• Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
University of Strathclyde Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Kent Featured Masters Courses
"geotechnical" AND "engin…×
0 miles

Masters Degrees (Geotechnical Engineer)

  • "geotechnical" AND "engineer" ×
  • clear all
Showing 1 to 15 of 36
Order by 
Our MSc in Advanced Geotechnical Engineering is a European-Accredited Engineering Master Degree programme. It will give you the skills you need to address real-world ground engineering problems and the technological challenges faced every day by the geotechnical engineering profession. Read more
Our MSc in Advanced Geotechnical Engineering is a European-Accredited Engineering Master Degree programme.

It will give you the skills you need to address real-world ground engineering problems and the technological challenges faced every day by the geotechnical engineering profession.

PROGRAMME OVERVIEW

The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering.

Topics include deep foundations in urban areas, tunnelling, foundations for energy infrastructure, deep water energy resources exploration and field monitoring.

During your studies you will have the opportunity to apply the knowledge and practical understanding of scientific methodology you have acquired on a research project under the guidance and advice of an experienced supervisor.

This will help you develop the skills to acquire, analyse, and critically evaluate data, and then draw valid, defendable conclusions that can withstand professional scrutiny.

Graduates are highly employable, and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over one academic year (full-time) and between two and five academic years (part-time or distance learning). It consists of eight taught modules and a dissertation.

On successful completion of this MSc programme students will be deemed to have completed the further learning necessary to combine with a suitable BEng (Hons) degree fulfilling the academic base for the professional qualification of Chartered Engineer.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Deep Foundations and Earth Retaining Structures
-Soil-Structure Interaction

Selected Structural Engineering Group Modules
-Subsea Engineering
-Structural Safety and Reliability
-Earthquake Engineering

Selected Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Selected Infrastructure Engineering Group Modules
-Infrastructure Systems Interdependencies and Resilience
-Infrastructure Investment and Financing
-Infrastructure Asset Management
-Sustainability and Infrastructure

Selected Water and Environmental Engineering Group Modules
-Groundwater Control
-Water Resources Management and Hydraulic Modelling
-Dissertation project

Students must choose eight modules from those listed above. For the main and subsidiary awards there are restrictions on the choice of modules within each module group. These are outlined in the table above.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of some of the challenges faced during the analysis, design and construction of foundation and geotechnical structures
-The ability to select and apply most appropriate analysis methodology for problems in ground engineering including advanced and new methods
-The ability to design foundations in a variety of ground conditions
-A working knowledge of the key UK, European and some International standards and codes of practice associated with the analysis and design of foundations and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK, European and International standards and codes of practice relating to ground engineering
-A knowledge and understanding of the construction of different types of geotechnical structure on different ground conditions
-A comprehensive understanding of the principles of engineering mechanics underpinning ground engineering
-The ability to understand the limitations of ground analysis methods
-The knowledge and understanding to work with information that may be uncertain or incomplete
-A knowledge and understanding of ground engineering in a commercial/business context
-Knowledge and understanding of sustainable development related to ground engineering
-A knowledge and understanding of the common and less common materials used in ground engineering
-An understanding of construction management
-A critical awareness of new developments and research needs in ground engineering

Intellectual / cognitive skills
-The ability to apply fundamental knowledge to investigate new and emerging ground engineering problems
-A critical awareness of new developments in the field of ground engineering
-The ability to critically evaluate ground engineering design principles and concepts
-The awareness of the commercial, social and environmental impacts associated with foundations
-An awareness and ability to make general evaluations of risk associated with the design and construction of foundations including health and safety, environmental and commercial risk

Professional practical skills
-The ability to interpret and apply the appropriate UK, European and some International standards and codes of practice to foundation design for both familiar and unfamiliar situations
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-The ability to apply the appropriate analysis methodologies to common ground engineering problems as well as unfamiliar problems
-The ability to collect and analyse research data
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to generate innovative foundation design
-The awareness of professional and ethical conduct

Key / transferable skills
-Oral and written communication (presentation skills)
-Synthesis and graphical presentation of data
-3D spatial awareness
-Use of sketching and engineering drafting
-Use of word processor, spreadsheet, drawing/presentation
-Technical report writing
-Independent learning skills
-Ability to develop, monitor and update a plan
-Reviewing, assessing, and critical thinking skills
-Teamwork, leadership and negotiation skills
-Time management

[[GLOBAL OPPORTUNITIES[[
We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MSc in Geotechnical Engineering is part of the Division of Civil Engineering's extensive programme of postgraduate studies and research. Read more
The MSc in Geotechnical Engineering is part of the Division of Civil Engineering's extensive programme of postgraduate studies and research. The course builds on the Division's renowned research expertise and industrial experience in current aspects of geotechnical engineering.

