• Birmingham City University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Cranfield University Featured Masters Courses
University of Dundee Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of Portsmouth Featured Masters Courses
"geological" AND "enginee…×
0 miles

Masters Degrees (Geological Engineering)

We have 58 Masters Degrees (Geological Engineering)

  • "geological" AND "engineering" ×
  • clear all
Showing 1 to 15 of 58
Order by 
The Department of Earth, Ocean and Atmospheric Sciences at UBC, one of the largest geoscience groups in Canada is composed of over 40 full-time faculty, a staff complement of 30, a total of 40 research associates and postdoctoral fellows. Read more

The Department of Earth, Ocean and Atmospheric Sciences at UBC, one of the largest geoscience groups in Canada is composed of over 40 full-time faculty, a staff complement of 30, a total of 40 research associates and postdoctoral fellows. There are 160 graduate students in our department, who are represented by our EOAS Graduate Student Council.

Our Department's research extends from pure science studies of the earth's deep interior, through near-surface geological studies and environmental earth science, to the oceans and atmosphere. UBC earth scientists draw on a broad base of knowledge from the basic sciences of chemistry, physics, biology and mathematics.

Faculty members in the Geological Engineering program have research interests in the following general areas:

  • landslides, debris flows, runout analysis, hazard assessment
  • groundwater hydrology, groundwater contamination & remediation, reactive transport modeling, environmental geochemistry
  • rock mechanics & rock engineering, open pit & underground mine design, tunnelling


Read less
Join us for our. Master Open Day. to find out more about our courses. Please note. From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. Read more

Join us for our Master Open Day to find out more about our courses.

Please note: From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. However, you can still submit an application for review. If you meet the usual entry requirements, we will hold your application until we can assess whether further places can be offered. This will likely be the end of July-early August 2017 when we can be more confident of numbers. Please contact our if you have any questions.

This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering.

It gives you a grounding in the application of geological principles to a wide range of fields appropriate to civil and mining engineering.

Studying engineering geology will provide you with excellent job opportunities as a result of high calibre academic training, as well as the development of strong skills in terms of both critical and independent thought and team work.

Most of our graduates join environmental consulting companies and consulting engineers, while others go on to PhD studies.

Engineering Geologists

Engineering Geologists are found worldwide working on a wide range of problems, from foundation and mine design to the assessment of seismic and landslide risk.

Their understanding of how groundwater and pollutants travel through the ground may impact on the safe design and construction of excavations and waste disposal sites.

They use geological and geomorphological mapping to identify geological hazards and allow for safe development. Their understanding of the ground and how it responds to static and dynamic loads can influence safe and sustainable siting and design of engineering structures.

It is vital that we design and build in a manner which is safe, environmentally friendly, cost effective and sensitive to climate change.

Engineering geologists, with a unique understanding of the ground, and a broad appreciation of rates of geological processes over engineering time, are intimately involved in this process.

Course highlights:

  • Your teaching will be delivered by the School of Earth and Environment with substantial input from the School of Civil Engineering.
  • The University frequently hosts the Yorkshire Geotechnical Group (Institution of Civil Engineers) and is involved with the Yorkshire Regional Group of the Geological Society.
  • Complete a 4 month individual dissertation project often involving organisations outside the University such as consulting engineers, civil engineering contractors and the British Geological Survey.
  • The School's £23m building gives you access to world-class research, teaching and laboratory facilities, many of which will be available to you throughout your studies.

Benefit from our strong connections with industry:

  • We have been training Engineering Geologists over 50 years and maintain links with alumni who can be found in many companies across the globe.
  • Industry colleagues contribute to the taught programme and an Industry Advisory Board informs the content of this course.

Accreditation

When you choose a degree with accredited status, you can be assured that the teaching is of the highest standard. The quality and relevance of our teaching has been recognised by an independent body of academics and industrialists through our Geological Society of London Professional Accreditation.

If you have an appropriate degree, our Geological Society accreditation will reduce the amount of experience required for you to reach Chartered Geologist (CGeol) status, an important career step in Geoscience.

Our designation as a “Technical MSc” through Engineering Council means that if you have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree, the degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng). In addition the degree is also an accredited European Engineering degree. 



Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. Read more

Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. For example, they can predict and measure damage caused by natural disasters, and innovate ways to reduce and prevent future issues through the construction of structure such as dams. Our developing world needs safe and stable space, as our infrastructures expand onto new land and those who work in the line of work will ensure that this can happen effectively.

Upon graduation, you will have the skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. It also provides specialist knowledge in tunnel, surface and underground excavation design, and applied hydrogeology and risk assessment.

This programme is taught by the internationally established and world-class Camborne School of Mines (CSM), a combined mining school and geoscience department. It is taught over two semesters and individual projects are undertaken throughout the summer, often as industrial placements. The programme is suitable for geology and engineering graduates wishing to specialise in applied geotechnics

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include;

  • Project and Dissertation;
  • Excavation and Geomechanics;
  • Health and Safety in the Extractive Industry
  • Project Management

Optional modules

Some examples of the optional modules are;

  • Resource Estimation;
  • Economics, Processing & Environment;
  • Hydrogeology;
  • Surface Excavation Design;
  • Tunnelling and Underground Excavation;
  • Production and Cost Estimation;
  • Mine Planning and Design;
  • Geomechanics Computer Modelling for Excavation Design
  • Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

The project is undertaken from June to September, after the second semester examinations. You are encouraged to undertake projects directly linked with industry, which may result in industrial placements for the project period. The projects are normally design-based and allow further specialisation in a topic that is of particular interest to you. This could involve the use of state-of-the-art engineering design software, risk and hazard analysis and other analytical techniques.



Read less
The programme links the fundamental disciplines of Civil Engineering (design and construction of civil and environmental structures and infrastructures)… Read more

Mission and Goals

The programme links the fundamental disciplines of Civil Engineering (design and construction of civil and environmental structures and infrastructures) with a broad overview of the most advanced Risk Management tools, with particular attention to forecasting and prevention issues concerning structures and infrastructures and soil, on which they are built or embedded, due to natural and anthropic causes.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering-for-risk-mitigation/

Career Opportunities

The graduate in Civil Engineering for Risk Mitigation deals with the design of structures and infrastructures, planning, control and management of town and land systems, evaluation of the environmental impact of structures and infrastructures as well as research in public and private institutes. He/she can therefore find employment with construction companies, design and consultancy companies and has access to Public Administration offices.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Civil_Eng__Risk_Mitigation.pdf
The Master of Science programme is aimed at providing knowledge and expertise in the field of structural and non-structural measures for the mitigation of natural and anthropic hazards. It offers a synthesis of fundamental and advanced civil engineering tools for Risk Management, integrated by competences in different areas (land use planning, economics and finance, communication, law, psychology). The graduate in C.E.R.M. deals with the design of structures and infrastructures, planning, control and management of town and land systems, and he/she is able to evaluate the environmental impact of structures and infrastructures. He/she can find employment in construction, design and consultancy companies and may have access to contests for positions in the Public Administration.
The programme is taught in English

Subjects

In the first year the following topics are proposed:
- Numerical Methods for Partial Differential Equations
- Soil-Structure Interaction
- Tools for Risk Management
- Flood Risk
- Structural Analysis
- Fundamentals of Gis

In the second year students choose three thematic modules among the followings: Engineering Structures for the Environment; Geo-Engineering Techniques for Unstable Slopes; Emergency Plans for Hydro-Geological Risk; Structure Retrofitting for Seismic and Exceptional Loads; Transport management in emergency planning; Hazards from Industrial Sites: Process Analysis and Risk Assessment.

The final project is devoted to the solution of a field case.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering-for-risk-mitigation/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering-for-risk-mitigation/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Join the academic community of one of the world’s leading mining schools. We are one of a few mining schools in Canada with facilities and expertise in Mining, Mineral Processing, Rock Mechanics, Social License, Mine Economics and Environmental Sustainability. Read more

Join the academic community of one of the world’s leading mining schools. We are one of a few mining schools in Canada with facilities and expertise in Mining, Mineral Processing, Rock Mechanics, Social License, Mine Economics and Environmental Sustainability. Enroll in a Master of Engineering Degree at a top ranked university and in one of the most beautiful and liveable cities in the world.*

Our cohort-based, professional Master of Engineering Degree is a course-based masters which allows one to specialize in one of the following areas:

  • Mining geotechnics,
  • Mineral processing,
  • Mine economics, or
  • Mining sustainability and the environment.

