• University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
Middlesex University Featured Masters Courses
Cass Business School Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Aberdeen University Featured Masters Courses
"geotechnical" AND "engin…×
0 miles

Masters Degrees (Geotechnical Engineering)

We have 88 Masters Degrees (Geotechnical Engineering)

  • "geotechnical" AND "engineering" ×
  • clear all
Showing 1 to 15 of 88
Order by 
The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering. Read more

The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering.

Topics include deep foundations in urban areas, tunnelling, foundations for energy infrastructure, deep water energy resources exploration and field monitoring.

During your studies you will have the opportunity to apply the knowledge and practical understanding of scientific methodology you have acquired on a research project under the guidance and advice of an experienced supervisor.

This will help you develop the skills to acquire, analyse, and critically evaluate data, and then draw valid, defendable conclusions that can withstand professional scrutiny.

Graduates are highly employable, and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over one academic year (full-time) and between two and five academic years (part-time or distance learning). It consists of eight taught modules and a dissertation.

On successful completion of this MSc programme students will be deemed to have completed the further learning necessary to combine with a suitable BEng (Hons) degree fulfilling the academic base for the professional qualification of Chartered Engineer.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Geotechnical Engineering Group Modules

Selected Structural Engineering Group Modules

Selected Construction Management Group Modules

Selected Infrastructure Engineering Group Modules

Selected Water and Environmental Engineering Group Modules

Students must choose eight modules from those listed above. For the main and subsidiary awards there are restrictions on the choice of modules within each module group. These are outlined in the table above.

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of some of the challenges faced during the analysis, design and construction of foundation and geotechnical structures
  • The ability to select and apply most appropriate analysis methodology for problems in ground engineering including advanced and new methods
  • The ability to design foundations in a variety of ground conditions 
  • A working knowledge of the key UK, European and some International standards and codes of practice associated with the analysis and design of foundations and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Learn more about opportunities that might be available for this particular programme by using our student exchanges search tool.

Academic support, facilities and equipment

Modules are taught by academic members in the geotechnical area, and some lectures for the Advanced Geotechnical Engineering MSc will be delivered by visiting academics and practicing engineers from industry.

You will also be allocated a personal tutor to guide you during your time with us at the University. You can expect a varied, stimulating and rewarding time here and will receive all the support you need to progress your learning. 

In addition to the University Library and Learning Centre’s extensive resources, our excellent testing facilities can support experimentally based MSc dissertation projects. 

Prizes

VJ Tech Prize for Best MSc Student in Advanced Geotechnical Engineering

A prize of £1,000, sponsored by VJ Tech, one of the world’s top geotechnical engineering manufacturers specialising in advanced soil testing equipment for labs.

The prize will be awarded to the best performing student(s) on the MSc Advanced Geotechnical Engineering based on module results and overall performance during the programme.

The £1,000 may be awarded to an individual student or split between two students displaying the best performance in their MSc programme.

Keller Prize for Best MSc Project in Advanced Geotechnical Engineering

A prize of £500 sponsored by Keller Group plc, the world’s largest independent ground engineering contractor.

The prize will be awarded to the student(s) with the best MSc Dissertation completed as part of the MSc Advanced Geotechnical Engineering, as defined by the course leader according to the module results and potential impact of the output of the individual project.

The £500 may be awarded to an individual student or split between a number of students displaying the best performance in their MSc Dissertations.



Read less
The MSc in Geotechnical Engineering is part of the Division of Civil Engineering's extensive programme of postgraduate studies and research. Read more
The MSc in Geotechnical Engineering is part of the Division of Civil Engineering's extensive programme of postgraduate studies and research. The course builds on the Division's renowned research expertise and industrial experience in current aspects of geotechnical engineering.

Why study Geotechnical Engineering at Dundee?

