• University of Derby Online Learning Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Loughborough University Featured Masters Courses
"geotechnics"×
0 miles

Masters Degrees (Geotechnics)

  • "geotechnics" ×
  • clear all
Showing 1 to 15 of 47
Order by 
This programme will provide you with the necessary training and skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. Read more
This programme will provide you with the necessary training and skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. It also provides specialist knowledge in tunnel, surface and underground excavation design, and applied hydrogeology and risk assessment.

Taught modules take place at the Camborne School of Mines(CSM) over two semesters and individual projects are undertaken throughout the summer, often as industrial placements. The programme is suitable for geology and engineering graduates wishing to specialise in applied geotechnics.

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include; Project and Dissertation; Excavation and Geomechanics; Health and Safety in the Extractive Industry and Project Management

Optional modules

Some examples of the optional modules are; Resource Estimation; Economics, Processing & Environment; Hydrogeology; Surface Excavation Design; Tunnelling and Underground Excavation; Production and Cost Estimation; Mine Planning and Design; Geomechanics Computer Modelling for Excavation Design and Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

The project is undertaken from June to September, after the second semester examinations. You are encouraged to undertake projects directly linked with industry, which may result in industrial placements for the project period. The projects are normally design-based and allow further specialisation in a topic that is of particular interest to you. This could involve the use of state-of-the-art engineering design software, risk and hazard analysis and other analytical techniques.

Read less
Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Read more

Mission and goals

Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Students can choose their field of specialization in one of the following areas: Geotechnics, Hydraulics, Transportation infrastructures, Structures. Suggested study plans help students define their curriculum. Additionally, a General curriculum is also proposed, aimed at students preferring a wider spectrum formation in Civil Engineering.
The programme includes two tracks taught in English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Career opportunities

Engineers having obtained the Master’ degree can find career opportunities in the following areas:
1. companies involved in the design and maintainance of civil structures, plants and infrastructures;
2. universities and higher education research institutions;
3. public offices in charge of the design, planning, management and control of urban and land systems;
4. businesses, organizations, consortia and agencies responsible for managing and monitoring civil works and services;
5. service companies for studying the urban and land impact of infrastructures.

They can also work as self-employed professionals.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Civil_Engineering_02.pdf
Civil Engineers deal with structures (e.g. buildings, bridges, tunnels, dams) and infrastructures (such as roads, railways, airports, water supply systems, etc.). The two-year Master of Science in Civil Engineering provides students with a sound preparation on these topics, allowing them to choose a curriculum (or ‘track’) among the five available: General, Geotechnics, Hydraulics, Transport Infrastructures and Structures. The ‘General’ curriculum aims at training civil engineers with a broader range of expertise in the design, implementation and management of civil works of various kinds. ‘Geothecnics’ is devoted to the study of engineering problems involving geomaterials (i.e., soil and rock) and their interaction with civil structures (foundations, tunnels, retaining walls).
‘Hydraulics’ deals with problems concerning water storage, transportation and control (pipelines, sewers, river and coastal erosion control, reservoirs). ‘Transport Infrastructures’ covers various subjects of transportation engineering (road and railway design, airport and harbor design, modeling of transport fluxes). ‘Structures’ is devoted to the analysis and design of civil and industrial structures
(steel and concrete buildings, bridges, etc.). The tracks ‘Geotechnics’ and ‘Structures’ are taught in English.

Subjects

1st year subjects
- Common to the two curricula:
Numerical methods for Civil Engineering; Computational mechanics and Inelastic structural analysis; Theory of structures and Stability of structures; Dynamics of Structures; Advanced Structural design*; Reinforced and prestressed concrete structures*; Advanced computational mechanics*; Mechanics of materials and inelastic constitutive laws*; Fracture mechanics*

- Curriculum Geotechnics:
Groundwater Hydraulics; Engineering Seismology

- Curriculum Structures:
Steel structures*; Computational Structural Analysis*

2nd year subjects
- Common to the two curricula:
Foundations; Geotechnical Modelling and Design; Underground excavations; 1st year subjects marked by * may also be chosen;

- Curriculum Geotechnics:
Slope Stability

- Curriculum Structures:
Earthquake Resistant Design; Bridge Theory and Design; Structural rehabilitation; Precast structures; 1st year subjects marked by * may also be chosen

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Are you a civil engineering graduate? Do you want to improve your technical knowledge and enhance your career prospects? Our MSc programme will deepen and broaden your understanding of civil engineering and help you fulfil your professional role in creating, improving and protecting the environment. Read more
Are you a civil engineering graduate? Do you want to improve your technical knowledge and enhance your career prospects? Our MSc programme will deepen and broaden your understanding of civil engineering and help you fulfil your professional role in creating, improving and protecting the environment. You’ll obtain advanced analytical skills in the core subject areas of structural analysis, geotechnics and hydraulics applying your knowledge in a range of project settings.

