• Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Surrey Featured Masters Courses

Postgrad LIVE! Study Fair

Edinburgh

University of Hertfordshire Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Cambridge Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Nottingham Featured Masters Courses
"geothermal" AND "energy"…×
0 miles

Masters Degrees (Geothermal Energy)

We have 33 Masters Degrees (Geothermal Energy)

  • "geothermal" AND "energy" ×
  • clear all
Showing 1 to 15 of 33
Order by 
Renewables are seen as the future source of energy to meet the world's growing demand, with geothermal resources offering a constant and independent supply. Read more

Renewables are seen as the future source of energy to meet the world's growing demand, with geothermal resources offering a constant and independent supply. Almost 90 countries have geothermal energy yet only 24 of them produce electricity from geothermal sources. There is a growing demand for specialists that will be capable of ensuring successful implementation of more geothermal energy projects to help lower the dependency on energy imports and to develop a broader base in the future energy mix.

Who is it for?

The course is suitable for engineering and applied science graduates who wish to embark on successful careers as geothermal energy professionals.

Why this course?

Geothermal resources will play a significant role in ensuring access to sustainable and reliable energy for all. Interdisciplinary competence is needed to untap the vast geothermal potential worldwide, through implementation of more and larger projects.

This is the only course to encompass all aspects of geothermal exploitation, from exploration to project delivery. You will develop the professional profile required by a growing energy sector, with a high level of skills' transferability across other geo-resource sectors, including oil and gas.

In addition to management, communication, teamwork and research skills, each student will attain at least the following outcomes from this degree course:

  • Demonstrate competence in the current concepts and theories governing energy flows, heat transfer and energy conversions.
  • Effectively acquire and critically review information from various sources
  • Gain an in-depth understanding of geothermal exploration, geothermal reservoir characterisation, drilling and completions, well performance and heat / power production
  • Develop a professional ability to undertake a critical appraisal of the interaction and dependency of sub-surface reservoir parameters with surface facilities
  • Demonstrate an in-depth understanding of the issues involved in the management of geothermal energy projects
  • Assess the potential of geothermal energy in the global energy resource portfolio.

We are very well located for visiting part-time students from all over the world, and we offer a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. All our MSc programmes benefit from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Course details

The course will be composed of eight taught modules, one group project and one individual project.

Group project

The group project, which runs between February and April, enables you to apply the skills and knowledge acquired during the course modules to an industrially relevant problem that requires a team-based, multi-disciplinary solution. In addition to gaining experience working in technical project teams, you will deliver presentations and learn other valuable skills.

A poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner. All groups must also submit a written report.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available, if agreed with the Course Directors.

Individual project

The individual research project allows you to delve deeper into a specific area of interest. As our academic research is so closely related to industry, it is common for our industrial partners to put forward real practical problems or areas of development as potential research topics.

You will develop the skills required to design, optimise and evaluate the technical and economic viability of geothermal energy projects. Individual research projects may involve designs, computer simulations, feasibility assessments, reviews, practical evaluations and experimental investigations.

The individual research project runs between April/May and August for full-time students. For part-time students, it is common that their research project is undertaken in collaboration with their place of work, under academic supervision./p>

Assessment

Taught modules 40%, Group project 20%, Individual project 40%

Funding

To help students in finding and securing appropriate funding we have created a funding finder where you can search for suitable sources of funding by filtering the results to suit your needs. Visit the funding finder.

Your career

Graduates from this course will develop diverse and rewarding careers in the extremely exciting and challenging field of geothermal engineering. The international nature of this growing field means that career opportunities are not restricted to the domestic market; Cranfield graduates develop careers around the world.

Those wishing to continue their education via PhD or MBA studies in the energy sector will be greatly facilitated by the interdisciplinary, project-oriented profile that they will have acquired through this course.



Read less
Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field. Read more

About the course

Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field.

Studying Renewable Energy Engineering at Brunel provides graduates with the knowledge and skills to make a strategic real-world impact in the resolution of the world’s energy problems.

Graduates from Brunel’s MSc in Renewable Energy Engineering will develop:

- The versatility and depth to deal with new, demanding and unusual challenges across a range of renewable energy issues, drawing on an understanding of all aspects of renewable energy principles including economic assessment.

- The imagination, initiative and creativity to enable them to follow a successful engineering career with national and international companies and organisations.

- Specialist knowledge and transferable skills for successful careers including, where appropriate, progression to Chartered Engineer status.

Aims

Huge business incentives, markets and a wide variety of employment opportunities throughout the world are expected with the development of renewable energy resources as a substitute for fossil fuel technology.

The purpose of the MSc programme is to help meet this demand by cultivating qualified and skilled professionals with specialist knowledge in relevant technologies within the renewable energy sector.

The primary aim is to create Master’s degree graduates with qualities and transferable skills ready for demanding employment in the renewable energy sector. These graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level, and the programme also establishes a strong foundation for those who expect to continue onto a PhD or industrial research and development.