Key reasons include:
Better preparation for successful careers in industry, commerce or academia
Development of skills, knowledge and understanding in a specialist field
Participation in the research activities of a world-class department

A wide range of research projects are available in any of the following areas: earthquake engineering (foundations during earthquakes, liquefaction, faulting), offshore engineering (foundations, anchors, pipelines and offshore processes), foundation engineering and ground improvement. Some of these projects will be linked to industry

Development of transferable skills in research methods, communication and management of large and small scale projects

Part-time students have the option of relating their research project directly to ongoing work within their employment

Professional Accreditation: ICE/IStructE

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. Visit http://www.jbm.org.uk for further information.

What's great about Geotechnical Engineering at Dundee?

Civil Engineering at Dundee is ranked top in Scotland for research. You will have the opportunity to engage with leading edge research at Dundee, meaning we attract students of the highest calibre and our graduates are highly sought after by employers worldwide. Students studying on our masters programmes benefit from our renowned research expertise and industry experience.

The Geotechnical Engineering research sub-group was established in 1997 and it has grown significantly since that time. In addition to its undergraduate and postgraduate teaching and research activities, the group offers services to industry across a broad range of geotechnical engineering. The group has hosted a number of major conferences and symposia in Dundee.

Who should study this course?

It is designed both for people pursuing a higher degree soon or immediately after obtaining their first degree, and for those with considerable work experience.

"I love how specialised [this course] is, as very few universities offer such speciality in Earthquake and Offshore Engineering. The course taught me how to solve real-life challenging problems, not to mention the strong industry linkage with my future employer - Subsea 7."
Vithiea Pang, MSc student

The start date is September each year, and lasts for 12 months.

How you will be taught

Modules start at the beginning of the academic session in September and are taught by lectures and tutorials.

What you will study

There are three main elements to the course programme:

Core Modules
These provide skills generic to engineering and research. The two modules are:

Research Methods and Diploma Project
Health, Safety & Environmental Engineering
Specialist Modules
The specialist modules provide in-depth and advanced knowledge, and build upon our expertise. These cover the following topics:

Offshore Geotechnical Engineering
Advanced Soil Mechanics and Geo-Environmental Engineering
Soil Dynamics and Earthquake Engineering
Advanced Structural Analysis
Research Project
The research project gives you the opportunity to benefit from, and contribute to our research. At the end of the project students submit a dissertation based on their research. Students select their projects from a list offered by the academic staff or may suggest their own topic. Many of these projects are collaborative with industry, particularly those in offshore engineering (for Oil and Gas, Marine Renewables and Aquaculture)

How you will be assessed

The course is assessed by coursework and examination.

Students taking the Postgraduate Diploma carry out a shorter research project and complete an extended report.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Funded places

Due to an initiative from the Scottish Funding Council (SFC) designed to support key sectors in the Scottish economy, there are 7 fully-funded places available to eligible students starting this course in 2013/14. This covers all tuition fees associated with the MSc programme and can be held by students classified as Scottish or EU for fee purposes only. Please indicate your interest in being considered for a funded place when you apply through UKPASS.

Read less
The Master of Engineering Studies in Geotechnical Engineering programme aims to further educate graduate students in the discipline of geotechnical engineering so as to enhance their contribution to engineering practice. Read more

Invest in your future

The Master of Engineering Studies in Geotechnical Engineering programme aims to further educate graduate students in the discipline of geotechnical engineering so as to enhance their contribution to engineering practice.

Graduates will be able to take leading roles in planning, evaluating, designing, constructing, maintaining, and managing the geotechnical infrastructure.

The programme alsos provide valuable background expertise for those wishing to enter into asset management or to begin to pursue a career in research and development.

The Master of Engineering Studies in Geotechnical Engineering programme aims to build on the geotechnical content of the BE (Civil) degree and develop graduates with enhanced ability to contribute to geotechnical engineering practice.

New Zealand is a stimulating country in which to practise geotechnical engineering with its young and varied geology, seismic activity and diverse rainfall patterns. Many unique problems occur here as a result and these present challenges for innovative and novel solutions.

The programme has been designed with courses relevant to the New Zealand geotechnical environment, to fill the needs of the country.