The program attracts mining professionals from all corners of the world and creates a diverse network of mining expertise. Students benefit from the academic content as well as the international professional experience each student brings to the program. Students also have the opportunity to enhance their experience with an 4-8 month paid work term.

Take advantage of our institute’s strong sense of community and close industrial support.

The Master of Engineering in Mining Engineering (M.Eng.) is an intensive study program designed for professionals and engineering graduates eager to upgrade their skills in order to build a solid base for a career in the global mining industry. It includes at least 30 credits of course work with the option to complete a coop work term. The program takes up to 2 years to complete.



Read less
The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. Read more
The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. It provides you with advanced conceptual understanding, detailed factual knowledge, specialist technical skills and an awareness of responsibilities to society and the environment.

Your degree will cover areas such as:
-Engineering geology principles and applications
-Site investigation, testing, interpretation and reporting processes
-Analysing diverse geological evidence to assess hazards and risks arising from natural and man-made phenomena
-Geotechnical design

By studying at Newcastle you undertake research with students from civil engineering, geological and other scientific backgrounds. Cross-pollination of academic training and experience is actively encouraged.

Delivery

You will study compulsory modules with a choice of optional modules in blocks of one or two weeks. Assessment is by formal written examinations, course work and oral presentations. You will write up your research project as a dissertation. A full range of teaching methods are used on the course:
-Lectures
-Tutorials
-Seminars
-Open learning
-Group projects
-Computing workshops
-Laboratory
-Fieldwork
-Site visits

Numerous contributions are made to the course by prominent visitors from the construction industry.

At the end of semester two you will benefit from an overseas residential field trip. This allows you to apply your technical knowledge and explore a wide range of exemplar sites.

Accreditation

The course is accredited by the Joint Board of Moderators (JBM) (comprising ICE, IStructE, CIHT and IHIE), as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for students with an Accredited CEng (Partial) BEng Honours degree or Accredited IEng (Full) BEng/BSc Honours.

It is also accredited by the Geological Society (GeolSoc).

Read less
The Department of Geological Sciences is designed to foster high-caliber student research that will lead to publishable results. The master's degree is intended to prepare students for a job in industry or for entrance into a PhD program. Read more
The Department of Geological Sciences is designed to foster high-caliber student research that will lead to publishable results. The master's degree is intended to prepare students for a job in industry or for entrance into a PhD program. The doctoral degree trains students for work as government research scientists, industry research scientists or academic scientists.

Research activities in the Department of Geological Sciences are far-reaching and often interdisciplinary. A major focus of the department is earth surface processes, including biogeochemistry, geochemistry, geomicrobiology, and sedimentology. Other research areas include climate change, energy and environmental processes, environmental geosciences, experimental geology, and petrology.

The Department of Geological Sciences has research center affiliations with the Center for Integrated Watershed Studies, Materials Science Program, and is in development of projects with Basin Analysis Research Center. Through these strong research collaborations and projects graduates of the Geological Sciences programs have gained employment as geologists in federal programs such as NASA, Sandia National Lab, and US Geological Survey; and in private energy, environmental and mining companies such as Conoco-Phillips, Resource Env. Management, Inc, and SECOR International.

The Master of Science degree is a two-year program in which the student concentrates on graduate level course work during the first year and on thesis research during the second year. The majority of students in the masters program have completed a bachelors degree in the geological sciences, but students with bachelors degrees in chemistry, physics, biology, mathematics or engineering are also encouraged to apply.
Our Master of Science (M.S.) degree in Geological Sciences is intended to prepare students for a job in industry or as a stepping stone to a Ph.D. degree either at Binghamton or another university. M.S. students typically take a year of coursework followed by a year of research that culminates in a publically-defended thesis. Students are encouraged to submit their thesis in the form of a publication-ready manuscript.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended
- Two letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students are advised to contact the Programme Coordinator (Prof. Andy Wheeler in advance of application via http://www.pac.ie (PAC code CKS82) to discuss possible project areas.