Initial programme learning outcomes

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

1.The principles and environmental impact of renewable energy technologies, including solar (thermal and electricity), wind, tidal, wave and hydro, geothermal, biomass and hydrogen.
3. The principles of energy conversion and appropriate thermodynamic machines.
4. The heat and mass transfer processes that relate to energy systems and equipment.
5. The principles, objectives, regulation, computational methods, economic procedures, emissions trading, operation and economic impact of energy systems.
6. The diversity of renewable energy system interactions and how they can be integrated into actual energy control systems and industrial processes.

At the cognitive thinking level, students will be able to:

1. Select, use and evaluate appropriate investigative techniques.
2. Assemble and critically analyse relevant primary and secondary data.
3. Recognise and assess the problems and critically evaluate solutions to challenges in managing renewable energy projects.
4. Evaluate the environmental and financial sustainability of current and potential renewable energy activities
5. Develop a thesis by establishing the basic principles and following a coherent argument.

In terms of practical, professional and transferable skills, students will be able to:

1. Define and organise a substantial advanced investigation.
2. Select and employ appropriate advanced research methods.
3. Organise technical information into a concise, coherent document.
4. Communicate effectively both orally and in writing.
5. Design and select renewable energy equipment and systems based on specific requirements/conditions.
6. Work as part of, and lead, a team.

Course Content

The taught element of the course (September to April) includes eight modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

Compulsory modules:

Renewable Energy Technologies I-Solar Thermal and electricity systems
Renewable Energy Technologies II-Wind, Tidal, Wave, Hydroelectricity
Renewable Energy Technologies III-Geothermal, Biomass, Hydrogen
Power Generation from Renewable Energy   
Renewable Energy Systems for the Built Environment
Energy Conversion Technologies
Environmental Legislation: Energy and Environmental Review and Audit
Advanced Heat and Mass Transfer
Dissertation

Teaching

Students are introduced to subject material, including key concepts, information and approaches, through a mixture of standard lectures and seminars, laboratory practical, field work, self-study and individual research reports. Supporting material isavailable online. The aim is to challenge students and inspire them to expand their own knowledge and understanding.

Preparation for work is achieved through the development of 'soft' skills such as communication, planning, management and team work. In addition, guest speakers from industries provide a valuable insight into the real world of renewable energy.

Many of the practical activities in which the students engage, develop into enjoyable experiences. For example, working in teams for laboratory and field work and site visits. We encourage students to develop personal responsibility and contribution throughout the course. Many elements of coursework involve, and reward, the use of initiative and imagination. Some of the projects may be linked with research in CEBER, CAPF and BIPS research centres.

1 Year Full-Time: The taught element of the course (September to April) is delivered by a combination of lectures, tutorials and group/seminar work. From May to September students undertake the dissertation.

3-5 Years Distance Learning: The programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace. Students are supplied with a study pack in the form of text books and CD-ROMs; cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations can be taken either at Brunel University London or in the country you are resident in. The dissertation is carried out in one year.

Modules are assessed either by formal examination, written assignments or a combination of the two.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year. Examinations are normally taken in May. The MSc dissertation project leading to submission of the MSc Dissertation is normally carried out over four months (FT students) or one year (DL students).

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

About Mechanical Engineering at Brunel
Mechanical Engineering offers a number of MSc courses all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE), Energy Institute (EI) and Chartered Institute of Building Services Engineers (CIBSE).

Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK. The discipline benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The requirement of UK-SPEC reinforces the need for a recent graduate with a Bachelor degree to take an appropriate postgraduate qualification in order to become a chartered engineer (currently, an accredited Bachelors degree does not enable the graduate to proceed to Chartered Engineer status without additional learning at M level).

This MSc program will be compliant with the further learning requirements of UK-SPEC. Accreditation will be sought from the Institute of Mechanical Engineering (IMechE) and Energy Institute. As a result, it will appeal to recent graduates who have not yet obtained the appropriate qualifications but intend to become Chartered Engineers. Most importantly, it will appeal to Mechanical, Chemical and Building Services Engineering graduates who wish to specialise in energy, or suitably experienced graduates of related subjects such as Physics.

Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
Energy supply is fundamentally important to our homes and workplaces. Read more

Energy supply is fundamentally important to our homes and workplaces. Future energy supply has to be stable, secure, not only affordable but sustainable, which makes energy supply a systems engineering problem. Energy Informatics is an emerging discipline that utilises powerful tools from modern information technology to analyse data from different energy systems and sources to solve energy supply problems.

Why this course?

Developed economies now face a number of challenges in procuring energy security and responding to energy pricing and affordability issues, as well as dealing with contributions to carbon emission targets. Due to the growth of sustainable and renewable energy production, energy informatics plays a significant role in managing the world's growing energy demand. Both developed and developing countries are facing great challenges in improvements in energy efficiency, reductions of greenhouse gas emissions and enlargements of renewable energy applications. For example, the UK Government has set ambitious targets to decrease the greenhouse gas emissions to 80% of today’s by 2050; the China Government has also planned to significantly reduce CO2 emissions to a level of 5,000 million tons in 2050, which is half of current emissions.

Through this course, you will develop professional informatics skills required in the growing energy sector, with essential abilities applicable in both the renewables industry (wind, geothermal and solar) and the traditional energy industry (oil and gas).