There is a large demand for geotechnical engineers in the local workplace, as well as a worldwide shortage of geotechnical professionals.

Programme Structure

Taught (120 points)
The Geotechnical Engineering specialisation is offered as a taught masters (eight courses).

Electives

Elective enrolments may depend on your prior study and professional experience, but ultimately, choosing the appropriate courses and topics can allow you to concentrate on and develop strengths in your energy field of choice.

Our broad list of electives include courses in:
• Design of Earthquake Resistant Foundations
• Earthquake Engineering
• Rock Mechanics and Excavation Engineering
• Soil Behaviour
• Geotechnical Earthquake Engineering
• Engineering Geological Mapping
• Geological Hazards
• Advanced Engineering Geology
• Hydrogeology
• Studies in Civil Engineering
• Foundation Engineering
• Slope Engineering
• Engineering Geology
• Ground Improvements and Geosynthetics Engineering
• Geotechnical Modelling
• Advanced Mathematical Modelling
• Surface Water Quality Modelling
• Risk, LCA and Sustainability

Next generation research at the Faculty of Engineering

The Faculty of Engineering is dedicated to providing you with all the facilities, flexibility and support needed for you to develop the skills needed for the workforce. We boast research themes and programmes that provoke interdisciplinary projects, bringing together expertise from our five departments, other faculties, and industry partners and research organisations. Collaborative study is strongly encouraged – postgraduates in particular have the benefit of experiencing cohorts with diverse academic and industry backgrounds.

You will gain access to world-renowned experts who actively demonstrate the positive impacts research have on society. High-performance equipment and labs beyond industry standards are at your fingertips. Our facilities extend beyond study hours – we take pride in our involvement in student events and associations across the University, and are dedicated to providing you with academic, personal and career advice. We encourage you to take advantage of our resources, and use them to expand the possibilities of your research and career path.

Read less
This course is suited to those with an eye for materials, material structure and material mechanics. Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. Read more

Why take this course?

This course is suited to those with an eye for materials, material structure and material mechanics.

Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. From ground investigations to soil structure testing, you will gain the analytical and technical skills required to make informed decisions when faced with the complex geotechnical problems of construction projects.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Gain experience of environmental assessment techniques plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Mining companies
Petroleum companies
The military
Consultancy

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to related geotechnical factors.

Here are the units you will study:

Environmental Management for Civil Engineering: This unit introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Geotechnical Engineering Design Project: This unit gives you an opportunity to simulate the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: You will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

This course is designed to equip you with knowledge, skills and competencies that employers in the construction industry expect. Alongside the technical topics, you will develop commercial and interpersonal skills required of construction industry professionals.

There is currently a huge demand for geotechnical engineering specialists within the civil engineering sector. This fact, combined with the vocational nature of this course and the extensive training you will receive, means that you are likely to quickly find employment in the industry. Potential roles will include geotechnical engineers, mining engineers and tunnelling engineers for major mining companies, as well as environmental and geotechnical consultancies.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
The Geotechnical Engineering MSc will give you the specialist knowledge required to meet the needs of the construction, environmental and extractive industries. Read more
The Geotechnical Engineering MSc will give you the specialist knowledge required to meet the needs of the construction, environmental and extractive industries. You will learn the principles and application of geotechnical engineering in a range of settings.

The course provides an advanced knowledge and understanding of:
-Soils and rocks and their engineering properties
-Site investigation, testing, interpretation and reporting
-Construction practice and awareness of safe operation
-Key aspects of geotechnical design, such as foundations and slopes
-Application of mathematical methods and computational tools

Once you have graduated will be able to:
-Identify, generate and interpret data relevant to an engineering scenario
-Employ numerical methods for modelling and analysing problems
-Select and apply ideas, concepts and data to generate innovative designs
-Evaluate the quality of data through testing and measurement equipment in field and lab
-Present and summarise data and critically appraise its significance, using numerical techniques
-Formulate and test key hypotheses using logical and consistent quantitative or qualitative arguments

Delivery

You will study compulsory modules plus optional modules, followed by a research project written up as a dissertation. The teaching methods on the course include:
-Formal lectures
-Tutorials
-Seminars
-Open learning
-Group projects
-Computing workshops
-Laboratory work
-Fieldwork
-Site visits

Numerous contributions are made to the course by prominent visitors from the construction industry. Assessment is by formal written examinations, course work, the dissertation, and oral presentations.