Why study Geotechnical Engineering at Dundee?

Key reasons include:
Better preparation for successful careers in industry, commerce or academia
Development of skills, knowledge and understanding in a specialist field
Participation in the research activities of a world-class department

A wide range of research projects are available in any of the following areas: earthquake engineering (foundations during earthquakes, liquefaction, faulting), offshore engineering (foundations, anchors, pipelines and offshore processes), foundation engineering and ground improvement. Some of these projects will be linked to industry

Development of transferable skills in research methods, communication and management of large and small scale projects

Part-time students have the option of relating their research project directly to ongoing work within their employment

Professional Accreditation: ICE/IStructE

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. Visit http://www.jbm.org.uk for further information.

What's great about Geotechnical Engineering at Dundee?

Civil Engineering at Dundee is ranked top in Scotland for research. You will have the opportunity to engage with leading edge research at Dundee, meaning we attract students of the highest calibre and our graduates are highly sought after by employers worldwide. Students studying on our masters programmes benefit from our renowned research expertise and industry experience.

The Geotechnical Engineering research sub-group was established in 1997 and it has grown significantly since that time. In addition to its undergraduate and postgraduate teaching and research activities, the group offers services to industry across a broad range of geotechnical engineering. The group has hosted a number of major conferences and symposia in Dundee.

Who should study this course?

It is designed both for people pursuing a higher degree soon or immediately after obtaining their first degree, and for those with considerable work experience.

"I love how specialised [this course] is, as very few universities offer such speciality in Earthquake and Offshore Engineering. The course taught me how to solve real-life challenging problems, not to mention the strong industry linkage with my future employer - Subsea 7."
Vithiea Pang, MSc student

The start date is September each year, and lasts for 12 months.

How you will be taught

Modules start at the beginning of the academic session in September and are taught by lectures and tutorials.

What you will study

There are three main elements to the course programme:

Core Modules
These provide skills generic to engineering and research. The two modules are:

Research Methods and Diploma Project
Health, Safety & Environmental Engineering
Specialist Modules
The specialist modules provide in-depth and advanced knowledge, and build upon our expertise. These cover the following topics:

Offshore Geotechnical Engineering
Advanced Soil Mechanics and Geo-Environmental Engineering
Soil Dynamics and Earthquake Engineering
Advanced Structural Analysis
Research Project
The research project gives you the opportunity to benefit from, and contribute to our research. At the end of the project students submit a dissertation based on their research. Students select their projects from a list offered by the academic staff or may suggest their own topic. Many of these projects are collaborative with industry, particularly those in offshore engineering (for Oil and Gas, Marine Renewables and Aquaculture)

How you will be assessed

The course is assessed by coursework and examination.

Students taking the Postgraduate Diploma carry out a shorter research project and complete an extended report.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Funded places

Due to an initiative from the Scottish Funding Council (SFC) designed to support key sectors in the Scottish economy, there are 7 fully-funded places available to eligible students starting this course in 2013/14. This covers all tuition fees associated with the MSc programme and can be held by students classified as Scottish or EU for fee purposes only. Please indicate your interest in being considered for a funded place when you apply through UKPASS.

Read less
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. Read more
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. The research component is emphasized by the requirement to submit not only a thesis but a journal paper as well.

Why study Geotechnical Earthquake and Offshore Engineering at Dundee?

Civil Engineering at Dundee is ranked top in Scotland for research. Students of the highest calibre are therefore attracted to Dundee, being offered a unique opportunity to engage with cutting edge research.

Students studying on our masters programmes benefit from our renowned research expertise and industry experience, and our graduates are highly sought after by employers worldwide.

What's great about Geotechnical Earthquake and Offshore Engineering?

The MSc in Geotechnical Earthquake and Offshore Engineering provides students with the necessary knowledge and skills:
- To design Civil Engineering works to resist the destructive actions applied by earthquakes
- To design offshore foundations and pipelines

Efficient aseismic design requires simultaneous consideration of both geotechnical and structural engineering. The course is unique in that it takes a holistic approach in considering the subject from both perspectives equally, emphasizing soil-structure interaction and providing advanced training for both components.