Students benefit from dedicated state-of-the-art facilities including unique engineering-scale facilities for the development of efficient technologies with low CO2 emissions. In addition to management, communication, team work and research skills, each student will attain at least the following learning outcomes from this degree course:

  • Develop systematic strategies using traditional methods to resolve the technical and economic issues involved in the design and operation of industrial energy systems.
  • Apply effectively the informatics knowledge gained to solve practical problems in principal subject areas of energy systems.

Informed by Industry

We have a world class reputation for our industrial-scale research and pilot-scale demonstration programmes in the energy sector. Close engagement with the energy and transport sectors over the last 20 years has produced long-standing strategic partnerships with the sectors most prominent players. The strategic links with industry ensures that all of the material taught on the course is relevant, timely and meets the needs of organisations competing within the energy sector. This industry-led education makes our graduates some of the most desirable in the world for energy companies to recruit.

Your teaching team

You will be taught by industry-active research academics from Cranfield with an established track record, supported by visiting lecturers from industry. To ensure the programme is aligned to industry needs, the course is directed by its own Industrial Advisory Committee.

Course details

The taught programme for the Energy Informatics masters is generally delivered from October to February and is comprised of eight modules. The modules are delivered over one week of intensive delivery with a second week being free from structured teaching to allow time for more independent learning and reflection.

Students on the part-time programme will complete all of the modules based on a flexible schedule that will be agreed with the course director.

Group project

The group project is an applied, multidisciplinary, team-based activity. Often solving real-world, industry-based problems, students are provided with the opportunity to take responsibility for a consultancy-type project while working under academic supervision. Success is dependent on the integration of various activities and working within agreed objectives, deadlines and budgets. Transferable skills such as team work, self-reflection and clear communication are also developed.

Individual project

The individual project is the chance for students to focus on an area of particular interest to them and their future career. Students select the individual project in consultation with the Thesis Co-ordinator, their allocated supervisor and their Course Director. These projects provides students with the opportunity to demonstrate their ability to carry out independent research, think and work in an original way, contribute to knowledge, and overcome genuine problems in the offshore industry. Many of the projects are supported by external organisations.

Assessment

Taught modules 40%, group project 20% (or dissertation for part-time students), and individual project 40%.

Funding Opportunities

To help students in finding and securing appropriate funding we have created a funding finder where you can search for suitable sources of funding by filtering the results to suit your needs. Visit the funding finder.

Your career

Graduates from this course will develop diverse and rewarding careers in the extremely promising energy sector. The international nature of this growing field would allow Cranfield graduates to develop careers all over the world.

If you are pursuing further study through continue education (PhD or MBA) in the energy sector, this programme would facilitated this through its international, interdisciplinary, project-oriented course design.



Read less
This is a one-year postgraduate course designed to provide civil engineers and other suitably qualified professionals with a good understanding of energy management and efficiency as well as sustainable energy generation. Read more

Introduction:

This is a one-year postgraduate course designed to provide civil engineers and other suitably qualified professionals with a good understanding of energy management and efficiency as well as sustainable energy generation. The course will further advanced knowledge in efficiency techniques, sustainable energy technologies and energy management systems and strategies. It will include theory and practice along with economics, current legal requirements and standards. The course will be of particular interest to those already in employment as part of ongoing professional training as well as leading to the widening of new job opportunities for its graduates. The Diploma award is based on a combination of the results of two examination papers and an individual project. Students must pass each paper and the project and neither of these can be deferred.

Course Content:

The course consists of 3 taught modules each carrying 20 ECTS credits.

Module 1: Energy management and efficiency will introduce topics such as energy physics, energy resources, climate change and environment. Energy demand and energy management will be detailed sectorally in terms of energy in buildings; in transport and in industry. There will be a focus on measures for energy reduction and energy efficiency along with assessment procedures. Topics in energy economics, policy, embodied energy and life cycle analysis and finally energy legislation and energy markets will be addressed.

Module 2: Sustainable energy technologies will introduce energy generation and conversion. It will concentrate on renewable energy generation technologies (and include lectures on wind, wave, tidal, biomass, biofuels, geothermal, hydro, solar, waste to energy) and low carbon technologies (nuclear energy, hydrogen, fuel cells). Grid integration and energy storage will be addressed as well as the future of fossils including clean coal and carbon capture and storage.

Module 3: Individual project is a key element of the course where the theoretical and technical aspects of Sustainable Energy which have been presented, analysed and discussed in the other two modules are brought into practical and innovative focus. Each student will be expected to engage in a piece of original study to reveal a novel aspect of sustainable energy.

Lectures will be held on Friday evenings and Saturday mornings each week throughout the two semesters (September to April), with laboratories or site visits scheduled for Saturday mornings. In addition to attending lectures, students are required to prepare and submit individual original pieces of coursework relating to the subject matter of each of the modules. Assessment is by examination and coursework.

Read less
Your programme of study. If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. Read more

Your programme of study

If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. It is a great way to study a degree from a known and trusted brand with exactly the same content as the on campus version but delivered entirely online.

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas. Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Year 1

  • Renewable Energy 2 (Biomass)
  • Fundamental Safety Engineering and Risk Management Concepts
  • Energy Conversation and Storage
  • Legislation, Planning and Economics

Year 2

  • Electrical Systems for Renewable Energy
  • Renewable Energy 1 (Solar and Geothermal)
  • Renewable Energy Integration to Grid
  • Renewable Energy 3 (Wind, Marine and Hydro)

Year 3

  • Individual Project

Find out more detail by visiting the programme web page

or if you want to study on campus find out more

Why study at Aberdeen?

