• Durham University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Arden University Featured Masters Courses
Middlesex University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Loughborough University Featured Masters Courses
"geological" AND "enginee…×
0 miles

Masters Degrees (Geological Engineering)

  • "geological" AND "engineering" ×
  • clear all
Showing 1 to 15 of 56
Order by 
The University of British Columbia Geological Engineering programme is a postgraduate course awarding a research-based Master of Applied Science or a taught Master of Engineering. Read more

The University of British Columbia Geological Engineering programme is a postgraduate course awarding a research-based Master of Applied Science or a taught Master of Engineering.

Students complete training and research projects according to their qualification pathway.

Program Overview

The Geological Engineering Program is intended for students interested in the application of earth sciences principles to engineering problems. While most geological engineering degree programs are based in the Department of Earth, Ocean and Atmospheric Sciences, students may also base their studies in allied Applied Science departments such as Civil or Mining Engineering. The program is highly interdisciplinary and draws upon courses, laboratories, and faculty members from the departments of Earth, Ocean and Atmospheric Sciences, Civil Engineering, Mining Engineering, Forestry, Geography, and others. Graduate students are often co-supervised by faculty members from different departments.

Geological engineering faculty members in the Department of Earth, Ocean and Atmospheric Sciences have research interests in the following general areas:

- landslides, debris flows, engineering geology, slope stability

- groundwater hydrology, groundwater contamination and remediation, reactive transport modeling, environmental geochemistry

- rock engineering, rock slopes, and tunneling

Other research areas include geotechnical engineering, environmental geology, engineering geology, economic geology, and applied geophysics. The specific fields of study may involve geomorphology and terrain analysis, groundwater hydrology, natural hazards, slope stability, petroleum and coal geology, coalbed methane, mineral prospecting and valuation, and other similar subjects. Students are encouraged to consult individual faculty members for information about current research areas.

Admission to graduate studies in geological engineering is open only to students with an undergraduate degree in engineering or, at the discretion of the program director, to students with sufficient engineering work experience.

Quick Facts

- Degree: Master of Applied Science (research-based), Master of Engineering (course-based, 1 year)

- Specialization: Geological Engineering

- Subject: Engineering

- Mode of delivery: On campus

- Faculty: Faculty of Science

Funding

The following postgraduate funding may be available to study Geological Engineering at the University of British Columbia.

Canadian postgraduate funding

Funding from FindAMasters:



Read less
Please note. From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. However, you can still submit an application for review. Read more

Please note: From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. However, you can still submit an application for review. If you meet the usual entry requirements, we will hold your application until we can assess whether further places can be offered. This will likely be the end of July-early August 2017 when we can be more confident of numbers. Please contact our if you have any questions.

This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering.

It gives you a grounding in the application of geological principles to a wide range of fields appropriate to civil and mining engineering.

Studying engineering geology will provide you with excellent job opportunities as a result of high calibre academic training, as well as the development of strong skills in terms of both critical and independent thought and team work.

Most of our graduates join environmental consulting companies and consulting engineers, while others go on to PhD studies.

Engineering Geologists

Engineering Geologists are found worldwide working on a wide range of problems, from foundation and mine design to the assessment of seismic and landslide risk.

Their understanding of how groundwater and pollutants travel through the ground may impact on the safe design and construction of excavations and waste disposal sites.

They use geological and geomorphological mapping to identify geological hazards and allow for safe development. Their understanding of the ground and how it responds to static and dynamic loads can influence safe and sustainable siting and design of engineering structures.

It is vital that we design and build in a manner which is safe, environmentally friendly, cost effective and sensitive to climate change.

Engineering geologists, with a unique understanding of the ground, and a broad appreciation of rates of geological processes over engineering time, are intimately involved in this process.

Course highlights:

  • Your teaching will be delivered by the School of Earth and Environment with substantial input from the School of Civil Engineering.
  • The University frequently hosts the Yorkshire Geotechnical Group (Institution of Civil Engineers) and is involved with the Yorkshire Regional Group of the Geological Society.
  • Complete a 4 month individual dissertation project often involving organisations outside the University such as consulting engineers, civil engineering contractors and the British Geological Survey.
  • The School's £23m building gives you access to world-class research, teaching and laboratory facilities, many of which will be available to you throughout your studies.

Benefit from our strong connections with industry:

  • We have been training Engineering Geologists over 50 years and maintain links with alumni who can be found in many companies across the globe.
  • Industry colleagues contribute to the taught programme and an Industry Advisory Board informs the content of this course.

Accreditation

When you choose a degree with accredited status, you can be assured that the teaching is of the highest standard. The quality and relevance of our teaching has been recognised by an independent body of academics and industrialists through our Geological Society of London Professional Accreditation.

If you have an appropriate degree, our Geological Society accreditation will reduce the amount of experience required for you to reach Chartered Geologist (CGeol) status, an important career step in Geoscience.