Laboratory of Soil Mechanics, National Technical University of Athens (NTUA)

Please note that all teaching is carried out in English.

Research will be conducted jointly with the Laboratory of Soil Mechanics of the National Technical University of Athens (NTUA), introducing an international dimension that combines the core strengths of the two research groups, exploiting the state of the art 150g tonne capacity geotechnical centrifuge of the University of Dundee.

The latter is equipped with a latest-technology centrifuge-mounted earthquake simulator capable of reproducing any target waveform, making the Dundee centrifuge facility only one of 3 in Europe capable of earthquake replication. A specially designed split-box for simulation of seismic faulting and its effects on structures is also available, along with a variety of Strong and Equivalent Shear Beam (ESB) Boxes, and sensors (accelerometers, LVDTs, load cells, pore pressure transducers, etc.)

Who should study this course?

This course is research intensive and tailored to students with a very strong background in geotechnical earthquake engineering.

This course is taught by staff in the School of Engineering, Physics and Mathematics.

The start date is September each year, and the course lasts until the end of October in the following year (14 months in total). Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

How you will be taught

Modules are taught via lectures, seminars, workshops, practical's and a research project.

What you will study

Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

1st term at NTUA: September – December (4 months)

Research – 1st part: numerical and analytical methods.

2nd term at Dundee : January – April (4 months)

Core and Specialist Taught modules

Core Modules

CE52002: Health, Safety & Environmental Management
Specialist Modules

CE50005: Advanced Structural Analysis of Bridges
CE50023: Offshore Geotechnics and Pipelines
CE50024: Geoenvironmental Engineering
CE50025: Soil Dynamics
3rd term at Dundee : May – July (3 months)

Research – 2nd part: experimental methods

4th term at NTUA : August – October (3 months)

Research – 3rd part: Completion of MSc Thesis and Journal paper.

The distribution of allocated time between terms 3 and 4 will be flexible, and you may spend more time in either of the universities, depending on your project.

How you will be assessed

Modules are assessed by a mixture of coursework and exam. The research project is assessed by dissertation.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Read less
This course is suited to those with an eye for materials, material structure and material mechanics. Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. Read more

Why take this course?

This course is suited to those with an eye for materials, material structure and material mechanics.

Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. From ground investigations to soil structure testing, you will gain the analytical and technical skills required to make informed decisions when faced with the complex geotechnical problems of construction projects.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Gain experience of environmental assessment techniques plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Mining companies
Petroleum companies
The military
Consultancy

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to related geotechnical factors.

Here are the units you will study:

Environmental Management for Civil Engineering: This unit introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Geotechnical Engineering Design Project: This unit gives you an opportunity to simulate the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: You will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

This course is designed to equip you with knowledge, skills and competencies that employers in the construction industry expect. Alongside the technical topics, you will develop commercial and interpersonal skills required of construction industry professionals.

There is currently a huge demand for geotechnical engineering specialists within the civil engineering sector. This fact, combined with the vocational nature of this course and the extensive training you will receive, means that you are likely to quickly find employment in the industry. Potential roles will include geotechnical engineers, mining engineers and tunnelling engineers for major mining companies, as well as environmental and geotechnical consultancies.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on essential aspects of the subject:

- Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
- Engineering geology and site investigation
- Analysis, design and construction of foundations, retaining walls, tunnels, embankments and slopes including methods of ground reinforcement and improvement.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on four essential aspects of the subject:

Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
Engineering geology and site investigation
Analysis, design and construction of foundations, retaining walls, embankments and slopes including methods of ground reinforcement and improvement.
Managerial skills for the construction industry, including groundworks and risk management, BIM in infrastructure and infrastructure planning process.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The growing demand for infrastructure to sustain modern societies and underpin economic and social development requires creative solutions from all engineering professionals. Read more
The growing demand for infrastructure to sustain modern societies and underpin economic and social development requires creative solutions from all engineering professionals. This course will give you the skills to shape and maintain the world around us.

You might be a graduate from our BSc (Hons) Civil Engineering course, or perhaps someone with a BEng qualification. We will help you move your career forward so you can play a leading role in the design, construction and maintenance of a broad range of infrastructure projects.

