• Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
London Metropolitan University Featured Masters Courses
University College London Featured Masters Courses
University of Leeds Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Nottingham Featured Masters Courses
"geohazards"×
0 miles

Masters Degrees (Geohazards)

We have 6 Masters Degrees (Geohazards)

  • "geohazards" ×
  • clear all
Showing 1 to 6 of 6
Order by 
Ranked 2nd in the UK by Research Fortnight, our geomatics research is ground breaking. We publish in leading international journals, at conferences, in the media and through educational outreach programmes. Read more
Ranked 2nd in the UK by Research Fortnight, our geomatics research is ground breaking. We publish in leading international journals, at conferences, in the media and through educational outreach programmes. Whether focusing on geodesy or geospatial engineering, you will work with experts to produce research of an international standard.

The School of Civil Engineering and Geosciences enjoys an international reputation for using the latest science to solve problems of global importance. Our research has significant relevance in non-academic settings and we regularly apply it through consultancy to industry, from the global offshore industry to local authorities and survey and engineering companies. We are a key part of the TSB Satellite Applications Catapult North East Centre of Excellence.

For geomatics we have MPhil and PhD supervision in the following areas:

Satellite geodesy

-GPS and geophysical modelling
-GPS/GNSS geodesy
-Precise orbit determination of altimetric and geodetic satellites
-Sea level
-Ice sheet mass balance
-Satellite altimetry
-Static and temporal gravity field and reference frame analyses from dedicated satellite missions
-SAR interferometry
-Geophysical and industrial deformation monitoring
-Geodynamics and geohazards
-Integration of GPS and INS
-Engineering geodesy

Geospatial Engineering

-Geoinformatics and advanced GIS
-Geospatial algorithm development
-Spatial modelling including network modelling, cellular automata and agent based approaches to spatial complexity
-Multimedia cartography and information delivery
-Temporal GIS
-Geospatial data management
-Airborne and satellite remote sensing applied to environmental impact assessment
-Land use, vegetation and pollution monitoring
-Earth observation of urban systems
-Photogrammetry
-Laser scanning
-Precise non-contact dimensional control

Read less
This MSc provides a broad introduction to geohazards, together with advanced courses in seismology, volcanology, hydrogeological hazards and meteorology. Read more

This MSc provides a broad introduction to geohazards, together with advanced courses in seismology, volcanology, hydrogeological hazards and meteorology. A key goal is to provide an essential grounding in quantitative modelling that can be widely applied to several fields, from pure research to the commercial sector.

About this degree

The programme provides an introduction to the spectrum and impact of geophysical hazards, and a focus on quantitative models for hazard forecasting and assessment. Selected case studies illustrate how these models are essential for improving decision-making during emergencies, for raising the awareness of vulnerable populations, and for evaluating and implementing mitigation strategies.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits) and a research dissertation (60 credits).

Core modules

  • Geological and Geotechnical Hazards
  • Meteorological Hazards
  • Research Methods
  • Earthquake Seismology and Earthquake Hazard
  • Physical Volcanology and Volcanic Hazard
  • Meteorological, Climate and Hydrogeological Hazard

Optional modules

There are no optional modules for this programme.

Dissertation/report

All students undertake an independent research project in geophysical hazards, which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, directed reading and practical exercises. There are excellent opportunities for field investigations in the UK and abroad. Assessment is through unseen written examinations, practical problem-solving exercises and essays. The independent research report is assessed through the dissertation and an oral presentation.

Fieldwork

Field sites for field trips are normally in Italy. The department pays for accommodation and transport in the field. Students pay to get to the field and subsistence.

Further information on modules and degree structure is available on the department website: Geophysical Hazards MSc

Careers

On graduation from this programme about one-third of students have followed careers in global insurance and re-insurance and another third have pursued research with a PhD in hazard-related studies. The remaining third have developed careers in a wide range of sectors, from non-governmental organisations, through teaching, to the fields of emergency planning and environmental management.