Our designation as a “Technical MSc” through Engineering Council means that if you have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree, the degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng). In addition the degree is also an accredited European Engineering degree. 

Course content

You will take 2 terms of lectures (class and computer-based practical work) and laboratory classes, followed by approximately 4 months of individual work, leading to the submission of a dissertation. You will also take part in supervised fieldtrips and ground investigation and construction site visits.

You can also study this course part-time. Please contact the if you are already working within the industry, we can discuss possible routes to allow continued employment.

Course structure

Compulsory modules

  • Geological Investigation and Characterisation 30 credits
  • Soils Engineering 30 credits
  • Rock Engineering 30 credits
  • Engineering Geology: Dissertation Project 60 credits
  • Hydrogeology and Contaminant Processes 15 credits
  • Hazards, Resilience and Sustainable Engineering 15 credits

For more information on typical modules, read Engineering Geology MSc Full Time in the course catalogue

For more information on typical modules, read Engineering Geology MSc Part Time in the course catalogue

Learning and teaching

You will be taught via lectures, individual and group class-based practicals, laboratory practicals, field courses and independent project work.

Facilities

  • Access your own dedicated computing suite for use by Masters students only.
  • Collect and interpret data related to the geotechnical and mining sectors around the world in our Geotechnical and Engineering geology laboratories.
  • Carry out soil and rock description and testing including uniaxial, triaxial testing, direct shear tests, slake durability and permeability tests all to ISRM, CIRIA, EuroCode and other recognised standards.
  • For independent project work, access state-of-the-art methods for establishing the composition of rocks and soils through thin section analysis, X-ray diffraction, Scanning Electon Microscopy and other advanced techniques.
  • Use a suite of industry-standard software packages including RocScience, ArcGIS and gINT.

Assessment

You will be assessed on your written and oral assignments, field-based assessments and exams, as well as seminars and a dissertation project.



Read less
The Master of Engineering Studies in Geotechnical Engineering programme aims to further educate graduate students in the discipline of geotechnical engineering so as to enhance their contribution to engineering practice. Read more

Invest in your future

The Master of Engineering Studies in Geotechnical Engineering programme aims to further educate graduate students in the discipline of geotechnical engineering so as to enhance their contribution to engineering practice.

Graduates will be able to take leading roles in planning, evaluating, designing, constructing, maintaining, and managing the geotechnical infrastructure.

The programme alsos provide valuable background expertise for those wishing to enter into asset management or to begin to pursue a career in research and development.

The Master of Engineering Studies in Geotechnical Engineering programme aims to build on the geotechnical content of the BE (Civil) degree and develop graduates with enhanced ability to contribute to geotechnical engineering practice.

New Zealand is a stimulating country in which to practise geotechnical engineering with its young and varied geology, seismic activity and diverse rainfall patterns. Many unique problems occur here as a result and these present challenges for innovative and novel solutions.

The programme has been designed with courses relevant to the New Zealand geotechnical environment, to fill the needs of the country.

There is a large demand for geotechnical engineers in the local workplace, as well as a worldwide shortage of geotechnical professionals.

Programme Structure

Taught (120 points)
The Geotechnical Engineering specialisation is offered as a taught masters (eight courses).

Electives

Elective enrolments may depend on your prior study and professional experience, but ultimately, choosing the appropriate courses and topics can allow you to concentrate on and develop strengths in your energy field of choice.

Our broad list of electives include courses in:
• Design of Earthquake Resistant Foundations
• Earthquake Engineering
• Rock Mechanics and Excavation Engineering
• Soil Behaviour
• Geotechnical Earthquake Engineering
• Engineering Geological Mapping
• Geological Hazards
• Advanced Engineering Geology
• Hydrogeology
• Studies in Civil Engineering
• Foundation Engineering
• Slope Engineering
• Engineering Geology
• Ground Improvements and Geosynthetics Engineering
• Geotechnical Modelling
• Advanced Mathematical Modelling
• Surface Water Quality Modelling
• Risk, LCA and Sustainability

Next generation research at the Faculty of Engineering

The Faculty of Engineering is dedicated to providing you with all the facilities, flexibility and support needed for you to develop the skills needed for the workforce. We boast research themes and programmes that provoke interdisciplinary projects, bringing together expertise from our five departments, other faculties, and industry partners and research organisations. Collaborative study is strongly encouraged – postgraduates in particular have the benefit of experiencing cohorts with diverse academic and industry backgrounds.

You will gain access to world-renowned experts who actively demonstrate the positive impacts research have on society. High-performance equipment and labs beyond industry standards are at your fingertips. Our facilities extend beyond study hours – we take pride in our involvement in student events and associations across the University, and are dedicated to providing you with academic, personal and career advice. We encourage you to take advantage of our resources, and use them to expand the possibilities of your research and career path.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. Read more

Overview

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. As such it is also an opportunity for candidates from a different Engineering background to develop key Mechanical Engineering knowledge and skills required for their professional development. A key objective of the programme is to be an accredited route to becoming Chartered Engineer.