Read less
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. Read more
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. The course is particularly suited to engineers involved in the provision, preservation and operation of highways, but it is open to all those holding a degree or equivalent in Civil Engineering or any other relevant branch of engineering.

The topics covered include: transportation economics; highway planning and programming and route selection; survey methods and instrumentation; computer applications in local authorities; construction law; transportation modelling; theory of traffic flow; impacts of road traffic facilities; traffic: methods for planning, capacity analysis and design; traffic control and management; design of flexible and concrete pavements; pavement maintenance and rehabilitation; surface and sub-surface drainage; bridge design and management; quality assurance plans for road schemes; descriptions of soils and rocks; earthworks technology; stability of fills, slope stability; construction of embankments on soft ground; procurement of civil engineering works; road asset management plans; environmental impact assessment.

Lectures are normally held on Friday evening and Saturday morning each week throughout the two semesters (September to April).

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on essential aspects of the subject:

- Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
- Engineering geology and site investigation
- Analysis, design and construction of foundations, retaining walls, tunnels, embankments and slopes including methods of ground reinforcement and improvement.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on four essential aspects of the subject:

Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
Engineering geology and site investigation
Analysis, design and construction of foundations, retaining walls, embankments and slopes including methods of ground reinforcement and improvement.
Managerial skills for the construction industry, including groundworks and risk management, BIM in infrastructure and infrastructure planning process.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
Our geotechnical engineering and engineering geology research is revolutionary worldwide. You will work with academics who are leaders in their field so that your research has a real impact on civil engineering. Read more
Our geotechnical engineering and engineering geology research is revolutionary worldwide. You will work with academics who are leaders in their field so that your research has a real impact on civil engineering.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on geotechnical engineering and geology. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Within the School of Civil Engineering and Geosciences we have a research group focussed on geotechnics and structures, which deals with the fundamental concepts of material behaviour, construction and design technology. Our research has a central theme of Earth systems science engineering and management, focussing on the concepts of:
-Sustainability in construction
-Climate change and the effects on civil engineering

We provide MPhil and PhD supervision within the broad disciplines of geotechnical engineering and engineering geology. Our current research areas are:
-Seismic engineering and extreme loadings
-Slope stability
-Multi-phase flow and coupled multi-field analysis
-Soil modelling
-Waste minimisation and reuse
-Ground improvement
-Site characterisation

We also encourage multidisciplinary research, such as:
-Ground improvement and remediation
-In situ testing
-Geotechnical design
-Geotechnical processes in construction and the natural environment.

As a result of our research we have been able to revolutionise electrokinetic geosynthetics, self-boring pressuremeters, geothermal testing and construct a full-scale embankment for field experimentation.

Delivery

Off-campus study may be available in some circumstances, particularly if you have industrial sponsorship. Our programme includes intensive subject-specific supervision and training in research methodologies and core skills. You will also have an opportunity to undertake paid laboratory demonstrations and tutoring to gain teaching experience.

You will be taught by eminent academics who are experts in the field, such as:
-Dr Colin Davie, Lecturer in Geotechnical Engineering
-Professor Peter Gosling, Professor of Computational Structural Mechanics
-Professor Stephanie Glendinning, Professor of Civil Engineering

Read less
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. Read more
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. The research component is emphasized by the requirement to submit not only a thesis but a journal paper as well.

Why study Geotechnical Earthquake and Offshore Engineering at Dundee?

Civil Engineering at Dundee is ranked top in Scotland for research. Students of the highest calibre are therefore attracted to Dundee, being offered a unique opportunity to engage with cutting edge research.