  • You are taught by industry professionals and the engineering department each are highly regarded in their fields
  • The programme is delivered flexibly so you can choose how best to study with various options at your disposal
  • You cover energy harvesting methods and their integration into the grid plus planning and economics, ideal for enterprise and innovation
  • The sector is driven by a need which shows no signs of stopping in terms of necessity to life so there are plenty of opportunities

Where you study

  • Online
  • 5 Months or 27 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Related Degrees

Other engineering disciplines you may be interested in:



Read less
This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Read more

This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Clean energy, optimal use of resources and the economics of climate change are the key issues facing society, and form the fundamental themes of this programme.

Course details

You explore the world’s dependency on hydrocarbon-based resources, together with strategies and technologies to decarbonise national economies. The course examines global best practice, government policies, industrial symbiosis and emerging risk management techniques. You also address the environmental, economic and sociological (risk and acceptability) impacts of renewable energy provision and waste exploitation as central elements. 

The programme develops the problem-solvers and innovators needed to face the enormous challenges of the 21st century - those who can play key roles in driving energy and environmental policies, and in formulating forward-looking strategies on energy use and environmental sustainability at corporate, national and global scales.

What you study

For the PgDip award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete the 120 credits of taught modules and a 60-credit master's research project. 

Energy, environment, risk managing projects, sustainability and integrated waste management are the main foci of the programme, but you also explore the financial aspects of energy and environmental management. Economics is integral to the development of policies and is often a key influencing factor.

This programme aims to develop a comprehensive knowledge and understanding of the role and place of energy in the 21st century and the way the environment impinges on the types of energy used and production methods. It also aims to investigate the environment as it is perceived, and contextualise its actual importance to mankind. Specific objectives for this course are to establish the financial validity for the pursuit of alternative energy forms and management of the environment.

You are encouraged to take up opportunities of voluntary placements with local industries to conduct real-world research projects. These placements are assessed in line with the assessment criteria and learning outcomes of the Project module. 

Examples of past MSc research projects

  • The taxonomy of facilitated industrial symbioses
  • Assessment of the climate change impacts of the Tees Valley
  • Exploring the links between carbon disclosure and carbon performance
  • Hydrothermal carbonisation of waste biomass
  • Quantifying the impact of biochar on soil microbial ecology
  • Potential for biochar utilisation in developing rural economies
  • Carbon trading opportunities for renewable energy projects in developing countries
  • Exploring the potential for wind energy in Libya
  • Demand and supply potential of solar panel installations
  • A feasibility study of the application of zero-carbon retrofit technologies in building communal areas
  • Energy recovery from abandoned oil wells through geothermal processes

Course structure

Core modules

  • Concepts of Sustainability
  • Economics of Climate Change
  • Energy and Global Climate Change
  • Global Energy Policy
  • Integrated Waste Management and Exploitation
  • Project
  • Research Methods and Proposal

Modules offered may vary.

Teaching

How you learn

The course provides a number of contact teaching and assessment hours (through lectures, tutorials, projects, assignments), but you are also expected to spend time on your own, called 'self-study' time, to review lecture notes, prepare course work assignments, work on projects and revise for assessments. For example, each 20-credit module typically has around 200 hours of learning time. 

In most cases, around 60 hours are spent in lectures, tutorials and in practical exercises. The remaining learning time is for you to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 180 credits; hence, during one year of full-time study a student can expect to have 1,800 hours of learning and assessment.

How you are assessed

Modules are assessed by a variety of methods including examination and in-course assessment with some utilising other approaches such as group-work or verbal/poster presentations.

Employability

Work placement

There may be short-term placement opportunities for some students, particularly during the project phase of the course. This University is also in the process of seeking accreditation for the Waste Management module from the Chartered Institution of Wastes Management.

Career opportunities

Successful graduates from this course are well placed to find employment. As an energy and environmental manager, you might find yourself in a role responsible for overseeing the energy and environmental performance of private, public and voluntary sector organisations, as well as in a wide range of engineering industries.

Energy and environmental managers examine corporate activities to establish where improvements can be made and ensure compliance with environmental legislation across the organisation. You might be responsible for reviewing the whole operation, carrying out energy and environmental audits and assessments, identifying and resolving energy and environmental problems and acting as agents of change. Your role could include the training of the workforce to develop the ability to recognise their own contributions to improved energy and environmental performance.

Your role may also include the development, implementation and monitoring of energy and environmental strategies, policies and programmes that promote sustainable development at corporate, national or global levels.



Read less
As we improve existing technologies and transition to more sustainable energy systems, clean energy technologies will become increasingly vital to the world's energy mix. Read more

As we improve existing technologies and transition to more sustainable energy systems, clean energy technologies will become increasingly vital to the world's energy mix. Industry and government are critically dependent on hiring talented technical leaders who can develop innovative and practical solutions. There is a growing need across multiple industries for technical experts in clean energy engineering. Our planet needs viable energy solutions to minimize environmental impacts, promote geopolitical stability and enable economic diversification. The Master of Engineering Leadership (MEL) Clean Energy Engineering is an intensive one-year degree program for engineers and environmental science graduates who want to make their sustainable vision a reality and advance their careers in the in-demand field of clean energy.

