environmental impact from the use of fossil fuels and the uncertainties in their sources of supply has led to many alternative energy sources being proposed and investigated. Read more
The environmental impact from the use of fossil fuels and the uncertainties in their sources of supply has led to many alternative energy sources being proposed and investigated. However, of the non-fossil fuel sources, only nuclear fission power is at present sufficiently developed to provide an economically viable alternative to fossil fuels.

The aim of this programme – which began in 1956 – is to provide the necessary background, both in breadth and in depth, for anyone wishing to enter the nuclear industry. The areas of study and degree of specialisation involved have changed considerably to reflect the increasing sophistication of the field, and yet the overall breadth of the course has been maintained, because we feel that only in this way can new entrants to the field obtain a perspective which will be of continuous help in future careers.

Studentships are sponsored by the nuclear industry in the UK, and these provide excellent and effective entry routes into careers in this stimulating field for physicists, mathematicians, metallurgists or engineers.

A taught element from September to May is followed by a 14-week project, usually undertaken within the industry.

About the School of Physics and Astronomy

We are one of the largest physics departments in the country with a high profile for research both in the UK and internationally, covering a wide range of topics offering exciting challenges at the leading edge of physics and astronomy. Our student satisfaction rating of 96% in 2016 demonstrates the quality of our teaching.
The School of Physics and Astronomy’s performance in the Research Excellence Framework (REF), the system for assessing the quality of research in the UK higher education institutions, has highlighted that 90% of research outputs in the School were rated as world-leading or internationally excellent.
Our research portfolio is wide-ranging, and covers three principal themes: Particle and Nuclear Physics; Quantum Matter and Nanoscale Science; and Astronomy and Experimental Gravity. We have over 120 academic and research staff together with 120 graduate students with around 50 technical and clerical support staff. Our annual research income is over £8 million and more than 250 research publications are produced each year.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
There is a growth in the number of entrepreneurs starting businesses with social and environmental purposes. This exciting MA will enable you to develop a critical understanding of and practical insights into modes of social enterprise- http://www.gold.ac.uk/pg/ma-social-entrepreneurship/. Read more
There is a growth in the number of entrepreneurs starting businesses with social and environmental purposes. This exciting MA will enable you to develop a critical understanding of and practical insights into modes of social enterprise- http://www.gold.ac.uk/pg/ma-social-entrepreneurship/

There is an urgent need for talented individuals who can design novel solutions to our most profound societal challenges.

This international MA provides practical and sociological tools to individuals motivated to develop alternative economic practices and frameworks to meet such challenges. These might include (but are not limited to) social enterprises, collaborative innovation networks, hubs, digital platforms, support intermediaries and/or policy proposals.

Benefitting from the MA’s timely educational content as well as from its firm roots in London’s rich networks, our students go on to become thought leaders in the burgeoning social innovation field, advancing it in a creative fashion from their chosen angle. Past graduates have gone on to create their own social enterprises or to work for prestigious organisations such as the Yunus Institute and Social Enterprise UK, while some have elected to carry out advanced research into social innovation.

This MA is ideal for:

Current social entrepreneurs hoping to develop their expertise further (roughly 25% of our students from the UK and EU study part-time while working in the field)
Undergraduates aspiring to become social innovators and changemakers
Intrapreneurs interested in organisational transformation within the creative sector or any other sector of interest
Support organisation/infrastructure architects and policy makers (including those who wish to advance the field of social innovation in their cities/areas/countries)
Those interested in becoming analysts and knowledge experts in this field (including academic researchers with PhDs)

Contact the department

If you have specific questions about the degree, contact Dr Richard Hull.

The MA in more detail

The MA in Social Entrepreneurship is one of the few graduate programmes in the world dedicated entirely to the study of the fast-moving field of social entrepreneurship and innovation.

It will equip you with a strong understanding of foundational theories of entrepreneurship, innovation, social problems and policy (with organisational sociology as the base discipline) while supplying practical tools in relation to entrepreneurial modelling and SROI.

There is also a marked emphasis on creativity, which means that you will have considerable scope to choose the precise topics you wish to tackle and the approaches you wish to apply. Teaching on the course is interactive and seminar-driven rather than based on the traditional model of long lectures and limited discussions.

What you study

The programme will introduce you to key concepts in the historical development of social enterprise and innovation and to its changing role in society and the economy. Seminars and talks will be given by social entrepreneurs, as well as leading professionals.

You'll learn innovative approaches to developing an enterprise, and gain confidence in revenue generation and financial modelling.

A significant amount of the learning is delivered through group projects and activities. This is designed to develop your individual communication skills and teamwork.

The programme consists of five core modules:

Theories of Creative, Cultural and Social Entrepreneurship
Entrepreneurial Modelling
Social Entrepreneurship: Policy and Frameworks
Social Return On Investment: Principles and Practice
Research or Project-Based Master’s Dissertation

In addition to these main modules, we also regularly invite external experts from intermediaries such as UnLtd and other educational institutions such as the University of Oxford to ensure our students get access to a wide range of cutting-edge topics in the field. Social and alternative finance is among the key areas examined in such guest lectures; social innovation cases from particular country-contexts such as, for example, South Korea, Japan and Colombia also feature frequently.