Key features

-Benefit from a postgraduate degree accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.
-Take part in an integral work placement year and conduct the programme over two years.
-Be inspired by our new £19 million Marine Building, housing the acclaimed COAST laboratory which offers facilities for teaching water and coastal engineering as well as conducting world-class research.
-Explore our core content including advanced structural, geotechnical and hydraulic engineering analysis.
-Broaden your knowledge - other taught modules include project management and professional practice.
-Undertake a dissertation relating to the range of ongoing civil engineering research in the School of Marine Science and Engineering.
-Recent graduates work in a wide range of consultant, contractor and client organisations, including: Hyder Consulting, Babcock International Group plc, Manhire Associates Consulting Engineers and Maverick Ventures UK Ltd.

Course details

You’ll obtain advanced analytical skills in the core subject areas of geotechnics, structural analysis and hydraulics. You’ll also be introduced to the broader issues of project and process management in civil engineering. You’ll also have the opportunity to undertake a substantial research project on a topic of your choosing under the supervision of our academic staff. An optional placement year in industry is available for suitably successful participants.

Core modules
-ENBS542 Project Management and Professional Practice
-BPIE500 Masters Stage 1 Placement Preparation
-PRCE505 MSc Dissertation
-MGMT503 International Engineering Business Management
-GEEN501 Advanced Geotechnical Engineering
-STAD505 Advanced Structural Engineering
-MATH511 Advanced Engineering Analysis
-HYFM504 Advanced Hydraulic Engineering

Final year
-BPIE504 Civils Masters Industrial Placement

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Develop your knowledge, understanding and professional abilities in civil engineering. Enhance your career with a course that satisfies the academic content requirements for Chartered Membership of the Institute of Civil Engineers. Read more
Develop your knowledge, understanding and professional abilities in civil engineering. Enhance your career with a course that satisfies the academic content requirements for Chartered Membership of the Institute of Civil Engineers.

If you’re a graduate engineer or a working civil engineer, our course introduces you to the latest thinking in areas such as environmental geotechnics, Eurocodes and sustainability.

We’ll also look at management and professional practice issues, as well as forensic engineering. You’ll investigate a building failure, compile a report and develop your skills as an expert witness.

Leading experts deliver your lectures and seminars and there’ll be frequent workshops, simulations and laboratory sessions, where you can apply your growing knowledge to real-world civil engineering issues. Your major research project will involve an original dissertation on the subject of your choice.

See website http://www.anglia.ac.uk/study/postgraduate/civil-engineering

This course will:
• Provide you with a comprehensive understanding of the knowledge, theories and principles of civil engineering.
• Develop the practices and procedures required to enhance your career in civil engineering.
• Develop your abilities to critically analyse problems and to synthesis recognised and innovative solutions to civil engineering problems
• Develop your abilities to solve organisational, environmental and technical problems in the context of civil engineering and the built environment.
• Enable you to develop professional and ethical responsibilities and standards.
• Develop your abilities to think critically and independently, and to deal effectively with uncertainty.
• Develop your ability to undertake research into your chosen field.
• Develop your independent and self-managed personal skills, appropriate learning strategies and study techniques.
• Develop a broad knowledge of the professional and ethical responsibilities of engineers.

Careers

Our course will enhance your skills and enable you to work as a design or production civil engineer. You’re also in the perfect position to continue your academic career and move up to our Built Environment PhD.

Core modules:

Analytical Techniques
Conceptual Design
Environmental Geotechnics
Foundation Design Engineering
Forensic Engineering
Production Management
Sustainability and Environmental Management
Research Design and Methods
Major Project/Dissertation

Assessment

We’ll assess your progress from your assignments, case studies, exams, group work and presentations, as well as your major project.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation. Read more
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation.

The technical modules of the course aim to develop the understanding and application of advanced theoretical contents of the specialist subject.