Students studying on our masters programmes benefit from our renowned research expertise and industry experience, and our graduates are highly sought after by employers worldwide.

What's great about Geotechnical Earthquake and Offshore Engineering?

The MSc in Geotechnical Earthquake and Offshore Engineering provides students with the necessary knowledge and skills:
- To design Civil Engineering works to resist the destructive actions applied by earthquakes
- To design offshore foundations and pipelines

Efficient aseismic design requires simultaneous consideration of both geotechnical and structural engineering. The course is unique in that it takes a holistic approach in considering the subject from both perspectives equally, emphasizing soil-structure interaction and providing advanced training for both components.

Laboratory of Soil Mechanics, National Technical University of Athens (NTUA)

Please note that all teaching is carried out in English.

Research will be conducted jointly with the Laboratory of Soil Mechanics of the National Technical University of Athens (NTUA), introducing an international dimension that combines the core strengths of the two research groups, exploiting the state of the art 150g tonne capacity geotechnical centrifuge of the University of Dundee.

The latter is equipped with a latest-technology centrifuge-mounted earthquake simulator capable of reproducing any target waveform, making the Dundee centrifuge facility only one of 3 in Europe capable of earthquake replication. A specially designed split-box for simulation of seismic faulting and its effects on structures is also available, along with a variety of Strong and Equivalent Shear Beam (ESB) Boxes, and sensors (accelerometers, LVDTs, load cells, pore pressure transducers, etc.)

Who should study this course?

This course is research intensive and tailored to students with a very strong background in geotechnical earthquake engineering.

This course is taught by staff in the School of Engineering, Physics and Mathematics.

The start date is September each year, and the course lasts until the end of October in the following year (14 months in total). Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

How you will be taught

Modules are taught via lectures, seminars, workshops, practical's and a research project.

What you will study

Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

1st term at NTUA: September – December (4 months)

Research – 1st part: numerical and analytical methods.

2nd term at Dundee : January – April (4 months)

Core and Specialist Taught modules

Core Modules

CE52002: Health, Safety & Environmental Management
Specialist Modules

CE50005: Advanced Structural Analysis of Bridges
CE50023: Offshore Geotechnics and Pipelines
CE50024: Geoenvironmental Engineering
CE50025: Soil Dynamics
3rd term at Dundee : May – July (3 months)

Research – 2nd part: experimental methods

4th term at NTUA : August – October (3 months)

Research – 3rd part: Completion of MSc Thesis and Journal paper.

The distribution of allocated time between terms 3 and 4 will be flexible, and you may spend more time in either of the universities, depending on your project.

How you will be assessed

Modules are assessed by a mixture of coursework and exam. The research project is assessed by dissertation.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Read less
Why this course?. Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Read more

Why this course?

Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Solving problems of air, land and water pollution and protecting society against natural disasters are also important aspects of civil engineering.

Engineering graduates are in high demand from recruiting companies worldwide.

This 18-month MSc course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments, with practical experience provided by the industrial placement.

The course has a significant design element based on the most up-to-date specialist design guidelines. This includes a major design project that integrates acquired knowledge and acts as a platform for structured self-learning.

This MSc in Civil Engineering with Industrial Placement is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, mathematics, physics and mechanical engineering may also be considered.

The MSc in Civil Engineering with Industrial Placement has three optional specialist streams:

- Structural Engineering & Project Management

- Geotechnical Engineering & Project Management

- Geoenvironmental Engineering & Project Management

- Civil Engineering with Water Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineeringwithindustrialplacement/

Industrial placement

A wide range of companies, such as AECOM, ATKINS, CAPITA, CH2M HILL and ClimateXChange (Scotland’s Centre of Expertise on Climate Change), are offering placements exclusively for this MSc. A full list of companies can be provided upon request. The 8 to 12 weeks industrial placement will take place in the period from June to September.