Visit the website: https://www.ucc.ie/en/bees/courses/postgrad/

Course detail

Students undertake a total workload equivalent to 90 credits over the 12 month programme, the principal element of which is the completion of a major research thesis of approximately 25,000 words. In parallel, students must take and pass taught modules to the value of 20 credits.

Modules

Students take 20 credits from the following available modules:

GL6002 Igneous and Metamorphic Terrain Mapping (10 credits)
GL6003 Coal Exploration (5 credits)
GL6005 Basin Analysis and Sedimentary Fancies Analysis (10 credits)
GL6006 Geotechnical Investigations of Soils and Rocks (5 credits)
GL6007 Practical Offshore Geological Exploration (5 credits)
GL6008 Geological Application of Geographical Information Systems (5 credits)
GL6010 Field Exploration Methods and Professional Development (5 credits)
GL6011 Structural Geology for Hydrocarbon Exploration (5 credits)
GL6012 Structural Geology for Mineral Exploration (5 credits)
GL6013 Geology of Ore Deposits (5 credits)
GL4002 Petroleum Geology and Basin Analysis (5 credits)
GL4003 Applied Geophysics (5 credits)
GL4004 Advanced Igneous Processes (5 credits)
GL4011 Economic Geology (5 credits)
GL4024 Exceptional Glimpses of Ancient Life (5 credits)
GL4027 Geochemistry (5 credits)

Students may elect to take other, relevant modules (subject to availability) that are offered by the University that are not listed above to fulfil the elective requirement with approval from the MRes coordinator, research supervisor and Head of School of Biological, Earth and Environmental Science.

Students will also undertake independent research towards completion of a research thesis to a student workload equivalent of 70 credits on a selected topic in Geological Science.

Current projects

- Palynology and palynofacies of the Booley Bay Formation of Co.Wexford
- Palaeoenvironments recorded in the Lias of Northern Ireland
- Taphonomy of insects in the Daohuguo Konservat-Lagerstätte (Jurassic, Inner Mongolia)
- Characterising deformation in unconsolidated sediments
- Early tectonic fabric development in sedimentary rocks
- Petrological and structural mapping of the Fanad Lineament, Co. Donegal
- Quantifying the climate-controlled Pleistocene erosion of the Irish landmass (over the last 2.5 ma)

Programme Learning Outcomes

On successful completion of this programme, students should be able to:

- Carry out an independent and original research project to address an emerging question in Geological Sciences.
- Prepare and write a dissertation of their research project in a critical, logical and systematic manner, in keeping with the standards of postgraduate research.
- Display advanced theoretical knowledge and practical understanding within a research area of Geological Science.
- Understand the basis and application of field and laboratory methods used in Geological Science and a knowledge of their limitations
- Avail of relevant workshops or modules to increase scientific technical skills
- Source, review, critically assess and evaluate relevant primary literature and summarize material for presentation to peers and for inclusion within the research dissertation.
- Design, write and defend a scientific research proposal based on their current research topic or a proposed topic.
- Evaluate their skill set and identify skills that should be acquired.
- Develop professional practice skills including team-work, negotiation, time-management, scientific writing and oral communication.

How to apply

MRes Animal and Plant Science Brochure: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinAnimalandPlantScience.pdf

Prospective students should also consult the following guide to procedures realting to applying for the MRes Animal and Plant Science: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinANimalandplantscience-Studentguidetoproceduresbeforeandafterentrytotheprogramme24March2016.pdf

Read less
This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes. Read more

Why take this course?

This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes.

You will be fully trained by internationally recognised experts in hazard identification, terrain evaluation techniques as well as hazard modelling and risk assessment techniques. Providing you with the essential skills to monitor, warn and help control the consequences of natural hazards.

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, hazard modelling and mapping, soil mechanics and rock mechanics, contaminated land, flooding and slope stability.

Here are the units you will study:

Natural Hazard Processes: The topic of this unit forms the backbone of the course and give you an advanced knowledge of a broad range of geological and environmental hazards, including floods, landslides, collapsible ground, volcanoes, earthquakes, tsunamis, hydro-meteorological and anthropogenic hazards. External speakers are used to provide insights and expertise from an industry, regulatory and research perspective.