The project-based curriculum covers all stages of the industry value chain and exposes you to alternative energy systems including hydro, wind, solar, tidal, geothermal and other emerging technologies. You will work in world-class facilities, including the Clean Energy Research Centre. This interdisciplinary research centre brings together engineers and industry partners who collaborate to develop practical solutions that can reduce the environmental impact of energy use and seek sustainable solutions.

While 60 per cent of your classes will focus on your technical specialization, the remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

What Makes The Program Unique?

The MEL in Clean Energy Engineering degree was developed in close collaboration with industry partners, who told us they need to hire leaders with cross-functional technical and business skills to develop innovative solutions, manage teams and direct projects. The combination of technical expertise and leadership development makes the MEL in Clean Energy Engineering program unique and highly relevant in today's business environment. The MEL in Clean Energy Engineering degree is a unique graduate program that empowers you to develop the sector-relevant cross-disciplinary technical skills required by top employers. As a graduate of this program, you will have the skills to take your career in clean energy to the next level; tackling complex engineering challenges in this in-demand field while confidently leading collaborative teams.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:

-Leadership fundamentals

-Giving and receiving feedback

-Learning how to deliver a successful pitch

-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Career Options

Our graduates will be in high demand locally, nationally and internationally, with government and industry employers constantly seeking experts in the field who can develop new processes and systems. Typical job roles of CEEN students are Renewable Energy Consultant, Renewable Energy Engineer, Energy Analyst, Energy & Building Consultant, Energy Efficiency Engineer, Energy Management Engineer, Energy Manager, Project Engineer and Project Manager.



Read less
Your programme of study. Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Read more

Your programme of study

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas.Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Semester 1

  • Electrical Systems for Renewable Energy
  • Renewable Energy 1 (Solar and Geothermal)
  • Renewable Energy 2 (Biomass)
  • Fundamental Concepts in Safety Engineering

Semester 2

  • Renewable Energy 3 (Wind, Marine and Hydro)
  • Energy Conversion and Storage
  • Renewable Energy Integration to Grid
  • Legislation, Planning and Economics

Semester 3

  • Project

Find out more detail by visiting the programme web page

or online delivery

Why study at Aberdeen?

  • You study with industry professionals and industry lead projects to encourage and challenge you in practical application
  • The full supply of energy is covered in the programme from the initial harvesting to the conversion methods required to link to grid
  • You can study your degree at University of Aberdeen or online to fit flexibly with your needs
  • You learn within a lab setting with industry visits and events in a global sector community

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

• Online option available

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

 Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less
This MSc Energy and Environmental Management (with Advanced Practice) course is ideal if are seeking to develop your skills and confidence to address the critical global challenges of energy and diminishing natural resources. Read more

This MSc Energy and Environmental Management (with Advanced Practice) course is ideal if are seeking to develop your skills and confidence to address the critical global challenges of energy and diminishing natural resources. Clean energy, optimal use of resources and the economics of climate change are the key issues facing society, and form the fundamental themes of this programme.

Course details

You explore the world’s dependency on hydrocarbon-based resources, together with strategies and technologies to decarbonise national economies. This course examines global best practice, government policies, industrial symbiosis and emerging risk management techniques. You also address the environmental, economic and sociological (risk and acceptability) impacts of renewable energy provision and waste exploitation as central elements.There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Energy and Environmental Management – one year full time
  • MSc Energy and Environmental Management – two years part time
  • MSc Energy and Environmental Management – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.The MSc Energy and Environmental Management (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This two-year programme is an opportunity to enhance your qualification by spending one semester completing a vocational internship, research internship or by studying abroad. Although we can’t guarantee an internship, we can provide you with practical support and advice on how to find and secure your own internship position. A vocational internship is a great way to gain work experience and give your CV a competitive edge. Alternatively, a research internship develops your research and academic skills as you work as part of a research team in an academic setting – ideal if you are interested in a career in research or academia. A third option is to study abroad in an academic exchange with one of our partner universities. This option does incur additional costs such as travel and accommodation. You must also take responsibility for ensuring you have the appropriate visa to study outside the UK, where relevant.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Energy, environment, risk managing projects, sustainability and integrated waste management are emphasised on the programme, but you also explore the financial aspects of energy and environmental management. Economics is integral to developing policies and is often a key influencing factor.

You develop a comprehensive knowledge and understanding of the role and place of energy in the 21st century, and how the environment impinges on the types of energy used and the way they are produced. You investigate the environment as it is perceived, and contextualise its actual importance to mankind. Specific objectives for this course are to establish the financial validity of pursing alternative energy forms and managing the environment.