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

In additional to the industrial placement you'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:

- geomechanics

- microbiology

- analytical chemistry

- structural design

- Field investigation

We’re equipped with:

- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses

- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures

- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory

We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:

- suction-controlled double-wall triaxial cells

pressure plates

- triaxial cells equipped with bender elements for dynamic testing

- image analysis unit to monitor soil specimen deformation

- instruments for measurement of pore-water tensile stress

- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software and numerical modelling

You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:

- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)

- ABAQUS finite element packages

- Ansys

- Autodesk Civil 3D

- Limit State

- Strand 7

- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).

For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:

- engineering consultancies, where the work normally involves planning and designing projects

- contractors, where you’ll be managing and overseeing works on-site

- working for utilities or local authorities

- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523*.

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp



Read less
Why this course?. Engineering graduates are in high demand from recruiting companies worldwide. This course has been designed to meet the needs of a broad range of engineering industries. Read more

Why this course?

Engineering graduates are in high demand from recruiting companies worldwide.

This course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments.

This one-year MSc in civil engineering is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, maths, physics and mechanical engineering may also be considered.

You can graduate with an MSc in Civil Engineering or choose to follow a specialist named stream:

- Civil Engineering with Structural Engineering & Project Management

- Civil Engineering with Geotechnical Engineering & Project Management

- Civil Engineering with Geoenvironmental Engineering & Project Management

- Civil Engineering with Water Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineering/

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

You'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Placements

As part of the class Independent Study in Collaboration with Industry, you can apply to work with industry projects.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:

- geomechanics

- microbiology

- analytical chemistry

- structural design

- Field investigation

We’re equipped with:

- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses

- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures

- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory

We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:

- suction-controlled double-wall triaxial cells

- pressure plates

- triaxial cells equipped with bender elements for dynamic testing

- image analysis unit to monitor soil specimen deformation

- instruments for measurement of pore-water tensile stress

- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software & numerical modelling

You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:

- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)

- ABAQUS finite element packages

- Ansys

- Autodesk Civil 3D

- Limit State

- Strand 7

- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Open Access

Home students can also choose to study through Open Access. This is initially a non-graduating route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification.

This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes.

Home students who do not meet the normal MSc entry requirements for this programme are welcome to apply through the Open Access route instead.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course has two semesters of taught classes. Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).

For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:

- engineering consultancies, where the work normally involves planning and designing projects

- contractors, where you’ll be managing and overseeing works on-site

- working for utilities or local authorities

- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp



Read less
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status. Read more
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status.

The course is accredited by the Joint Board of Moderators as meeting the requirements for further learning for a chartered engineer (CEng) for candidates who already have an accredited CEng (partial) BEng(Hons) or an accredited IEng (full) BEng/BSc(Hons) undergraduate first degree.

You will study a range of advanced civil engineering subjects linked to cutting-edge research. These include earthquake engineering dynamics and design, advanced geotechnics and rock mechanics, bridge engineering and advanced hydraulics. You will also develop the skills demanded in civil engineering consultancy offices around the world.

On the course, you will have the opportunity to use state-of-the-art laboratories and advanced technical software for numerical modelling.

The course is flexible and allows you to combine advanced civil engineering with related subjects including water environmental management, construction management and sustainable construction.

All of the taught modules are delivered by research-active staff and pave the way for a career at the forefront of ambitious civil engineering projects.

Scholarships

Scholarships are available for this course. Please click the link below for more information.
https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Course structure

Our courses are under continual review. If you have already applied you can find more information on the applicant portal.

The course has an emphasis on practical applications of advanced civil engineering concepts. You will make use of our advanced laboratories, modern computer facilities and technical software.

The MSc requires successful completion of six modules together with a dissertation on an agreed technical subject; a dissertation is not required, however, for the PGDip.

The taught component of the course comprises six core modules, and you can either take all six of these modules or choose four with an additional two approved modules from other MSc courses in the School of Environment and Technology. You can use this flexibility to study related subjects including water and waste-water treatment technology, construction management and sustainable construction.

Core modules cover geotechnical earthquake engineering, dynamics of structures with earthquake engineering applications, seismic design of reinforced concrete members, random vibrations of structures, bridge loads and analysis, rock mechanics, hydrogeology, coastal engineering and wave loading.