Structural topics are taught in the two modules of Finite Elements and Stress Analysis, and Advanced Structural Design. The interaction of geotechnics and structures is covered in the Soil-Structure Engineering module. The Water Resources Systems Management module looks into the water engineering aspects. The transportation field is studied in the Highway and Railway Engineering and Operations module. The final module, Asset Management and Project Appraisal of Infrastructures examines the methods, merits and economics of repairs of existing structures.

You'll be required to complete an individual project into a specific area of the programme studied, providing you with the opportunity of pursuing a programme of independent study. The work is to be of an investigative nature having an experimental, analytical, computer-based or fieldwork input.

Modules

Teaching techniques include lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Advanced structural design
Soil-structure engineering
Finite elements and stress analysis
Highway engineering and operation
Railway engineering and operation
Water engineering
Project

Accreditation

This degree is accredited by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Employability

Employment prospects for graduates of these courses are very good, especially in view of the upturn in new infrastructure projects in the UK and overseas. Successful students enter into a variety of positions within the construction industry, ranging from working in a design office, with contractors and in local authorities.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering. Read more
The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering.

Course details

You enhance your technical skills in various core areas of civil engineering that are in demand in the construction industry, such as advanced geotechnics and river and coastal engineering. You also further develop your conceptual understanding of critical aspects of structural engineering, such as advanced structural analysis and design, and become familiar with complex analysis and design techniques, modelling the causes and solutions of problems involving the real behaviour of structures. You also acquire an advanced knowledge and understanding of the design of structures under dynamic and earthquake conditions. Advanced project planning and visualisation methods, such as building information modelling, are also integrated into the course. The 60-credit dissertation gives you the opportunity to conduct a supervised research project developing original knowledge in a specific area of civil or structural engineering. The programme structure is divided into a combination of 10 and 20-credit taught modules, delivered over two semesters. By successfully completing these modules, you proceed to a 60-credit research project.

Starting salaries for new graduate civil and structural engineers can reach £32,000, increasing to £70,000 when a senior level is reached (prospects.ac.uk, 2015).

Professional accreditation

Our MSc Civil and Structural Engineering is accredited by the Joint Board of Moderators (representing the ICE, IStructE, IHE and CIHT) as a technical master's. This means it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC for candidates who have already acquired a CEng-accredited BEng (Hons) undergraduate first degree.

By completing this professionally accredited MSc you benefit from an easier route to professional membership or chartered status. It also helps improve your job prospects, enhancing your career and earning potential. Some companies show preference for graduates who possess a professionally accredited qualification.

The Joint Board of Moderators represents the following four professional bodies:
-Institution of Civil Engineers
-Institution of Structural Engineers
-Chartered Institution of Highways and Transportation
-Institute of Highway Engineers

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects include:
-Shear strength of composite and non-composite steel beam and concrete slab construction
-Investigation into the self-healing capability of bacterial concrete
-A review of the use of smart materials and technologies in cable stayed bridge construction
-FRP and its use as structural components
-Non-linear modelling of ground performance under seismic conditions

Core modules
-Advanced Geotechnics
-Advanced Project Planning and Visualisation
-Advanced Structural Analysis with Dynamics
-Advanced Structural Design
-Advanced Structural Engineering
-Practical Health and Safety Skills
-Research and Study Skills
-River and Coastal Engineering

MSc only
-Research Project

Modules offered may vary.

Teaching

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning, while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. Some of the modules require using specialised technical software and practical computer-based sessions are timetabled.

In addition to the taught sessions, you undertake a substantive MSc research project.

Assessment varies from module to module. The assessment methodology could include in-course assignments, presentations or formal examinations. For your MSc project, you prepare a dissertation.

Employability

The course will equip you with the relevant technical and transferrable skills to pursue a career as a civil/structural engineer or technical manager with leading multidisciplinary consultancies, contractors, as well as research and government organisations.

Read less
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering. Read more
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering.

This well-established programme is delivered by experienced University staff, together with practising engineers from consultancies and local authorities.