Examples of past MSc research projects

  • The taxonomy of facilitated industrial symbioses
  • Assessment of the climate change impacts of the Tees Valley
  • Exploring the links between carbon disclosure and carbon performance
  • Hydrothermal carbonisation of waste biomass
  • Quantifying the impact of biochar on soil microbial ecology
  • Potential for biochar utilisation in developing rural economies
  • Carbon trading opportunities for renewable energy projects in developing countries
  • Exploring the potential for wind energy in Libya
  • Demand and supply potential of solar panel installations
  • A feasibility study of the application of zero-carbon retrofit technologies in building communal areas
  • Energy recovery from abandoned oil wells through geothermal processes

Course structure

Core modules

  • Concepts of Sustainability
  • Data Acquisition and Signal Processing Techniques
  • Economics of Climate Change
  • Energy and Global Climate Change
  • Global Energy Policy
  • Integrated Waste Management and Exploitation
  • Research Methods and Proposal
  • Research Project (Advanced Practice)

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through a variety of teaching methods including lectures, tutorials, projects and assignments. You are also expected to participate in self-directed study, to review lecture notes, prepare assignments, work on projects and revise for assessments. Each 20-credit module typically has around 200 hours of learning time. 

You usually spend around 60 hours in lectures, tutorials and in practical exercises over the duration of the course. The remaining learning time is for you to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 180 credits. During one year of full-time study you can expect to have 1,800 hours of learning and assessment.

How you are assessed

Modules are assessed by a variety of methods including exams and in-course assessment with some using other approaches such as group work, or verbal or poster presentations. 

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

Career opportunities

Successful graduates from this course are well-placed to find employment. As an energy and environmental manager, you might find yourself responsible for overseeing the energy and environmental performance of a private, public or voluntary sector organisation, or in one of a wide range of engineering industries.

Work placement

There may be short-term placement opportunities for some students, particularly during the project phase of the course. This University is also in the process of seeking accreditation for the Waste Management module from the Chartered Institution of Wastes Management.



Read less
Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Read more

Why take this course?

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. This course responds to an urgent need for specialists in energy and power systems management, as well as a growing skills shortage of people with core knowledge in this field.

The course provides relevant, up-to-date skills that will equip both graduates and working professionals in the advanced concepts of sustainable electrical power and energy generation. It offers skills for operation, control, design, regulation and management of power systems and networks of the future. You will also receive training in and understanding of energy production, delivery, consumption and efficiency.

What will I experience?

On this course you will:

Benefit from experts in the industry who will deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material
Be encouraged to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature
Learn in a challenging and stimulating study environment
Develop a range of key skills by means of opportunities provided in the study units
Being an MSc course, you are encouraged and expected to be able to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature.

What opportunities might it lead to?

The course will help to maximise your career potential in this field and equips you to work as an engineer, at an advanced level, in the fields of energy and power systems management.

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry. Experts from Industry (STS Nuclear) deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material to the programme.

Here are the units you will study:

Power Systems Technology: This unit provides an in-depth overview of contemporary electrical power systems. It covers the elements of electrical power systems including generation, transmission and distribution in the mixed energy source paradigm.

Electrical Machines and drives: Provides an in-depth overview of the operational principles and physical design of DC and AC electrical machines as well as broad understanding of concepts of power electronics and power electronic converters, so that you can describe their application and selection criteria. You will develop an understanding of the issues present in converter design, including the impact of physical layout and heat dissipation.

Energy Systems: Focuses on the techniques and principles of operation of thermodynamics and combustion systems, as well as the provision and management of energy. It also focuses on power generation and combined systems, BioMass processers application of heat and fluid transfer.

Renewable and Alternative Energy: Provides an in-depth coverage of the principles of renewable and alternative energy systems: Winds, Solar, BioMass, Geothermal, Fuel Cells, Hydrogen Technologies and Nuclear Energy.

Nuclear Technology: A study of nuclear engineering including the theory of atomic and nuclear physics, methods and benefits of generating electricity from nuclear power plants, and the effects of ionising radiation. The nuclear fuel cycle and the associated environmental impacts are also considered. The development of international guidance on nuclear and radiological safety and a comparison of national regulatory structures are analysed. The importance of safety cultures, safety behaviours and safety cases is a key element throughout this module.

Energy Management: The unit is specifically designed to provide the students with the basic of economical analysis and evaluation of energy projects and asset management as well as risk and hazard assessment, comprising legislation, hazard identification and quantification, quantified risk analyses, methods of elimination/mitigation, economic appraisal of integrated renewable, and petroleum projects; with numerous pertinent case studies.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our Energy, Power systems and Electronic laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in energy and power systems management. It is an excellent preparation for a successful career in this ever expanding and dynamic field.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems. You will acquire the ability to critically evaluate methodologies, analytical procedures and research methods in energy and power systems management and in the use of state-of-the-art computational tools, the design of sustainable electrical power systems and networks and regulatory frameworks. For practicing engineers with professional business experience, the course is an opportunity to update your knowledge of current design practice and also to familiarise themselves with developments in codes and methods of analysis.

Read less
The course is based in the Sustainable Environment Research Centre (SERC) a leading and internationally recognised centre for over 30 years. Read more
The course is based in the Sustainable Environment Research Centre (SERC) a leading and internationally recognised centre for over 30 years. SERC is home to The Wales Centre of Excellence for Anaerobic Digestion and the University of South Wales Centre for Renewable Hydrogen Research and Demonstration,

The UK Governments Low Carbon Transition Plan details how the Government plans to meet its 2020 GHG emissions targets. It predicts that as a result of its actions that 1.2 million green jobs will be created and 40% of electricity production will be from low carbon resources. It is predicted that £110bn of investment will be necessary to meet the targets as currently set out. The picture is similar across the EU and the rest of the world. There is a significant need for individuals with the expertise necessary to help meet those targets.