We are occasionally able to provide additional training in related fields (such as accounting) in the form of short-term workshops to strengthen our students’ educational experience at Goldsmiths and at the University of London. We also encourage you to become members of various social entrepreneurship/collaboration hubs around London for learning and networking purposes.

A non-business school programme

The MA in Social Entrepreneurship at Goldsmiths is quite unlike traditional business/management-driven courses in the field: on the one hand, it allows scope for a far deeper examination of the theoretical and practical foundations of social innovation; on the other, it provides unique access to an expanding learning community (formed by our students and our wider, growing network) engaged in real-time research.

Equally important is the fact that students are consciously encouraged to, and supported with, forming their professional public profiles, through things like:

blogging (eg via The Golden Angle blog that students founded in 2013-2014)
public speaking
interactive research projects
developing your own social enterprise
Because our students possess diverse, highly relevant knowledge that they have accumulated prior to coming to Goldsmiths, real efforts are made to integrate this knowledge and experience into the collective learning processes.

One relevant tool that we employ here is an interactive peer-review process that we employ to raise the quality of student output, which means that often student essays (not just dissertations) are of publishable quality. Furthermore, we take full advantage of our location within London’s bustling community of social innovation by engaging with leading intermediaries, practitioners and (junior as well as senior) thought leaders.

Learning objectives

In terms of essential learning objectives, students of this MA are expected to:

Develop a critical, sociologically informed understanding of this fast evolving field
Develop tangible expertise in social return on investment and entrepreneurial modelling methodologies
Become part of London's social innovation community, a global centre of gravity in this field (with links to local social innovation communities virtually everywhere in the world)
Access a number of future career paths in the growing social innovation sector
Develop a grasp of research methods, a significant body of written work and a public profile through assignments, debates and online/offline publication avenues (including The Golden Angle), enabling some students to work as social innovation consultants/knowledge leaders upon graduation
Download the programme specification for this degree to find out more about what you'll learn and how you'll be taught and assessed.

Please note that due to staff research commitments not all of these modules may be available every year.

Skills

The skills you'll develop throughout the MA include: entrepreneurial knowledge and skills; a critical understanding of the interdisciplinary nature of social entrepreneurship; the ability to critically examine the conditions required for innovation and entrepreneurship to make a strong impact on societal problems; the ability to apply entrepreneurial approaches to projects; effective business and communication skills.

Careers

It is intended that students completing this programme will seek employment primarily in two areas.

Firstly: self-employed in their own social enterprise or a member of a team of an SME developing from an existing or new practice.

Secondly: within government or NGO organisations concerned with developing the infrastructure and environment for new social enterprises to flourish.

Funding

Please visit http://www.gold.ac.uk/pg/fees-funding/ for details.

Read less
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft. Read more
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aerospace engineering graduate wanting to improve your skills and knowledge; a graduate of a related engineering discipline or physical science and you want to change field; or you are looking for a well rounded postgraduate qualification in aeronautical engineering to enhance your career prospects, this programme is designed for you.
◾You will benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aeronautical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. You will attend taught courses and take part in laboratory-based assignments and field visits. You will be further assessed in coursework, report writing and oral presentations.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 courses
◾Aerospace control 1
◾Aircraft flight dynamics
◾Navigation systems
◾Space flight dynamics 1
◾Viscous shear flows.

Semester 2 courses (five chosen)
◾Autonomous vehicle guidance systems
◾Composites airframe structures
◾Introduction to aeroelasticity
◾Introduction to computational fluid dynamics
◾Introduction to wind engineering
◾Robust control 5
◾Spacecraft systems 2
◾Aerospace design project.

]]Projects]]
◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aeronautical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

[[Accreditation ]]

MSc Aeronautical Engineering is accredited by the Royal Aeronautical Society (RAeS)

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, control design, structural engineering. You can also continue studying, for a research Masters or a PhD.

Graduates of this programme have gone on to positions such as:

◾Teaching Assistant at a university
◾Graduate Engineer at UTC Aerospace Systems
◾Scientist at Fluid Gravity Engineering Ltd.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Laser Physics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Laser Physics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc by Research Laser Physics enables students to pursue a one year individual programme of research. The Laser Physics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The two main research groups within the Department of Physics currently focus on the following areas of research:

Atomic, Molecular and Quantum Physics Group

Fundamental Atomic Physics
Condensed Matter and Material Physics
Analytical Laser Spectroscopy
Particle Physics Theory Group

String theory, quantum gravity and the AdS/CFT correspondence
Lattice gauge theories, QCD
Supersymmetric field theory, perturbative gauge theory
Field Theory in curved spacetime
Physics beyond the standard model

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the Laser Physics programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of
positronium
CW and pulsed laser systems
Scanning tunnelling electron and nearfield optical microscopes
Raman microscope
CPU parallel cluster
Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X