This programme makes use of masters-level courses in the Energy Sciences and Manufacture & Design complemented with specialist courses from relevant MSc courses offered by the institute. We have seen a growing need for an advanced mechanical engineering programme at the request of applicants, and our industry partners. This programme has been specifically developed to meet this need and to encourage students of this field into further learning.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 6 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Semester One - Mandatory
- B81PI Professional and Industrial Studies
This course is specifically designed to meet the master’s level outcome requirements in the areas of professional development and practice for chartered engineering status. This multi-disciplinary course uses industrial speakers and speakers from those in the university involved in bridging the gap between academia and industrial application.

- B51GS Specialist Engineering Technologies 1
The first of the specialist engineering technologies courses is based on computational fluid dynamics and assessed by a group project

Optional (Choose two)
- B51DE Engineering Design
In this course students interact with companies in a real life small R&D project supplied by the industrial partners. Working in teams, the students have to manage the design of a prototype, product or system and interact with the industrial contact putting into practice problem-solving skills from other engineering topics studied elsewhere in the programme.

- B51EK Fluids 1
Fluid mechanics applied to aerodynamics, including ideal flows, boundary layers, and aerofoils and their use for analysis and design purposes.

- B51EM Advanced Mechanics of Materials 1
Advanced classical mechanics including 3D stress and strain with particular application to thin walled vessels. Fatigue analysis and design for fatigue limit.

- B51EO Dynamics 1
To provide students with a thorough understanding of vibration theory and an appreciation of its application in an engineering environment

- B51EQ Thermodynamics 1
Thermodynamic cycles including heat engines and reverse heat engines and means of evaluating best performance.

- G11GA Flame Appraisal
Introduction to the stages required for evaluating an oilfield for production. This covers geological considerations and fluid flow from oil bearing rock.

Semester Two – Mandatory

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B51HB Failure Accident Analysis
To acquaint students with the potential causes of material, structure or component failure; framework under which a failure or forensic engineering investigation should be carried out and give them the opportunity to work case studies through from information-gathering to preparation of reports and an awareness of fire and explosion engineering.

- B51GT Specialist Engineering Technologies 2
To present advanced theory and practice in important or emerging areas of technology including non-linear final element materials to include contact mechanics, design of components subjected to high stress applications.

Optional (Choose one)
- B51EL Fluids 2
To provide a methodology for analysing one-dimensional compressible flow systems.

- B51EN Advanced Mechanics of Materials 2
To provide students with an opportunity to: carry out advanced analyses of mechanics of materials problems; analyse mechanics of materials where time is a significant additional variable; use final element analysis for cases involving viscoelasticity and complex geometry
engage with the findings of recent research in a mechanics of materials topic

- B51EP Dynamics 2
To provide students with a thorough understanding of control theory and an appreciation of the subject of environmental acoustics and passive noise control

- B51ER Thermodynamics 2
Investigation of heat transfer mechanisms with a view to the design of effective heat exchangers for given operating conditions. The study of radiation heat transfer and combustion equilibrium.

- B51DF Engineering Manufacture
To provide the student with a detailed understanding of the importance and integration of advanced manufacturing technology and manufacturing systems within the context of product engineering. On completion, the students should have acquired a detailed understanding of the product development process from initial conception through to product support as well as appreciate the impact of each stage of the process on the business and organisationally with respect to information dependence and manufacturing processes employed.

- G11GD Flame Development
A continuation of Flame Appraisal, this course looks at the well-head arrangement for oil extraction. This is an introduction to drilling engineering and the techniques required for oil extraction.

Semester 3 – Mandatory

- B51MD Masters Dissertation
An individual project led by a research active member of staff on a current research theme with the aim of leading to the production of a journal article.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Advanced Mechanical Engineering. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less
Costs. Fees for 2016/17 TBC. 2015-2016 Irish/EU €8,500. Plus subsistence expenses (food etc.) associated with field trips, including the Tidal Energy module based at Queen’s Marine Laboratory, Portaferry, Northern Ireland. Read more
Costs: Fees for 2016/17 TBC. 2015-2016 Irish/EU €8,500. Plus subsistence expenses (food etc.) associated with field trips, including the Tidal Energy module based at Queen’s Marine Laboratory, Portaferry, Northern Ireland. Software necessary for assignments will be provided in UCC laboratories but may not be available for remote use. Optional sea safety training.

Overview

The programme covers a range of engineering and non-engineering topics relevant to the marine renewable energy industry, which is expected to grow rapidly in the coming decade. This will lead to a requirement for engineers with good knowledge of engineering fundamentals as well as detailed knowledge of how wind, wave and tidal devices will be designed, deployed and operated. A key aspect of the programme is the provision of specially-developed advanced modules in marine renewable energy which are not available in any other master’s course. This is an all-Ireland programme, hosted by UCC, delivered in partnership with the following academic institutions: Cork Institute of Technology, Dublin Institute of Technology, National University of Ireland, Maynooth, Queen’s University Belfast, University College Dublin and the University of Limerick.