PROGRAMME OVERVIEW

You can access six study streams on this Masters programme:
-Bridge Engineering
-Construction Management
-Geotechnical Engineering
-Structural Engineering
-Water Engineering and Environmental Engineering
-Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation. This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment Optional
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The Civil Engineering programme aims to provide graduate engineers with:
-Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
-It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
-A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
-The properties, behaviour and use of relevant materials
-The management techniques which may be used to achieve civil engineering objectives within that context
-Some of the roles of management techniques and codes of practice in design
-The principles and implementation of some advanced design and management techniques specific to civil engineering
-Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
-The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
-The wider multidisciplinary engineering context and its underlying principles
-Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
-The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
-The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills
-Analyse and solve problems
-Think strategically
-Synthesis of complex sets of information
-Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
-Select and transfer knowledge and methods from other sectors to construction-based organisation
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Dynthesis and critical appraisal of the thoughts of others

Professional practical skills
-Awareness of professional and ethical conduct
-Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
-Evaluate and integrate information and processes in project work
-Present information orally to others
-Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
-Use concepts and theories to make engineering judgments in the absence of complete data
-Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. Read more
This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. The programme combines traditional lectures with group projects and an individual research project in the student’s chosen specialist field. The Civil Engineering MSc at UCL now offers five additional routes.

Degree information

Students develop advanced knowledge of civil engineering and associated engineering and scientific disciplines (structure dynamics, sustainable building design, transport, fluids, geotechnics, water and drainage, environmental and coastal engineering, planning and construction). They gain awareness of the context in which engineering operates, in terms of design, construction and the environment, alongside transferable skills, which leads to careers in industry and research.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits), and a research project (60 credits).

Core modules
-Advanced Soil Mechanics
-Advanced Structures
-Roads and Underground Infrastructure
-Project Management (Professional Development Module)

Optional modules - students choose four from the following:
-Anatomy of a Railway
-Applied Building Information Modelling
-Building Engineering Physics
-Coastal Engineering
-Data Analysis
-Engineering and International Development
-Environmental Modelling
-Environmental Systems
-Finite Element Modelling and Numerical Methods
-GIS Principles and Technology
-Introduction to Seismic Design of Structures
-Natural and Environmental Disasters
-Principles and Practices of Surveying
-Roads and Underground Infrastructure
-Systems, Society and Sustainability
-Structural Dynamics
-Urban Flooding and Drainage

Please note: combinations of different modules will be limited and determined by timetable constraints.

Dissertation/report
All students undertake an independent research project, which culminates in a dissertation of approximately 12,000 words.

Teaching and learning
The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Careers

There are excellent employment prospects for our graduates. Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting multidisciplinary department with a tradition of excellence in teaching and research, situated within the heart of London.

This MSc reflects the broad range of expertise available within the department and its strong links with the engineering industry and places emphasis on developing skills within a teamwork environment. The programme provides a clear route to a professional career in civil engineering.

In addition, students wishing to combine the general MSc in Civil Engineering can now apply to one of five specialist pathways in related disciplines (Seismic Design, Environmental Systems, GIS, Surveying and Integrated Design).

Read less
Our MSc in Advanced Geotechnical Engineering is a European-Accredited Engineering Master Degree programme. It will give you the skills you need to address real-world ground engineering problems and the technological challenges faced every day by the geotechnical engineering profession. Read more
Our MSc in Advanced Geotechnical Engineering is a European-Accredited Engineering Master Degree programme.

It will give you the skills you need to address real-world ground engineering problems and the technological challenges faced every day by the geotechnical engineering profession.

PROGRAMME OVERVIEW

The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering.

Topics include deep foundations in urban areas, tunnelling, foundations for energy infrastructure, deep water energy resources exploration and field monitoring.

During your studies you will have the opportunity to apply the knowledge and practical understanding of scientific methodology you have acquired on a research project under the guidance and advice of an experienced supervisor.

This will help you develop the skills to acquire, analyse, and critically evaluate data, and then draw valid, defendable conclusions that can withstand professional scrutiny.

Graduates are highly employable, and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over one academic year (full-time) and between two and five academic years (part-time or distance learning). It consists of eight taught modules and a dissertation.

On successful completion of this MSc programme students will be deemed to have completed the further learning necessary to combine with a suitable BEng (Hons) degree fulfilling the academic base for the professional qualification of Chartered Engineer.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Deep Foundations and Earth Retaining Structures
-Soil-Structure Interaction

Selected Structural Engineering Group Modules
-Subsea Engineering
-Structural Safety and Reliability
-Earthquake Engineering

Selected Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Selected Infrastructure Engineering Group Modules
-Infrastructure Systems Interdependencies and Resilience
-Infrastructure Investment and Financing
-Infrastructure Asset Management
-Sustainability and Infrastructure

Selected Water and Environmental Engineering Group Modules
-Groundwater Control
-Water Resources Management and Hydraulic Modelling
-Dissertation project