This MSc in Renewable Energy and Resource Management will provide the wealth of knowledge and skills needed for employment in a range of public and fast-growing commercial green sector roles. Your studies will increase your knowledge and understanding of the generation and provision of renewable energy, hydrogen, water, wastewater treatment and solid wastes management. You will become familiar with the impact of policy and legislation, renewable energy technologies, waste management hierarchy and techniques, and water and wastewater treatment. You will also train in relevant computing software, and analytical and monitoring equipment used by industry.

See the website http://courses.southwales.ac.uk/courses/374-msc-renewable-energy-and-resource-management

What you will study

Students will study the following taught modules:
- Renewable Energy I & Hydro, Tidal, Wave, and Bio-energy
- Renewable Energy II & Wind, Solar, and Geothermal
- Solids Resource Management
- Water and Wastewater Treatment Processes

Plus 2 from the following optional modules:
- Hydrogen& Fuel Vector for the Future
- Energy and Environmental Legislation and Policy
- Advanced Materials for Energy Applications
- Anaerobic Treatment Processes
- Analytical Science and the Environment

You will also complete a substantial project, usually in conjunction with industry, energy/environmental consultancy firms, governmental regulatory agencies, local authorities or within our Sustainable Environment Research Centre.

The subjects taught within the MSc are underpinned by high quality research which was rated as being mainly internationally excellent or world leading in RAE 2008. This included research in hydrogen energy, bio-energy, anaerobic digestion, process monitoring and control, combustion processes, and waste and wastewater treatment systems.

Learning and teaching methods

Full-time students spend about 12 hours in lectures, seminars, tutorials, and computing and laboratory-based practical sessions each week, plus research and background reading. We have an exciting programme of site visits and fieldwork trips.

Work Experience and Employment Prospects

This MSc is designed to develop cutting-edge knowledge and high-level practical skills relevant to many areas of postgraduate employment, particularly managerial, regulatory, scientific and technological roles related to energy and the environment. These include local authorities, government regulatory agencies, manufacturing industries, energy and environmental consultancy companies, waste management companies, water companies, environmental and energy advice centres, research centres, academia, and national and international non-governmental organisations.

Assessment methods

The taught modules are assessed by a mixture of coursework and examinations. The project is assessed by a written dissertation and an oral examination (viva voce).

Coursework involves individual and group mini-projects, fieldwork and visit reports, and poster and oral presentations. Part-time students attend generally one day per week, plus visits and fieldwork.

Read less
What you will study. You will study the following taught modules. Renewable Energy I - Hydro, Tidal, Wave, and Bioenergy. Renewable Energy II - Wind, Solar, and Geothermal. Read more

What you will study

You will study the following taught modules:

  • Renewable Energy I - Hydro, Tidal, Wave, and Bioenergy
  • Renewable Energy II - Wind, Solar, and Geothermal
  • Solids Resource Management
  • Water and Wastewater Treatment Processes

Plus two from the following optional modules (each worth 20 credits):

  • Hydrogen: Fuel Vector for the Future
  • Energy and Environmental Legislation and Policy
  • Advanced Materials for Energy Applications
  • Anaerobic Treatment Processes

You will also complete a substantial dissertation worth 60 credits, which can be in conjunction with industry, energy/environmental consultancy firms, governmental regulatory agencies, local authorities or within our Sustainable Environment Research Centre.

The subjects taught within the MSc Renewable Energy and Resource Management are underpinned by high quality research which was rated as being mainly internationally excellent or world leading in the 2014 Research Excellence Framework.

This included research in Anaerobic Digestion, Analytical Technology, Bioelectrochemical Systems, Biohydrogen and Biomethane Production, Hydrogen Energy, Hydrogen Vehicles and Refueling, Biopolymer Production, Modeling and Control, Nano Materials and Wastewater Treatment.

Teaching

Full-time students spend about 12 hours in lectures, seminars, tutorials, and computing based practical sessions each week, usually across two days. Part time students will typically attend one day a week. You will also be expected to carry out research and background reading during the other three days of the week individually. We have an exciting programme of site visits and fieldwork trips scheduled within your regular timetable to allow you to plan your time in advance. You can find out more about current work on our Twitter channel.

 

Assessment

The taught modules are assessed by a mixture of coursework and examinations. The dissertation is assessed by a proposal, written thesis and an oral examination. Coursework involves individual and group mini-projects, site visit reports, and poster and oral presentations.



Read less
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. Read more
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. This programme is open to Engineering graduates of all disciplines with an 8 month programme option leading to a Postgraduate Diploma in Sustainable Energy.

Visit the website: http://www.ucc.ie/en/ckr26/

Course Details

In Part I students take modules to the value of 50 credits and a Preliminary Research Report in Sustainable Energy (NE6008) to the value of 10 credits. Part II consists of a Dissertation in Sustainable Energy (NE6009) to the value of 30 credits which is completed over the summer months.