Numerical Hazard Modelling and Simulation: This forms an important part of the course, whereby you are trained in the application of computer models to the simulation of a range of geological and environmental hazards. You will develop skills in computer programming languages and use them to develop numerical models that are then used to simulate different natural hazard scenarios.

Catastrophe Modelling: On this unit you will cover the application of natural hazard modelling to better understand the insurance sector exposure to a range of geological and environmental hazards. It includes external speakers and sessions on the application of models for this type of catastrophe modelling.

Volcanology and Seismology: You will gain an in-depth knowledge of the nature of volcanism and associated hazards and seismology, associated seismo-tectonics and earthquake hazards. This unit is underpinned by a residential field course in the Mediterranean region that examines the field expression of volcanic, seismic and other natural hazards.

Flooding and Hydrological Hazards: These are a significant global problem that affect urban environments, one that is likely to increase with climate change. This unit will give you an in-depth background to these hazards and opportunities to simulate flooding in order to model the flood hazard and calculate the risk.

Hazard and Risk Assessment: This unit gives you the chance to study the techniques that are employed once a hazard has been identified and its likely impact needs to be measured. You will have advanced training in the application of qualitative and quantitative approaches to hazard and risk assessment and their use in the study of different natural hazards.

Field Reconnaissance and Geomorphological Mapping: These techniques are integral to the course and an essential skill for any graduate wishing to work in this area of natural hazard assessment. On this unit you will have fieldwork training in hazard recognition using techniques such as geomorphological mapping and walk-over surveys, combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn how to acquire and interpret aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS – all key tools for hazard specialists.

Geo-mechanical Behaviour of Earth Materials: You will train in geotechnical testing and description of soils and rocks to the British and international standards used by industry.

Landslides and Slope Instability: This unit will give you an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Impacts and Remediation of Natural Hazards: You will cover a growing area of study, including the impact of hazardous events on society and the environment, and potential mitigation and remediation methods that can be employed.

Independent Research Project: This provides you with an opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Student Destinations

This course provides vocational skills designed to enable you to enter this specialist environmental field. These skills include field mapping, report writing, meeting deadlines, team working, presentation skills, advanced data modelling and communication.

You will be fully equipped to gain employment in the insurance industry, government agencies and specialist geoscience companies, all of which are tasked with identifying and dealing with natural hazards. Previous destinations of our graduates have included major re-insurance companies, geological and geotechnical consultancies, local government and government agencies.

It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
The Geotechnical Engineering MSc will give you the specialist knowledge required to meet the needs of the construction, environmental and extractive industries. Read more
The Geotechnical Engineering MSc will give you the specialist knowledge required to meet the needs of the construction, environmental and extractive industries. You will learn the principles and application of geotechnical engineering in a range of settings.

The course provides an advanced knowledge and understanding of:
-Soils and rocks and their engineering properties
-Site investigation, testing, interpretation and reporting
-Construction practice and awareness of safe operation
-Key aspects of geotechnical design, such as foundations and slopes
-Application of mathematical methods and computational tools

Once you have graduated will be able to:
-Identify, generate and interpret data relevant to an engineering scenario
-Employ numerical methods for modelling and analysing problems
-Select and apply ideas, concepts and data to generate innovative designs
-Evaluate the quality of data through testing and measurement equipment in field and lab
-Present and summarise data and critically appraise its significance, using numerical techniques
-Formulate and test key hypotheses using logical and consistent quantitative or qualitative arguments

Delivery

You will study compulsory modules plus optional modules, followed by a research project written up as a dissertation. The teaching methods on the course include:
-Formal lectures
-Tutorials
-Seminars
-Open learning
-Group projects
-Computing workshops
-Laboratory work
-Fieldwork
-Site visits

Numerous contributions are made to the course by prominent visitors from the construction industry. Assessment is by formal written examinations, course work, the dissertation, and oral presentations.