Course Details

Students take 90 credits as follows:

In Part I students must take the five core modules (unless these or equivalent courses have already been taken), to a total of 25 credits. Students also choose electives from the list below, or may, with the approval of the Programme Director, choose other modules from the University’s Calendar.

NB: For the purposes of this programme it has been agreed that all non-UCC modules are treated as either 5 or 10 credits.

Part II consists of a Marine Renewable Energy Research Project (NE6020), to the value of 30 credits, completed over the summer months, either in industry or in an academic research laboratory in one of the partner institutions. Projects are offered subject to availability of suitable proposals from industry, and will be offered to students based on order of merit of results achieved in Part I. Students are also encouraged to make efforts to secure their own placement from suitable industrial hosts, outside of the list provided.

In every case, the final choice of modules is subject to the approval of the Programme Director of the MEngSc (Marine Renewable Energy). Students may take a maximum total of 15 credits only of undergraduate modules on this programme.

Part I
Core Modules
CE4020 Environmental Hydrodynamics (5 credits; UCC)
NE6003 Wind Energy (5 credits; UCC)
NE6005 Ocean Energy (5 credits; UCC)
NE6010 Advanced Topics in Marine Renewable Energy (5 credits; All institutions)
NE6906 Tidal Energy (5 credits; QUB; 1-week block)

Elective Modules

Students select modules to the value of 35 credits from the following list, (or from elsewhere in the UCC Calendar, subject to approval):

AC6301 Innovation Finance (5 credits) (UCC)
NE3003 Sustainable Energy (5 credits; UCC)
CE4013 Harbour & Coastal Engineering (5 credits; UCC)
CE6024 Finite Element Analysis (5 credits; UCC)
EE4001 Power Electronics, Drives & Energy Conversion (5 credits; UCC)
EE4010 Electrical Power Systems (5 credits; UCC)
EV4012 Environmental Impact Assessments (5 credits) (UCC)
GL6007 Practical Offshore Geological Exploration (5 credits; offered subject to availability of survey vessel time) (UCC)
IS6306 Technology Business Planning (5 credits) (UCC)
LW6104 Intellectual Property Law for High-Tech Entrepreneurs (5 credits) (UCC)
NE6007 Energy Systems Modelling (5 credits; UCC)
NE6901 Control Systems (5 credits; NUIM - EE612)
NE6902 Maintenance & Reliability (5 credits; CIT - MANU8003)

Part II
NE6020 Marine Renewable Energy Research Project (30 credits; All institutions; Summer)

Application Procedure

Application for this programme is on-line at http://www.pac.ie/ucc. Places on this programme are offered in rounds. The closing dates for each round can be found here (http://www.ucc.ie/en/study/postgrad/how/applicationclosingdates/). For full details of the application procedure click How to apply - http://www.ucc.ie/en/study/postgrad/how/

Course Practicalities

You will be studying a range of engineering and non-engineering topics relevant to a career in the marine renewable energy industry.

The programme will include modules in engineering topics such as Wind Energy, Wave Energy, Tidal Energy, Ocean-Structure Interactions; Ocean Energy Device Design; Control Engineering; Mechanical Engineering; Grid Integration and Storage; Marine Operations & Robotics.

The course content will be delivered via blended learning, with some modules presented in traditional lecture format, and some modules delivered remotely using e-learning technologies. All modules will have a significant element of continuous assessment throughout the year. The Tidal Energy module is delivered during a one-week field visit to the Portaferry research laboratory of Queen’s University Belfast.

A significant element of the programme is a R&D project carried out in conjunction with either an industry partner or an academic research group, with the final three months spent working on the project on placement with the partner.

Non-engineering topics available include Intellectual Property Law; Innovation Finance; Environmental Impact Assessment; Practical Offshore Geological Exploration.

Assessment

Taught modules (total >= 60 ECTS): will be assessed via a mixture of continuous assessment (assignments and mini design projects) and traditional examinations. This depends on the contributing institution, for example in NUIM, coursework and project-based learning is emphasised. The project module (30 ECTS) will be assessed by means of: oral presentation and seminar; logbook; written report, with input from the industrial placement supervisor.