Part I

Students take 50 credits as follows:

NE3002 Energy in Buildings (5 credits)
EE3011 Power Electronic Systems (5 credits)
EE4010 Electrical Power Systems (5 credits)
NE3003 Sustainable Energy (5 credits)
NE4006 Energy Systems in Buildings (5 credits)
NE6003 Wind Energy (5 credits)
NE6004 Biomass Energy (5 credits)
NE6005 Ocean Energy (5 credits)
NE6006 Solar and Geothermal Energy (5 credits)
NE6007 Energy Systems Modelling (5 credits)

Depending on the background of the student, the Programme Coordinator may decide to replace some of the above taught modules from the following list of modules up to a maximum of 20 credits:

CE4001 The Engineer in Society (Law, Architecture and Planning) (5 credits)
EE3012 Electromechanical Energy Conversion (5 credits)
EE4001 Power Electronics, Drives and Energy Conversion (5 credits)
EE4002 Control Engineering (5 credits)
EE6107 Advanced Power Electronics and Electric Drives (5 credits)
ME6007 Mechanical Systems (5 credits)
NE4008 Photovoltaic Systems (5 credits)
PE6003 Process Validation and Quality (5 credits)

In addition, all students must take 10 credits as follows:

NE6008 Preliminary Research Report in Sustainable Energy (10 credits)

Part II

NE6009* Dissertation in Sustainable Energy (30 credits)

*must be submitted on a date in September as specified by the Department

Detailed Entry Requirements

Candidates must have a BE(Hons) or BEng (Hons) Degree or equivalent engineering qualification, with a minimum grade 2H2. However, candidates with equivalent academic qualifications and suitable experience may be accepted subject to the approval of College of Science, Engineering and Food Science. In all cases, the course of study for each candidate must be approved by the Programme Coordinator.
Candidates, for whom English is not their primary language, should possess an IELTS of 6.5 (or TOEFL equivalent) with no less than 6.0 in each individual category.

Candidates from Grandes Écoles Colleges are also eligible to apply if they are studying a cognate discipline in an ENSEA or EFREI Graduate School and are eligible to enter the final year (M2) of their programme.

Assessment

- Postgraduate Diploma in Sustainable Energy -

Students who pass but fail to achieve the requisite grade of 50% across the taught modules and the Preliminary Research Report will be eligible for the award of a Postgraduate Diploma in Sustainable Energy. Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Sustainable Energy.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
One of major challenges of the last decade was to achieve a sustaniable energy supply - for now and in the future. At the same time, the amount of renewable energy has been increasing simultaneously and has, thus, raised the question of how to sucessfully integrate renewable energy in already existing energy systems. Read more

One of major challenges of the last decade was to achieve a sustaniable energy supply - for now and in the future. At the same time, the amount of renewable energy has been increasing simultaneously and has, thus, raised the question of how to sucessfully integrate renewable energy in already existing energy systems.

The part-time MSc Renewable Energy Systems is the first cross-border program in Europe dealing with the future issues of alternative energy production and the intregration of renewables. Since 2005, TU Wien, Energiepark Bruck/Leitha and further partner organisations across Europe have offered this practice-oriented international Master’s program.

Contents

This Master's program focuses on three aspects in particular: technological innovations, management of sustainable energy systems, and economic as well as legal frameworks.

  • Technological Innovations: Participants acquire a basic technical knowledge in the area of alternative energy production. The fast-changing nature and development of this sector are specifically considered. Focal points are solar energy, wind power, biomass, biogas, small hydropower stations, photovoltaics, bio fuel, and geothermal technology as well as issues, such as energy saving and energy efficiency.
  • Management of Sustainable Energy Systems: Conveys skills, such as project development, project financing, project operation, and knowledge on business management. Furthermore, participants obtain a detailed market overview on selected European countries.
  • General Economic and Legal Framework: Participants obtain knowledge on the general economic and legal frameworks of European Union as well as national directives and legal provisions of selected European countries.

Modules

  • Introduction on Renewable Energy
  • Biomass, Biofuels and Biogas
  • Solar Energy – Solar Heating and Photovoltaics
  • Geothermal Energy, Wind Power, and Small Hydro Power
  • Efficient Energy Use and Thermal Building Optimization
  • General Legal and Economical Frameworks
  • Integration of Renewable Energy Sources into the Energy System
  • Management and Soft Skills
  • Perspectives on the Use of Renewable Energy
  • Master´s Thesis

More details on the contents and modules can be found here.

Country Modules

To provide the participants with in-depth knowledge on energy markets in Europe, tailor-made country modules in selected European countries are an essential part of this MSc program. For more information in the country modules, please click here.

Target Group

Individuals within companies, organisations, and authorities who are engaged in planning, operating or evaluation of renewable energy or who are involved in financing, promotion, legal licensing, operation of facilities for the use of renewable energy or environmental issues.

Program Objectives/Goals

With the MSc Program you acquire knowledge and competence for

  • the design of plants for the use of renewable energy sources from economic and legal point-of-view
  • the operation of plants for the use of renewable energy sources,
  • the future assessment of environmental, technological and economic developments of renewable energy systems.


Read less

Show 10 15 30 per page



Cookie Policy    X