Read less
The Department of Earth, Ocean and Atmospheric Sciences at UBC, one of the largest geoscience groups in Canada is composed of over 40 full-time faculty… Read more

The Department of Earth, Ocean and Atmospheric Sciences at UBC, one of the largest geoscience groups in Canada is composed of over 40 full-time faculty, a staff complement of 30, a total of 40 research associates and postdoctoral fellows. Our Department's research extends from pure science studies of the earth's deep interior, through near-surface geological studies and environmental earth science, to the oceans and atmosphere. UBC earth scientists draw on a broad base of knowledge from the basic sciences of chemistry, physics, biology and mathematics.

What makes the program unique?

UBC and the Province of British Columbia offer exceptional opportunity for combined field and laboratory research. The Canadian Cordillera offers research opportunities in:

  • petrology of intrusive and volcanic rocks of many kinds, and of metamorphic rocks of all grades
  • structural studies of complex metamorphic terrains exposed in three dimensions
  • metalliferous deposits of varied genetic types
  • mineral exploration methods; mineralogy associated with many different environments
  • complexly folded and faulted successions of bedded rocks in the mountain belts and plateaus, and in virtually undisturbed coal- and gas-bearing strata of the north-eastern province
  • numerous problems of engineering, environmental geology-related to water, slope stability, natural geological hazards, and hydrogeology (lakes, fjords, deltas, tidal flats, continental shelf, and oceanic depths provide a wide range of aquatic environments for students interested in sedimentology, geochemistry, biostratigraphy, and geological oceanography)

Numerous research units in the Department of Earth, Ocean and Atmospheric Sciences maintain excellent provisions for research and study in a wide range of geological sciences.



Read less
The course represents the natural completion of the first-cycle degree in Environmental Engineering, with the aim of preparing a graduate who, through a multidisciplinary approach that considers different aspects, i.e. Read more

The course represents the natural completion of the first-cycle degree in Environmental Engineering, with the aim of preparing a graduate who, through a multidisciplinary approach that considers different aspects, i.e. legal, chemical and physical, geological and geotechnical, hydraulic and hydrological, is able to design and manage engineering solutions with minimal impacts on the social and physical environment. The ultimate goal is to train engineers with advanced professional and scientific knowledge on the interrelations between the various physical, biological and chemical processes involved in environmental systems or systems that interact with the environment; therefore, the graduates will be able to design effectively works aimed at the treatment and disposal of wastes (liquid, solid and gaseous), and those aiming at the defense and protection of land from extreme events; they will be capable of preventing situations of degradation and risk for the environment, to assess and monitor the protection of the territory as well as the quality of the environment in its various forms, to ensure the preservation of natural resources and restore contaminated environments, including the development of research strategies and / or technology transfer.

Career opportunities

The main professional opportunities, according to the various skills acquired, are: agencies and organizations for environmental protection and / or land management; public administrations, at the national, regional, provincial and municipal levels; companies and service companies operating in the field of the treatment of solid, liquid and gaseous wastes; public and private research centers; professional services, independently or in association with interdisciplinary professional groups; design and consulting firms; construction companies operating within the fields of land protection and environmental restoration.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
Application period/deadline. March 14 - 28, 2018. High level education covering the whole mine value chain. Shared courses in geosciences and engineering, including both theory and practice. Read more

Application period/deadline: March 14 - 28, 2018

• High level education covering the whole mine value chain

• Shared courses in geosciences and engineering, including both theory and practice

• Excellent, cutting-edge infrastructure for research and education in close cooperation with the mining industry

The international master´s degree programme in Mineral Resources and Sustainable Mining (MRSM) is a two-year programme focusing on education in mining-related subjects. The programme provides master’s degrees in two fields: geosciences and engineering.

The specialisation lines in the field of geosciences are Economic Geology and Quaternary Geology and in the field of engineering sciences, they are Mining Engineering, Mineral Processing, and Applied Geophysics.

The programme will give you excellent skills and understanding on the whole mine value chain and principles of sustainable mining, including:

• Theoretical studies in geosciences and engineering

• Economical and environmental aspects of mining

• Hands-on practice in the well-equipped Oulu Mining School Research Centre and in the field

• The latest modelling and simulation education related to the topics

• Instrumental skills in mineral analytics

The two-year programme has five specialisation options:

Economic Geology focuses on characterisation of mineral deposits and geological processes behind their genesis, forming a basis for mineral exploration. Central topics include ore geology, regional geology, mineralogy, geochemistry, mining industry, and exploration. The obtained proficiency can be used in mineral exploration or exploitation of natural resources in private companies or research institutes.