One of the key objectives of our course is preparing you for chartered status. We will develop your technical ability, understanding of engineering principles, commercial flair and environmental awareness. In addition, you'll look at contractual issues, health and safety, business functionality, communication skills, report writing, code of conduct and your responsibility to a team.

We are seeking Joint Board of Moderators (JBM) accreditation for Leeds based delivery, subject to final output, from Autumn 2013.

- Research Excellence Framework 2014: our University's results for the Architecture, Built Environment and Planning unit, which it entered for the first time, were impressive with 37% of its research being rated world leading or internationally excellent

Visit the website http://courses.leedsbeckett.ac.uk/civilengineering_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

You will specialise in areas such as structures, transportation, water supply and treatment, power generation and supply, and your potential employers could include consultants, local authorities, central government, contractors and government agencies. If you're already working in the industry this is a chance to progress in your career by studying part-time to prepare yourself for applying for chartered status.

- Civil Engineer
- Design Engineer
- Project Engineer
- Structural Engineer

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You'll have access to first-class teaching laboratories, including a full range of civil engineering testing equipment for hydraulics, geotechnics, highway materials, concrete, structures and general materials. Our civil engineering research facility - dedicated to the research work of students and staff - will be available to play a major role in your dissertation project.

We'll give you the opportunity to plan your own objectives for career development, setting up visits to sites and consultancy offices to aid your development - while engineering experts will share their expertise and experience in a series of guest talks. We'll also encourage you to research and discuss current civil engineering issues on a regular basis.

This is a very accessible course in which our teaching takes up only one afternoon and evening of your time.

Modules

Transportation Studies (20 Credits)
This module considers the analysis, design and maintenance of highways - you will study areas such as route location, geometrics, junction and pavement design, and management. You will also examine the design and operation of airports and railways.

Civil Engineering Management (20 Credits)
We will cover all the management and procedural considerations that go into the development and delivery of a civil engineering project. You'll develop an understanding of the legal and commercial frameworks that projects work with and build your confidence in making decisions based on qualitative and quantitative analysis.

Civil Engineering Professional Context (20 Credits)
This module examines the role of the civil engineer in society - such as responsibilities to society, the environment and economy - and the professional conduct expected of the role. The module will cover the requirements and processes for making a professional membership application.

Structural Analysis & Design (20 Credits)
You will gain a greater understanding of the engineering principles applied to the analysis and design of structures, giving you the skills and confidence to apply these techniques.

Fluid Mechanics & Water Engineering (20 Credits)
In this module you will focus on the properties of fluids and the principles of fluid mechanics, hydraulic modelling and fluid systems analysis. You will develop an understanding of the issues, problems and solutions within the water infrastructure sector of civil engineering.

Geotechnical Analysis & Design (20 Credits)
You will learn to produce complex engineering solutions to a professional standard. We will provide you with an in-depth understanding of engineering principles in relation to geotechnical analysis and design, looking at how to solve geotechnical engineering problems and produce innovative designs.

Materials Technology (20 Credits)
We will increase your understanding of the uncertainties and consequences of material behaviour during design, manufacture and in service. You'll study the environmental and safety implications of the materials used for nuclear power production.

Civil Engineering Dissertation (40 Credits)
This is an in-depth study of a topic relevant to civil engineering and that reflects your specific interests. This is an opportunity to apply and further enhance your research skills and technical knowledge.

Facilities

- Design Studios
Our modern multi-media studios include a dedicated CAD suite and specialist software, such as REVIT, allowing students to develop skills in 3D design and building information modelling.

- Library
Our libraries are two of the only university libraries in the UK open 24/7 every day of the year. However you like to study, the libraries have got you covered with group study, silent study, extensive e-learning resources and PC suites.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering. Read more
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering.

This well-established programme is delivered by experienced University staff, together with practising engineers from consultancies and local authorities.

PROGRAMME OVERVIEW

You can access six study streams on this Masters programme:
-Bridge Engineering
-Construction Management
-Geotechnical Engineering
-Structural Engineering
-Water Engineering and Environmental Engineering
-Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation. This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment Optional
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The Civil Engineering programme aims to provide graduate engineers with:
-Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
-It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
-A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
-The properties, behaviour and use of relevant materials
-The management techniques which may be used to achieve civil engineering objectives within that context
-Some of the roles of management techniques and codes of practice in design
-The principles and implementation of some advanced design and management techniques specific to civil engineering
-Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
-The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
-The wider multidisciplinary engineering context and its underlying principles
-Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
-The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
-The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills
-Analyse and solve problems
-Think strategically
-Synthesis of complex sets of information
-Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
-Select and transfer knowledge and methods from other sectors to construction-based organisation
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Dynthesis and critical appraisal of the thoughts of others

Professional practical skills
-Awareness of professional and ethical conduct
-Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
-Evaluate and integrate information and processes in project work
-Present information orally to others
-Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
-Use concepts and theories to make engineering judgments in the absence of complete data
-Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering. Read more
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering.