Read less
The programme links the fundamental disciplines of Civil Engineering (design and construction of civil and environmental structures and infrastructures)… Read more

Mission and Goals

The programme links the fundamental disciplines of Civil Engineering (design and construction of civil and environmental structures and infrastructures) with a broad overview of the most advanced Risk Management tools, with particular attention to forecasting and prevention issues concerning structures and infrastructures and soil, on which they are built or embedded, due to natural and anthropic causes.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering-for-risk-mitigation/

Career Opportunities

The graduate in Civil Engineering for Risk Mitigation deals with the design of structures and infrastructures, planning, control and management of town and land systems, evaluation of the environmental impact of structures and infrastructures as well as research in public and private institutes. He/she can therefore find employment with construction companies, design and consultancy companies and has access to Public Administration offices.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Civil_Eng__Risk_Mitigation.pdf
The Master of Science programme is aimed at providing knowledge and expertise in the field of structural and non-structural measures for the mitigation of natural and anthropic hazards. It offers a synthesis of fundamental and advanced civil engineering tools for Risk Management, integrated by competences in different areas (land use planning, economics and finance, communication, law, psychology). The graduate in C.E.R.M. deals with the design of structures and infrastructures, planning, control and management of town and land systems, and he/she is able to evaluate the environmental impact of structures and infrastructures. He/she can find employment in construction, design and consultancy companies and may have access to contests for positions in the Public Administration.
The programme is taught in English

Subjects

In the first year the following topics are proposed:
- Numerical Methods for Partial Differential Equations
- Soil-Structure Interaction
- Tools for Risk Management
- Flood Risk
- Structural Analysis
- Fundamentals of Gis

In the second year students choose three thematic modules among the followings: Engineering Structures for the Environment; Geo-Engineering Techniques for Unstable Slopes; Emergency Plans for Hydro-Geological Risk; Structure Retrofitting for Seismic and Exceptional Loads; Transport management in emergency planning; Hazards from Industrial Sites: Process Analysis and Risk Assessment.

The final project is devoted to the solution of a field case.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering-for-risk-mitigation/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering-for-risk-mitigation/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. Read more
The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. It provides you with advanced conceptual understanding, detailed factual knowledge, specialist technical skills and an awareness of responsibilities to society and the environment.

Your degree will cover areas such as:
-Engineering geology principles and applications
-Site investigation, testing, interpretation and reporting processes
-Analysing diverse geological evidence to assess hazards and risks arising from natural and man-made phenomena
-Geotechnical design

By studying at Newcastle you undertake research with students from civil engineering, geological and other scientific backgrounds. Cross-pollination of academic training and experience is actively encouraged.

Delivery

You will study compulsory modules with a choice of optional modules in blocks of one or two weeks. Assessment is by formal written examinations, course work and oral presentations. You will write up your research project as a dissertation. A full range of teaching methods are used on the course:
-Lectures
-Tutorials
-Seminars
-Open learning
-Group projects
-Computing workshops
-Laboratory
-Fieldwork
-Site visits

Numerous contributions are made to the course by prominent visitors from the construction industry.

At the end of semester two you will benefit from an overseas residential field trip. This allows you to apply your technical knowledge and explore a wide range of exemplar sites.

Accreditation

The course is accredited by the Joint Board of Moderators (JBM) (comprising ICE, IStructE, CIHT and IHIE), as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for students with an Accredited CEng (Partial) BEng Honours degree or Accredited IEng (Full) BEng/BSc Honours.

It is also accredited by the Geological Society (GeolSoc).

Read less
The Department of Geological Sciences is designed to foster high-caliber student research that will lead to publishable results. The master's degree is intended to prepare students for a job in industry or for entrance into a PhD program. Read more
The Department of Geological Sciences is designed to foster high-caliber student research that will lead to publishable results. The master's degree is intended to prepare students for a job in industry or for entrance into a PhD program. The doctoral degree trains students for work as government research scientists, industry research scientists or academic scientists.

Research activities in the Department of Geological Sciences are far-reaching and often interdisciplinary. A major focus of the department is earth surface processes, including biogeochemistry, geochemistry, geomicrobiology, and sedimentology. Other research areas include climate change, energy and environmental processes, environmental geosciences, experimental geology, and petrology.

The Department of Geological Sciences has research center affiliations with the Center for Integrated Watershed Studies, Materials Science Program, and is in development of projects with Basin Analysis Research Center. Through these strong research collaborations and projects graduates of the Geological Sciences programs have gained employment as geologists in federal programs such as NASA, Sandia National Lab, and US Geological Survey; and in private energy, environmental and mining companies such as Conoco-Phillips, Resource Env. Management, Inc, and SECOR International.

The Master of Science degree is a two-year program in which the student concentrates on graduate level course work during the first year and on thesis research during the second year. The majority of students in the masters program have completed a bachelors degree in the geological sciences, but students with bachelors degrees in chemistry, physics, biology, mathematics or engineering are also encouraged to apply.
Our Master of Science (M.S.) degree in Geological Sciences is intended to prepare students for a job in industry or as a stepping stone to a Ph.D. degree either at Binghamton or another university. M.S. students typically take a year of coursework followed by a year of research that culminates in a publically-defended thesis. Students are encouraged to submit their thesis in the form of a publication-ready manuscript.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended
- Two letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students are advised to contact the Programme Coordinator (Prof. Andy Wheeler in advance of application via http://www.pac.ie (PAC code CKS82) to discuss possible project areas.