Students must choose eight modules from those listed above. For the main and subsidiary awards there are restrictions on the choice of modules within each module group. These are outlined in the table above.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of some of the challenges faced during the analysis, design and construction of foundation and geotechnical structures
-The ability to select and apply most appropriate analysis methodology for problems in ground engineering including advanced and new methods
-The ability to design foundations in a variety of ground conditions
-A working knowledge of the key UK, European and some International standards and codes of practice associated with the analysis and design of foundations and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK, European and International standards and codes of practice relating to ground engineering
-A knowledge and understanding of the construction of different types of geotechnical structure on different ground conditions
-A comprehensive understanding of the principles of engineering mechanics underpinning ground engineering
-The ability to understand the limitations of ground analysis methods
-The knowledge and understanding to work with information that may be uncertain or incomplete
-A knowledge and understanding of ground engineering in a commercial/business context
-Knowledge and understanding of sustainable development related to ground engineering
-A knowledge and understanding of the common and less common materials used in ground engineering
-An understanding of construction management
-A critical awareness of new developments and research needs in ground engineering

Intellectual / cognitive skills
-The ability to apply fundamental knowledge to investigate new and emerging ground engineering problems
-A critical awareness of new developments in the field of ground engineering
-The ability to critically evaluate ground engineering design principles and concepts
-The awareness of the commercial, social and environmental impacts associated with foundations
-An awareness and ability to make general evaluations of risk associated with the design and construction of foundations including health and safety, environmental and commercial risk

Professional practical skills
-The ability to interpret and apply the appropriate UK, European and some International standards and codes of practice to foundation design for both familiar and unfamiliar situations
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-The ability to apply the appropriate analysis methodologies to common ground engineering problems as well as unfamiliar problems
-The ability to collect and analyse research data
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to generate innovative foundation design
-The awareness of professional and ethical conduct

Key / transferable skills
-Oral and written communication (presentation skills)
-Synthesis and graphical presentation of data
-3D spatial awareness
-Use of sketching and engineering drafting
-Use of word processor, spreadsheet, drawing/presentation
-Technical report writing
-Independent learning skills
-Ability to develop, monitor and update a plan
-Reviewing, assessing, and critical thinking skills
-Teamwork, leadership and negotiation skills
-Time management

[[GLOBAL OPPORTUNITIES[[
We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering. Read more
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering.

Successful completion of this programme will aid you in pursuing a career as a bridge engineer with a consultancy, a specialist contractor or a local authority.

PROGRAMME OVERVIEW

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Steel and Composite Bridge Design
-Long-Span Bridges

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Foundation Engineering

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering and Management Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management
-Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for bridge analysis
-The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
-The ability to design bridge structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in bridge engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
-The ability to critically evaluate bridge engineering concepts
-The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
-The ability to understand the limitations of bridge analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to bridges
-The awareness of the commercial, social and environmental impacts associated with bridges
-An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
-The ability to generate innovative bridge designs (B)
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of bridge engineering in a commercial/business context
-Ability to use computer software to assist towards bridge analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

Read less
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. Read more
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. It builds the advanced capabilities in analysis and codified design in specialised aspects of structural engineering that are required by industry.

PROGRAMME OVERVIEW

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn). This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for structural analysis
-The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
-The ability to design structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to structural engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practice to structural design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in structural engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning structural engineering
-The ability to critically evaluate structural engineering concepts
-The ability to apply the appropriate analysis methodologies to common structural engineering problems as well as unfamiliar problems
-The ability to understand the limitations of structural analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to structures
-The awareness of the commercial, social and environmental impacts associated with structures
-An awareness and ability to make general evaluations of risk associated with the design and construction of structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of structural engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to generate innovative structural designs
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of structural engineering in a commercial/business context
-Ability to use computer software to assist towards structural analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Modern civil engineering professionals often require an extensive understanding of construction management due to the strategic benefits it can bring to both individuals and project teams. Read more

Overview

Modern civil engineering professionals often require an extensive understanding of construction management due to the strategic benefits it can bring to both individuals and project teams.

As the industry becomes more competitive, organisations and their clients are increasingly demanding the combined time, cost and quality assurances that good project management practice provides. Furthermore, the industry now recognises that there is a need for engineers to gain specialist technical knowledge which compliments their academic and professional background.