Quaternary Geology covers a wide range of sub-disciplines including glacial geology, sedimentology, ore prospecting techniques, and hydrogeology. Education is also covering global change issues in the northern hemisphere and the Arctic. The programme will give in depth understanding of the properties of glacial sediments and deposits, their genesis and use for ore prospecting and for geotechnical purposes.

Mining Engineering covers a wide range of topics, including geotechnique, mining technologies, analysis of production capacity, and financing. The expertise can be used in design and management of metal mines as well as in other operations related to exploitation of raw materials.

Mineral Processing deals with the processes to economically separate valuable minerals from the ores. Oulu Mining School has unique, continuous mode in-house concentrating plant that provides an excellent infrastructure for training and education purposes. The environmental aspects of processing, health and safety in the plants, and collaboration with the mining industry are essential parts of education.

Applied geophysics concentrates on the basic phenomena in geophysics and how to apply the knowledge for example in exploration, mapping and management of natural resources, and in environmental and engineering studies. In the life cycle of a mine, geophysics plays an important role in all stages: before opening the mine in mineral exploration and resource assessment, during active mining operations in exploration for additional resources and environmental monitoring, and after the closure of the mine in environmental monitoring and mapping of potentially contaminated areas.

Graduating students understand and govern the technical, geological, financial, regulatory, environmental and social aspects of sustainable mining. Job opportunities exist in all fields related to the mining value chain including exploration, mining, mineral processing, and other kinds of rock engineering both in the industry and in research.

Email Now



Read less
The MSc in Reservoir Evaluation and Management (REM) is a unique combination of Reservoir Geoscience and Reservoir Engineering centred around the individual reservoir rather than the wider regional geology (which is covered in our sister programme MSc Petroleum Geoscience). Read more
The MSc in Reservoir Evaluation and Management (REM) is a unique combination of Reservoir Geoscience and Reservoir Engineering centred around the individual reservoir rather than the wider regional geology (which is covered in our sister programme MSc Petroleum Geoscience). The REM masters degree focuses on equipping students with the skills and knowledge they need to develop predictive models of the reservoir.

Most development decisions in oil companies are based on the predictions of computer models of the subsurface. The Reservoir Evaluation and Management MSc teaches students the most effective ways to combine the geology, geophysics and reservoir engineering disciplines in order to develop and run computer models which provide the most robust predictions.

More information about the MSc is available in Heriot-Watt's online prospectus:
http://www.postgraduate.hw.ac.uk/prog/msc-reservoir-evaluation-and-management/

About the programme

The main objective of the MSc programme is to provide a thorough training in aspects of reservoir geology, geophysics and engineering related to the appraisal and development of subsurface hydrocarbon resources.

The programme is deliberately intensive, typically consisting of working a full 5 days per week of lectures and practical work, including labs or tutorial exercises designed to teach practical work, in addition to learning theory. The programme also includes two field trips to observe geology in the field for those with and without prior geological experience.

The most challenging and fulfilling aspect of the Reservoir Evaluation and Management programme is the project skills, particularly the team project, where students are tasked to propose a development plan for a real field. The project integrates all the learning in reservoir geosciences and engineering disciplines and reinforces the learning through team work.

Topics covered:
=============
• Reservoir concepts
• Reservoir sedimentology
• Rock mechanics, geomechanics and geophysics
• Formation evaluation
• Well testing and production logging
• Geological Modelling and management
• Reservoir engineering
• Reservoir simulation

For more information on the programme content, including course descriptions, please visit: http://www.postgraduate.hw.ac.uk/prog/msc-reservoir-evaluation-and-management/

Professional recognition

The programme is accredited by the Energy Institute.

Career opportunities

Graduates of the Reservoir Evaluation and Management MSc are highly sought after by all major oil and gas operators and service companies worldwide. They go on to work in a variety of roles, including Geoscience and Reservoir Engineering. The programme also provides an excellent springboard for graduates wishing to pursue a career in research.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent.

We offer a range of English language courses: http://www.hw.ac.uk/study/english.htm

Read less

Show 10 15 30 per page



Cookie Policy    X