Visit the website: https://www.ucc.ie/en/bees/courses/postgrad/

Course detail

Students undertake a total workload equivalent to 90 credits over the 12 month programme, the principal element of which is the completion of a major research thesis of approximately 25,000 words. In parallel, students must take and pass taught modules to the value of 20 credits.

Modules

Students take 20 credits from the following available modules:

GL6002 Igneous and Metamorphic Terrain Mapping (10 credits)
GL6003 Coal Exploration (5 credits)
GL6005 Basin Analysis and Sedimentary Fancies Analysis (10 credits)
GL6006 Geotechnical Investigations of Soils and Rocks (5 credits)
GL6007 Practical Offshore Geological Exploration (5 credits)
GL6008 Geological Application of Geographical Information Systems (5 credits)
GL6010 Field Exploration Methods and Professional Development (5 credits)
GL6011 Structural Geology for Hydrocarbon Exploration (5 credits)
GL6012 Structural Geology for Mineral Exploration (5 credits)
GL6013 Geology of Ore Deposits (5 credits)
GL4002 Petroleum Geology and Basin Analysis (5 credits)
GL4003 Applied Geophysics (5 credits)
GL4004 Advanced Igneous Processes (5 credits)
GL4011 Economic Geology (5 credits)
GL4024 Exceptional Glimpses of Ancient Life (5 credits)
GL4027 Geochemistry (5 credits)

Students may elect to take other, relevant modules (subject to availability) that are offered by the University that are not listed above to fulfil the elective requirement with approval from the MRes coordinator, research supervisor and Head of School of Biological, Earth and Environmental Science.

Students will also undertake independent research towards completion of a research thesis to a student workload equivalent of 70 credits on a selected topic in Geological Science.

Current projects

- Palynology and palynofacies of the Booley Bay Formation of Co.Wexford
- Palaeoenvironments recorded in the Lias of Northern Ireland
- Taphonomy of insects in the Daohuguo Konservat-Lagerstätte (Jurassic, Inner Mongolia)
- Characterising deformation in unconsolidated sediments
- Early tectonic fabric development in sedimentary rocks
- Petrological and structural mapping of the Fanad Lineament, Co. Donegal
- Quantifying the climate-controlled Pleistocene erosion of the Irish landmass (over the last 2.5 ma)

Programme Learning Outcomes

On successful completion of this programme, students should be able to:

- Carry out an independent and original research project to address an emerging question in Geological Sciences.
- Prepare and write a dissertation of their research project in a critical, logical and systematic manner, in keeping with the standards of postgraduate research.
- Display advanced theoretical knowledge and practical understanding within a research area of Geological Science.
- Understand the basis and application of field and laboratory methods used in Geological Science and a knowledge of their limitations
- Avail of relevant workshops or modules to increase scientific technical skills
- Source, review, critically assess and evaluate relevant primary literature and summarize material for presentation to peers and for inclusion within the research dissertation.
- Design, write and defend a scientific research proposal based on their current research topic or a proposed topic.
- Evaluate their skill set and identify skills that should be acquired.
- Develop professional practice skills including team-work, negotiation, time-management, scientific writing and oral communication.

How to apply

MRes Animal and Plant Science Brochure: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinAnimalandPlantScience.pdf

Prospective students should also consult the following guide to procedures realting to applying for the MRes Animal and Plant Science: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinANimalandplantscience-Studentguidetoproceduresbeforeandafterentrytotheprogramme24March2016.pdf

Read less
This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes. Read more

Why take this course?

This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes.

You will be fully trained by internationally recognised experts in hazard identification, terrain evaluation techniques as well as hazard modelling and risk assessment techniques. Providing you with the essential skills to monitor, warn and help control the consequences of natural hazards.

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, hazard modelling and mapping, soil mechanics and rock mechanics, contaminated land, flooding and slope stability.

Here are the units you will study:

Natural Hazard Processes: The topic of this unit forms the backbone of the course and give you an advanced knowledge of a broad range of geological and environmental hazards, including floods, landslides, collapsible ground, volcanoes, earthquakes, tsunamis, hydro-meteorological and anthropogenic hazards. External speakers are used to provide insights and expertise from an industry, regulatory and research perspective.

Numerical Hazard Modelling and Simulation: This forms an important part of the course, whereby you are trained in the application of computer models to the simulation of a range of geological and environmental hazards. You will develop skills in computer programming languages and use them to develop numerical models that are then used to simulate different natural hazard scenarios.

Catastrophe Modelling: On this unit you will cover the application of natural hazard modelling to better understand the insurance sector exposure to a range of geological and environmental hazards. It includes external speakers and sessions on the application of models for this type of catastrophe modelling.

Volcanology and Seismology: You will gain an in-depth knowledge of the nature of volcanism and associated hazards and seismology, associated seismo-tectonics and earthquake hazards. This unit is underpinned by a residential field course in the Mediterranean region that examines the field expression of volcanic, seismic and other natural hazards.