These observations form the basis of the MSc/Postgraduate Diploma in Civil Engineering and Construction Management (See http://www.postgraduate.hw.ac.uk/prog/msc-civil-engineering-and-construction-management/ ); an essential core of construction management material augmented by a broad range of specialist civil engineering options.

Our students and graduates

Our students are recruited mainly from the civil engineering profession and are typically looking to broaden their knowledge base, extend their technical expertise or gain further learning to meet the needs of the professional institutions. Applicants from other backgrounds planning to develop a career in civil engineering and construction management will also be considered. Graduates of this programme are much sought after by employers, working in areas such as transport, water and wastewater engineering and the energy sector.

The Institute for Infrastructure and Environment (IIE)

This programme is delivered by Heriot Watt University’s Institute for Infrastructure and Environment (http://www.sbe.hw.ac.uk/research/institute-infrastructure-environment.htm) . As a Civil Engineering and Construction Management postgraduate student you will be part of the Institute’s Graduate School, connecting you with staff, research associates and fellow students engaging in cutting-edge research in areas such as water management, ultra-speed railways, construction materials, geomechanics and more.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Industry links

This programme is supported by our Civil Engineering Industry Advisory Committee, which includes representatives from major multi-national employers AECOM, Arup, Atkins, Balfour Beatty, Halcrow, Jacobs and WSP Group. This committee convenes regularly and advises on the programme content and structure, ensuring quality, up-to-date content and relevance to industry needs.

Teaching and research excellence

Our teaching staff is engaged in a wide range of research within the field of civil engineering and construction management, with at least 90% of our overall research activity in General Engineering confirmed as world-leading or internationally excellent in the UK's Research Excellence Framework (REF) of 2014. Our track record in teaching civil engineering is strong, with our undergraduate programme ranked 1st in Scotland in the 2014 National Student Survey. Over half of our teaching staff are chartered engineers.

With a history dating back to 1821, Heriot-Watt is one of the UK’s leading universities, and Scotland’s most international. Find out more about Heriot-Watt University’s reputation, rankings and international profile http://www.hw.ac.uk/about/reputation/key-facts.htm .

Programme content

The MSc / Postgraduate Diploma in Civil Engineering and Construction Management provides students with a combination of courses designed to improve their knowledge and understanding of advanced civil engineering and modern construction management theory and practice. The programme structure consists of four mandatory construction management courses (CM) which all students must complete. Students must also choose four civil engineering courses (CE) from a list of specialist topics as detailed below. MSc students also complete two research projects.

Course Choice Semester 1
· Project Management: Theory & Practice (CM) - Mandatory
· Value & Risk Management (CM) – Mandatory
· Indeterminate Structures (CE) - Optional
· Sustainability in Civil Engineering (CE) - Optional
· Ground Engineering (CE) - Optional
· Environmental Geotechnics (CE) - Optional

Course Choice Semester 2
· Project Management: Strategic Issues (CM) – Mandatory
· Construction Financial Management (CM) – Mandatory
· Safety, Risk & Reliability (CE) - Optional
· Foundation Engineering (CE) - Optional
· Water and Waste Water Treatment (CE) - Optional
· Urban Drainage Design and Analysis (CE) - Optional
· Earthquake Engineering (CE) - Optional

Find out more about programme content here http://www.postgraduate.hw.ac.uk/prog/msc-civil-engineering-and-construction-management/

Career opportunities

This programme uses experience from an internally recognised postgraduate qualification, (MSc Construction Management from Heriot-Watt University) and combines it with the high profile Heriot-Watt University Civil Engineering Postgraduate Programme to provide an internationally acclaimed Masters programme.

Recent graduates have been employed by a variety of national and international employers.

English language requirements

If English is not the applicant’s first language a minimum of IELTS 6.5 or equivalent is required with all elements passed at 6.0 or above.

Applicants who have previously successfully completed programmes delivered in the medium of English language may be considered and will be required to provide documentary evidence of this. Examples would be secondary school education or undergraduate degree programme. A minimum of at least one year of full time study (or equivalent) in the medium of English language will be required.

We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-civil-engineering-and-construction-management/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Civil Engineering and Construction Management. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less
Construction Project Management at Heriot-Watt University is one of the longest-running programmes of its kind in the UK, equipping graduates with the theoretical knowledge and practical and technical skills to manage people and projects within the construction industry. Read more

Programme Background

Construction Project Management at Heriot-Watt University is one of the longest-running programmes of its kind in the UK, equipping graduates with the theoretical knowledge and practical and technical skills to manage people and projects within the construction industry. A range of core courses covering management, procurement and technology-related subjects will give you a foundation in management principles while providing practical skills relevant to professional practice in construction. You will also choose an optional course from a range of subjects drawn from our built environment programmes, providing you with a broader understanding of built environment issues and an opportunity to tailor your studies to fit your interests and professional needs.