Successful completion of this programme will aid you in pursuing a career as a bridge engineer with a consultancy, a specialist contractor or a local authority.

PROGRAMME OVERVIEW

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Steel and Composite Bridge Design
-Long-Span Bridges

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Foundation Engineering

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering and Management Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management
-Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for bridge analysis
-The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
-The ability to design bridge structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in bridge engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
-The ability to critically evaluate bridge engineering concepts
-The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
-The ability to understand the limitations of bridge analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to bridges
-The awareness of the commercial, social and environmental impacts associated with bridges
-An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
-The ability to generate innovative bridge designs (B)
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of bridge engineering in a commercial/business context
-Ability to use computer software to assist towards bridge analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

Read less
A brand new, one of its kind qualification for those seeking specialist skills in the design and construction of temporary works. Read more
A brand new, one of its kind qualification for those seeking specialist skills in the design and construction of temporary works.

Who is it for?

This MSc degree is aimed at graduates with at least two years of practical experience in construction; however, more recent graduates with a good appreciation of construction processes will also benefit.

Having achieved a firm grounding in engineering you may be keen to develop your skills as a practical engineer working on site or enhance design skills if you are engaged in permanent works design.

Objectives

The course provides the following:
-An introduction to statutory obligations, management methods and special design considerations for temporary works.
-Design of structures used in and for temporary works, their construction and monitoring.
-Design of geotechnical temporary works and processes, including groundwater control and ground investigation.
-Design of temporary works for marine construction, in particular floating structures and the effect of waves and varying water levels.
-The use of plant in temporary works and the provision of appropriate working platforms and access.
-Demolition and alteration of structures, including the disposal/reuse of construction waste.

Teaching and learning

The learning and teaching approach for the course encompasses a range of methods which support active learning including lectures, workshops, group work, case studies, problem-based learning, presentations and peer review.

Workshops, group work, case studies and problem-based learning will be used to build your ability to critically review and assess options for design and assessment of temporary works. Your learning will be supported by the online learning environment Moodle, which will provide resources for independent learning, such as further reading, links to wider sources of information and quizzes for self-assessment.

All modules involve undertaking a certain number of individual and/or group assignments (coursework) during the teaching terms, as well as comprehensive final examinations.

Part-time students are expected to complete all the modules within the two-year period. The teaching periods are structured to deliver core modules in a sequence, which permits engagement by part-time students alongside full-time students. The project is undertaken by part-time students in the second year.

Teaching normally takes place on two full days per week, although there may be some variations to accommodate practical exercises and site visits. In addition, there is an introduction week at the start of the programme each year which is attended by all full and part-time students.

This method of delivery is designed to accommodate students working full-time within reasonable commuting distance of City, University of London, as well as to full-time students, by concentrating tuition into two days per week on average, and encouraging flexibility for independent study.

Modules

Temporary works refers to works enabling the construction of, protection, support or provision of access to permanent works which might or might not remain in place at the completion of a construction project. Examples of temporary works include structures such as gantries for heavy plant, materials or accommodation as well as supports for partially-completed or partially-dismantled structures, excavations and accesses. The course delivery and content is actively supported by the Temporary Works Forum (TWf), which promotes best practice within the UK construction industry and sponsors the Centre of Excellence in Temporary Works and Construction Method Engineering at City, University of London. The course content has been developed in collaboration with the TWf membership and TWf members will contribute to lectures and design exercises.

The course addresses the regulatory background to temporary works for construction, the design of geotechnical, structural and marine temporary works, demolition, plant, safe working methods and access works. You will gain both the technical understanding to undertake safe but cost-effective designs for a full range of temporary works and a good understanding of the wide range of plant and techniques that can be employed.