Flooding and Hydrological Hazards: These are a significant global problem that affect urban environments, one that is likely to increase with climate change. This unit will give you an in-depth background to these hazards and opportunities to simulate flooding in order to model the flood hazard and calculate the risk.

Hazard and Risk Assessment: This unit gives you the chance to study the techniques that are employed once a hazard has been identified and its likely impact needs to be measured. You will have advanced training in the application of qualitative and quantitative approaches to hazard and risk assessment and their use in the study of different natural hazards.

Field Reconnaissance and Geomorphological Mapping: These techniques are integral to the course and an essential skill for any graduate wishing to work in this area of natural hazard assessment. On this unit you will have fieldwork training in hazard recognition using techniques such as geomorphological mapping and walk-over surveys, combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn how to acquire and interpret aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS – all key tools for hazard specialists.

Geo-mechanical Behaviour of Earth Materials: You will train in geotechnical testing and description of soils and rocks to the British and international standards used by industry.

Landslides and Slope Instability: This unit will give you an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Impacts and Remediation of Natural Hazards: You will cover a growing area of study, including the impact of hazardous events on society and the environment, and potential mitigation and remediation methods that can be employed.

Independent Research Project: This provides you with an opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Student Destinations

This course provides vocational skills designed to enable you to enter this specialist environmental field. These skills include field mapping, report writing, meeting deadlines, team working, presentation skills, advanced data modelling and communication.

You will be fully equipped to gain employment in the insurance industry, government agencies and specialist geoscience companies, all of which are tasked with identifying and dealing with natural hazards. Previous destinations of our graduates have included major re-insurance companies, geological and geotechnical consultancies, local government and government agencies.

It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
The Geotechnical Engineering MSc will give you the specialist knowledge required to meet the needs of the construction, environmental and extractive industries. Read more
The Geotechnical Engineering MSc will give you the specialist knowledge required to meet the needs of the construction, environmental and extractive industries. You will learn the principles and application of geotechnical engineering in a range of settings.

The course provides an advanced knowledge and understanding of:
-Soils and rocks and their engineering properties
-Site investigation, testing, interpretation and reporting
-Construction practice and awareness of safe operation
-Key aspects of geotechnical design, such as foundations and slopes
-Application of mathematical methods and computational tools

Once you have graduated will be able to:
-Identify, generate and interpret data relevant to an engineering scenario
-Employ numerical methods for modelling and analysing problems
-Select and apply ideas, concepts and data to generate innovative designs
-Evaluate the quality of data through testing and measurement equipment in field and lab
-Present and summarise data and critically appraise its significance, using numerical techniques
-Formulate and test key hypotheses using logical and consistent quantitative or qualitative arguments

Delivery

You will study compulsory modules plus optional modules, followed by a research project written up as a dissertation. The teaching methods on the course include:
-Formal lectures
-Tutorials
-Seminars
-Open learning
-Group projects
-Computing workshops
-Laboratory work
-Fieldwork
-Site visits

Numerous contributions are made to the course by prominent visitors from the construction industry. Assessment is by formal written examinations, course work, the dissertation, and oral presentations.

Read less
UBC and the Province of British Columbia offer exceptional opportunity for combined field and laboratory research. The Canadian Cordillera offers research opportunities in. Read more

Program Overview

UBC and the Province of British Columbia offer exceptional opportunity for combined field and laboratory research. The Canadian Cordillera offers research opportunities in:
- petrology of intrusive and volcanic rocks of many kinds, and of metamorphic rocks of all grades
- structural studies of complex metamorphic terrains exposed in three dimensions
- metalliferous deposits of varied genetic types
- mineral exploration methods; mineralogy associated with many different environments
- complexly folded and faulted successions of bedded rocks in the mountain belts and plateaus, and in virtually undisturbed coal- and gas-bearing strata of the north-eastern province
- numerous problems of engineering, environmental geology-related to water, slope stability, natural geological hazards, and hydrogeology (lakes, fjords, deltas, tidal flats, continental shelf, and oceanic depths provide a wide range of aquatic environments for students interested in sedimentology, geochemistry, biostratigraphy, and geological oceanography)

Numerous research units in the Department of Earth, Ocean and Atmospheric Sciences maintain excellent provisions for research and study in a wide range of geological sciences.

Quick Facts

- Degree: Master of Science
- Specialization: Geological Sciences
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Options
- Faculty: Faculty of Science

Read less
Application period/deadline. November 1, 2017 - January 24, 2018. High level education covering the whole mine value chain. Shared courses in geosciences and engineering, including both theory and practice. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• High level education covering the whole mine value chain

• Shared courses in geosciences and engineering, including both theory and practice

• Excellent, cutting-edge infrastructure for research and education in close cooperation with the mining industry

The international master´s degree programme in Mineral Resources and Sustainable Mining (MRSM) is a two-year programme focusing on education in mining-related subjects. The programme provides master’s degrees in two fields: geosciences and engineering.

The specialisation lines in the field of geosciences are Economic Geology and Quaternary Geology and in the field of engineering sciences, they are Mining Engineering, Mineral Processing, and Applied Geophysics.