Students tend to come from the construction industry, bringing with them practical experience in a variety of built environment roles, or from other professional backgrounds but with an interest in converting to a career in the construction industry. Students from all over the world study this programme both on campus and by Independent Distance Learning (IDL).

Professional Recognition

The MSc is fully accredited by the Royal Institution of Chartered Surveyors (RICS) and the Chartered Institute of Building (CIOB), demonstrating its professional recognition and industrial relevance. The University is a Corporate Member of the Association for Project Management.

Programme Structure

This programme is composed of seven mandatory courses and one optional course. For those looking to complete the programme at MSc level research projects are also required. Students are assessed through a combination of examination and coursework.

Semester 1

Project Management: Theory and Practice - Mandatory
Value and Risk Management - Mandatory
Contracts and Procurement - Mandatory
Sustainability in Civil Engineering - Optional
Construction Technology - Optional
Environmental Hydrology and Water Resources - Optional
Real Estate Economics - Optional
Spatial Planning - Optional
Sustainable Design and Development - Optional
Environmental Geotechnics - Optional

Semester 2

Project Management: Strategic Issues - Mandatory
Construction Financial Management - Mandatory
Construction Practice and Information Technology - Mandatory
People and Organisational Management in the Built Environment - Mandatory

Read less
Water and Environmental Management aims to provide students with a multi-disciplinary understanding of water resources and environmental issues through the development of knowledge and skills necessary for the planning and management of these resources to meet the needs of society and the environment within the context of climate change. Read more
Water and Environmental Management aims to provide students with a multi-disciplinary understanding of water resources and environmental issues through the development of knowledge and skills necessary for the planning and management of these resources to meet the needs of society and the environment within the context of climate change.

About the programme

On-campus (full-time/part-time) students study eight courses from a range of optional courses. Independent Distance Learning (IDL) students can also choose courses from a range of options in both Semester 1 and 2.

The programme is delivered by experts in the field of water and environmental management, covering a wide range of relevant disciplines.

Topics covered:
=============
• Environmental Hydrology and Water Resources
• Computational Simulation of River Flows
• Water Supply and Drainage for Buildings
• Water Conservation
• Environmental Geotechnics
• Urban Drainage and Water Supply
• Water and Wastewater Treatment
• Marine Waste Water Disposal
• Environmental Statistics
• Innovative Technologies and Global Water Challenges
• Environmental Planning (on-campus only);
• Flood Inundation Modelling (on-campus only);
• Irrigation Water Management.

Career opportunities

Training is provided in water resources engineering, environmental engineering, flood risk management, integrated water resources management, environmental implications of water engineering schemes, and industrial software packages. On completion, graduates will be able to offer employers a broad range of skills and advanced knowledge in a number of important areas of water engineering.

Primary employment destinations include:
- Leading UK and international consultants (e.g. Jacobs, HR Wallingford, JBA, Halcrow, Hyder Consulting and Fairhursts)
- Local and National Government (in the UK and elsewhere)
- Environmental regulators (e.g. SEPA & EA)
- Academic institutions (including PhD study and research associate posts)
- Non-Governmental Organisations

Professional recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Part-time and Distance Learning study options

This programme can be studied full-time, part-time or via Independent Distance Learning (IDL), ideal for those in employment or with other commitments, providing flexible study options that fit around work or family. As an IDL student you will not be required to attend any lectures, tutorials or other events at any of Heriot-Watt University’s campuses.

Industry Links

Where possible MSc dissertation projects are set up in collaboration with industry, the aim being to encourage contact between the student and industry, and to underpin the industrial relevance of the projects.

This programme is supported by the Civil Engineering Industry Advisory Committee, which includes representatives from major multi-national employers AECOM, ARUP, Balfour Beatty, Halcrow, Jacobsand WSP Group. This committee convenes regularly and advises on the programme content and structure, ensuring quality, up-to-date content and relevance to industry needs.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent.

We offer a range of English language courses: http://www.hw.ac.uk/study/english.htm

Read less

Show 10 15 30 per page



Cookie Policy    X