The programme will be delivered by industry experts providing insights into current practice in temporary works and academic members of staff experienced in the theory underlying the design methods employed. There will be visits to operational sites and practical exercises to provide opportunities to experience decision-making in the field, combined with group sessions to develop your knowledge further through active engagement. This will also require you to present your work occasionally, participate in peer review sessions and work in teams.

The course consists of eight taught modules and a project. The project is a major individual research exercise on a topic relevant to temporary works and construction method engineering. The main outcome of the project is a written report (dissertation).

Taught modules - the Temporary Works and Construction Method Engineering MSc comprises 180 credits, with 60 credits awarded to the project. Attendance is required to obtain 120 credits by studying all of the taught modules.

The taught modules address the following topics:
-An introduction to statutory obligations, management methods and special design considerations for temporary works.
-Design of structures used in and for temporary works, their construction and monitoring.
-Design of geotechnical temporary works and processes, including groundwater control and ground investigation.
-Design of temporary works for marine construction, in particular floating structures and the effect of waves and varying water levels.
-The use of plant in temporary works and the provision of appropriate working platforms and access.
-Demolition and alteration of structures, including the disposal/reuse of construction waste.

Project - the topics/titles for the major project can be chosen from:
-A list suggested by the lecturers of the course.
-Your own ideas/initiatives.
-Where applicable, by your sponsoring company/industrial partner.

Our collaboration with members of the TWf means that many of the topics offered will relate to problems of current interest to industry and will be co-supervised by industry organisations.

Career prospects

Temporary works are an important aspect of most construction projects. Consequently, a qualification in this field will have widespread application across all civil engineering disciplines, whether you are working as an on-site engineer or as a design office engineer. You could also go into the research arena conducting innovative research in the area of temporary works.

Read less
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. Read more
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. It builds the advanced capabilities in analysis and codified design in specialised aspects of structural engineering that are required by industry.

PROGRAMME OVERVIEW

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn). This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for structural analysis
-The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
-The ability to design structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to structural engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practice to structural design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in structural engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning structural engineering
-The ability to critically evaluate structural engineering concepts
-The ability to apply the appropriate analysis methodologies to common structural engineering problems as well as unfamiliar problems
-The ability to understand the limitations of structural analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to structures
-The awareness of the commercial, social and environmental impacts associated with structures
-An awareness and ability to make general evaluations of risk associated with the design and construction of structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of structural engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to generate innovative structural designs
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of structural engineering in a commercial/business context
-Ability to use computer software to assist towards structural analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This course develops further understanding on advanced civil engineering. Professional accreditation. Read more
This course develops further understanding on advanced civil engineering.

Professional accreditation
The course is accredited by JBM as meeting the requirements for further learning for a Chartered Engineer (CEng) for candidates who already have an accredited CEng (partial) BEng(Hons) or an accredited IEng (full) BEng/BSc(Hons) undergraduate first degree.

Course structure
The MSc requires successful completion of six modules together with a thesis on an agreed subject; a PGDip does not require a thesis.

Areas of study
The course content reflects the professional expertise and research interests of the course team. Modules are appropriate for civil engineers wishing to wider their knowledge in core areas such as structural analysis, geotechnical engineering and hydraulics. The course also offers a degree of flexibility to undertake study in related subjects such as applied geology, water environmental management and construction management. The course has an emphasis on practical applications of advanced civil engineering concepts and much use is made of state-of-the-art laboratory, computational facilities and technical software.

Core modules cover geotechnical earthquake engineering, dynamics of structures with earthquake engineering applications, random vibrations of structures, rock mechanics, coastal engineering and wave loading, and hydrogeology.

Syllabus
Core modules cover geotechnical earthquake engineering, dynamics of structures with earthquake engineering applications, random vibrations of structures, rock mechanics, coastal engineering and wave loading, and hydrogeology.

Career and progression opportunities
The course is particularly appropriate for work in structural, geotechnical , and/or coastal engineering.

Read less
Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Read more

Why this course?

Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Solving problems of air, land and water pollution and protecting society against natural disasters are also important aspects of civil engineering.

Engineering graduates are in high demand from recruiting companies worldwide.

This 18-month MSc course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments, with practical experience provided by the industrial placement.

The course has a significant design element based on the most up-to-date specialist design guidelines. This includes a major design project that integrates acquired knowledge and acts as a platform for structured self-learning.

This MSc in Civil Engineering with Industrial Placement is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, mathematics, physics and mechanical engineering may also be considered.