The programme will give you excellent skills and understanding on the whole mine value chain and principles of sustainable mining, including:

• Theoretical studies in geosciences and engineering

• Economical and environmental aspects of mining

• Hands-on practice in the well-equipped Oulu Mining School Research Centre and in the field

• The latest modelling and simulation education related to the topics

• Instrumental skills in mineral analytics

The two-year programme has five specialisation options:

Economic Geology focuses on characterisation of mineral deposits and geological processes behind their genesis, forming a basis for mineral exploration. Central topics include ore geology, regional geology, mineralogy, geochemistry, mining industry, and exploration. The obtained proficiency can be used in mineral exploration or exploitation of natural resources in private companies or research institutes.

Quaternary Geology covers a wide range of sub-disciplines including glacial geology, sedimentology, ore prospecting techniques, and hydrogeology. Education is also covering global change issues in the northern hemisphere and the Arctic. The programme will give in depth understanding of the properties of glacial sediments and deposits, their genesis and use for ore prospecting and for geotechnical purposes.

Mining Engineering covers a wide range of topics, including geotechnique, mining technologies, analysis of production capacity, and financing. The expertise can be used in design and management of metal mines as well as in other operations related to exploitation of raw materials.

Mineral Processing deals with the processes to economically separate valuable minerals from the ores. Oulu Mining School has unique, continuous mode in-house concentrating plant that provides an excellent infrastructure for training and education purposes. The environmental aspects of processing, health and safety in the plants, and collaboration with the mining industry are essential parts of education.

Applied geophysics concentrates on the basic phenomena in geophysics and how to apply the knowledge for example in exploration, mapping and management of natural resources, and in environmental and engineering studies. In the life cycle of a mine, geophysics plays an important role in all stages: before opening the mine in mineral exploration and resource assessment, during active mining operations in exploration for additional resources and environmental monitoring, and after the closure of the mine in environmental monitoring and mapping of potentially contaminated areas.

Graduating students understand and govern the technical, geological, financial, regulatory, environmental and social aspects of sustainable mining. Job opportunities exist in all fields related to the mining value chain including exploration, mining, mineral processing, and other kinds of rock engineering both in the industry and in research.

For all enquiries, please refer to our enquiry form: http://www.oulu.fi/university/admissions-contact



Read less
The MSc in Reservoir Evaluation and Management (REM) is a unique combination of Reservoir Geoscience and Reservoir Engineering centred around the individual reservoir rather than the wider regional geology (which is covered in our sister programme MSc Petroleum Geoscience). Read more
The MSc in Reservoir Evaluation and Management (REM) is a unique combination of Reservoir Geoscience and Reservoir Engineering centred around the individual reservoir rather than the wider regional geology (which is covered in our sister programme MSc Petroleum Geoscience). The REM masters degree focuses on equipping students with the skills and knowledge they need to develop predictive models of the reservoir.

Most development decisions in oil companies are based on the predictions of computer models of the subsurface. The Reservoir Evaluation and Management MSc teaches students the most effective ways to combine the geology, geophysics and reservoir engineering disciplines in order to develop and run computer models which provide the most robust predictions.

More information about the MSc is available in Heriot-Watt's online prospectus:
http://www.postgraduate.hw.ac.uk/prog/msc-reservoir-evaluation-and-management/

About the programme

The main objective of the MSc programme is to provide a thorough training in aspects of reservoir geology, geophysics and engineering related to the appraisal and development of subsurface hydrocarbon resources.

The programme is deliberately intensive, typically consisting of working a full 5 days per week of lectures and practical work, including labs or tutorial exercises designed to teach practical work, in addition to learning theory. The programme also includes two field trips to observe geology in the field for those with and without prior geological experience.

The most challenging and fulfilling aspect of the Reservoir Evaluation and Management programme is the project skills, particularly the team project, where students are tasked to propose a development plan for a real field. The project integrates all the learning in reservoir geosciences and engineering disciplines and reinforces the learning through team work.

Topics covered:
=============
• Reservoir concepts
• Reservoir sedimentology
• Rock mechanics, geomechanics and geophysics
• Formation evaluation
• Well testing and production logging
• Geological Modelling and management
• Reservoir engineering
• Reservoir simulation

For more information on the programme content, including course descriptions, please visit: http://www.postgraduate.hw.ac.uk/prog/msc-reservoir-evaluation-and-management/

Professional recognition

The programme is accredited by the Energy Institute.

Career opportunities

Graduates of the Reservoir Evaluation and Management MSc are highly sought after by all major oil and gas operators and service companies worldwide. They go on to work in a variety of roles, including Geoscience and Reservoir Engineering. The programme also provides an excellent springboard for graduates wishing to pursue a career in research.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent.

We offer a range of English language courses: http://www.hw.ac.uk/study/english.htm

Read less

Show 10 15 30 per page



Cookie Policy    X