Areas of study

• Coastal Engineering and Wave Loading

This module provides a basic understanding of different wave theories and their applications in coastal engineering practice.

You will develop an understanding of the coastal sediment transport processes and the means to deal with issues associated with coastal protection and sea defence.

• Geotechnical Earthquake Engineering

This module provides an understanding of advanced geotechnical design methods with an emphasis on seismic design. It focuses on current design methods for soil and rock structures and foundation systems subject to complex loading conditions.

You will gain experience in using a variety of commercial software.

• Rock Mechanics

The module gives you an understanding of the behaviour of rocks and rock mass and enables you to evaluate the instability of rock slopes and tunnels in order to design reinforcements for unstable rock.

• Dynamics of Structures with Earthquake Engineering Applications

You will be introduced to the fundamental concepts of dynamics of structures. The module then focuses on analytical and numerical methods used to model the response of civil engineering structures subjected to dynamic actions, including harmonic loading, blast and impact loading, and earthquake ground motion.

• Random Vibration of Structures

The module gives you the confidence to model uncertainties involved in the design of structural systems alongside a framework to critically appraise probabilistic-based Eurocode approaches to design.

Stochastic models of earthquake ground motion, wind and wave loading are explored. Probabilistic analysis and design of structures is undertaken through pertinent random vibration theory.

You will become confident with the probabilistic analysis for the design against earthquake, wind and wave loadings through various checkable calculations.

• Repair and Strengthening of Existing Reinforced Concrete Structures

The module gives you an understanding of the types and causes of damage to reinforced concrete structures. It then focuses on current techniques for repair and strengthening of existing structures.

Employability

The course is particularly appropriate for work in structural, geotechnical and coastal engineering.

Graduates have gone on into roles as structural engineers and civil engineers in a number of structural design offices around the world.

Others have been motivated by the research component of the course and followed a PhD programme after graduation.

Read less
Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. Read more

Mission and goals

Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. The MSc in Environmental and Land Planning Engineering focuses on a broad range of interdisciplinary professional capabilities and expertise required to deal with all the issues related to a sustainable utilization of natural resources. We provide a full track in English, which offers a panoply of specialized courses and laboratories addressing all the environmental components, air, water, soil and the biota, and the impacts due to natural hazards and to human activities, as well as their mitigation. We achieve the mission through advanced scientific and technological education.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

Career opportunities

Graduates are expected to be employed in land and environmental service enterprises, engineering firms for design and construction of plants for water and air emissions treatment, energy generation and waste disposal, companies for producing and managing environmental instrumentation, remote sensors and environmental monitoring systems and networks, public authorities and agencies for land planning and control.

The track in Environmental engineering for sustainability is taught in English.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Environmental_Engineering_for_Sustainability.pdf
Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. The MSc in Environmental and Land Planning Engineering focuses on a broad range of interdisciplinary professional capabilities and expertise required to deal with all the issues related to a sustainable utilization of natural resources. We provide a full track in English, which offers a panoply of specialized courses and laboratories addressing all the environmental components (air, water, soil and the biota) and the impacts due either to natural hazards or to human activities, as well as their mitigation. We achieve the mission through advanced scientific and technological education.
Graduates are expected to be employed in land and environmental service enterprises, engineering firms for design and construction of plants for water and air emissions treatment, energy generation and waste disposal, companies for producing and managing environmental instrumentation, remote sensors and environmental monitoring systems and networks, public authorities and agencies for land planning and control.
The track in Environmental engineering for sustainability is taught in English.

Subjects

Available courses include: chemistry for sustainability, soil remediation, engineering and process technologies for water, air and solid wastes treatment, hydrology and hydraulic engineering, ecology, energy systems technologies, environmental impact assessment and quality evaluation, environmental systems engineering and management, geotechnical and seismic engineering, water, land and soil resource management, surface and subsurface water quality modelling and evaluation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less

Show 10 15 30 per page



Cookie Policy    X