The MSc in Civil Engineering with Industrial Placement has three optional specialist streams:
- Structural Engineering & Project Management
- Geotechnical Engineering & Project Management
- Geoenvironmental Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineeringwithindustrialplacement/

Industrial placement

A wide range of companies, such as AECOM, ATKINS, CAPITA, CH2M HILL and ClimateXChange (Scotland’s Centre of Expertise on Climate Change), are offering placements exclusively for this MSc. A full list of companies can be provided upon request. The 8 to 12 weeks industrial placement will take place in the period from June to September.

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

In additional to the industrial placement you'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:
- geomechanics
- microbiology
- analytical chemistry
- structural design

- Field investigation
We’re equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software and numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).
For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:
- engineering consultancies, where the work normally involves planning and designing projects
- contractors, where you’ll be managing and overseeing works on-site
- working for utilities or local authorities
- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523*.

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The MSc in Civil Engineering builds on our renowned research expertise and industrial experience in current aspects of Civil Engineering. Read more
The MSc in Civil Engineering builds on our renowned research expertise and industrial experience in current aspects of Civil Engineering. It is designed both for people pursuing a higher degree soon or immediately after obtaining their first degree, and for those with considerable work experience.

Why study Civil Engineering at Dundee?

Dundee is a pre-eminent centre for Civil Engineering with internationally-renowned research groups in concrete technology, fluid mechanics, geotechnical engineering, lightweight and deployable structures, and construction management.

Professional Accreditation: ICE/IStructE
This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. Visit the Joint Board of Moderators homepage for further information.

What's so good about Civil Engineering at Dundee?

All our MSc programmes are accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Civil Engineering at Dundee is ranked top in Scotland for research. You will have the opportunity to engage with leading edge research at Dundee, meaning we attract students of the highest calibre and our graduates are highly sought after by employers worldwide. Students studying on our masters programmes benefit from our renowned research expertise and industry experience.

Who should study this course?

This course is designed both for people pursuing a higher degree soon or immediately after obtaining their first degree, and for those with considerable work experience.

The start date is September each year, and lasts for 12 months.

How you will be taught

Modules are taught via lectures and tutorials.

What you will study

The programme lasts a full year and contains three main elements: Core Modules (22%)These provide skills generic to engineering and research:

Research Methods and Diploma Project
Health, Safety & Environmental Engineering
Specialist Modules (45%) These provide in-depth and advanced knowledge, and build upon our recognised expertise in Civil Engineering. Students take any four specialist modules that are available that year, subject to approval of the programme director and timetabling constraints. Examples of current modules include:

Advanced Structural Analysis
Earthquake Engineering & Concrete Assessment
Innovative Structures
Design for Durability Assessment and Repair
Construction Systems I and II
Sustainable Use and Environmental Impact Assessment
Offshore Geotechnical Engineering
Advanced Soil Mechanics and Geo-Environmental Engineering
Soil Dynamics and Earthquake Engineering
Project and Enterprise Management
Research Project (33%)

This gives you the opportunity to benefit from, and contribute to our research. At the end of the project students submit a dissertation based on their research.

How you will be assessed

The course is assessed by coursework, examination and dissertation.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Read less
Engineering graduates are in high demand from recruiting companies worldwide. This course has been designed to meet the needs of a broad range of engineering industries. Read more

Why this course?

Engineering graduates are in high demand from recruiting companies worldwide.

This course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments.

This one-year MSc in civil engineering is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, maths, physics and mechanical engineering may also be considered.

You can graduate with an MSc in Civil Engineering or choose to follow a specialist named stream:
- Civil Engineering with Structural Engineering & Project Management
- Civil Engineering with Geotechnical Engineering & Project Management
- Civil Engineering with Geoenvironmental Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineering/

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

You'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Placements

As part of the class Independent Study in Collaboration with Industry, you can apply to work with industry projects.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:
- geomechanics
- microbiology
- analytical chemistry
- structural design

- Field investigation
We’re equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
- pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software & numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Open Access

Home students can also choose to study through Open Access. This is initially a non-graduating route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification.

This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes.

Home students who do not meet the normal MSc entry requirements for this programme are welcome to apply through the Open Access route instead.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course has two semesters of taught classes. Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).
For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:
- engineering consultancies, where the work normally involves planning and designing projects
- contractors, where you’ll be managing and overseeing works on-site
- working for utilities or local authorities
- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X