Recent career destinations for this degree

  • Aggregate and Catastrophe Modeller, Advent
  • Catastrophe Analyst, Talbot Underwriting
  • Graduate Trainee Reinsurance Broker, Aon
  • Catastrophe Model Analyst, Aon Benfield
  • Policy Adviser, Department for the Environment, Food and Rural Affairs

Employability

The MSc in Geophysical Hazards will provide essential training for careers in hazard assessment and risk evaluation, including: industry, from engineering to insurance; academic research; civil protection agencies and government organisations; and NGOs related to aid and development. 

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities. The department hosts UCL Hazard Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

This MSc aims to include a short field trip to locations that illustrate the impact of natural hazards. Previous trips have included the Neapolitan volcanic district, the Italian Alps and the Po Delta, and the Cádiz region in south-western Spain.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Earth Sciences

92% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Read more

This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Students choose from a wide range of optional modules from within the department and more widely across UCL, building an MSc tailored to their interests.

About this degree

The programme aims to integrate theoretical studies with essential practical skills in the Earth sciences, both in the field and in the laboratory. Students develop the ability to work on group projects, prepare written reports, acquire oral skills and gain training in the methods of scientific research.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), six optional modules (75 credits) and a research dissertation (60 credits).

Core modules

  • Research Methods
  • Project Proposal
  • Earth and Planetary Systems Science

Optional modules

  • Earth and Planetary Materials
  • Melting and Volcanism
  • Physical Volcanology and Volcanic Hazard
  • Earthquake Seismology & Earthquake Hazard
  • Tectonic Geomorphology
  • Palaeoceanography
  • Palaeoclimatology
  • Biodiversity and Macroevolutionary Patterns
  • Deep Earth and Planetary Modelling
  • Geodynamics and Global Tectonics
  • Crustal Dynamics, Mountain Building and Basin Analysis
  • Advanced Biodiversity and Macroevolutionary Studies

Students can also choose relevant elective modules from UCL Geography.

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, and laboratory and fieldwork exercises. Student performance is assessed through coursework, written assignments, unseen written examination and the dissertation.

Fieldwork

Crustal Dynamics, Mountain Building and Basin Analysis is a fieldwork only module without a classroom element.

Further information on modules and degree structure is available on the department website: Geoscience MSc

Careers

Geoscience students have gone on to pursue careers in many varied areas, such as planning and surveying, governmental organisations, academic research.

Recent career destinations for this degree

  • PhD in Climatology, Cardiff University (Prifysgol Caerdydd)
  • PhD in Geoscience, UCL
  • Engineer, Geo-Info
  • Lecturer in Geology, University of Benin
  • Oil and Gas Analyst, EIC (Energy Industries Council)

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities, which include the UK's only NASA Regional Planetary Image Facility and access to the University of London Observatory in north London.

The department also hosts the UCL Hazard Research Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Earth Sciences

92% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
EXPLORE PROCESSES AT OR NEAR THE EARTH'S SURFACE. The Master’s programme in. Earth Surface and Water. involves the study of natural and human-induced physical and geochemical processes, patterns, and dynamics of the Earth’s continental and coastal systems. Read more

EXPLORE PROCESSES AT OR NEAR THE EARTH'S SURFACE

The Master’s programme in Earth Surface and Water involves the study of natural and human-induced physical and geochemical processes, patterns, and dynamics of the Earth’s continental and coastal systems. This two-year programme provides you with knowledge that is essential to manage the planet sustainably, guarantee the availability of resources for future generations, and understand and avert natural hazards.

The main subject areas you will study consist of the dynamics of coastal and river systems, (geo-)hydrological processes, groundwater remediation, land degradation in dry lands and mountainous regions, natural hazards, and delta evolution on centennial and longer time scales.

Check the programme's website for more information.

Tracks

You can choose one of four tracks based on your interests in the field:

  • Geohazards and Earth Observation: Land-degradation processes and natural hazards in and on the Earth's surface;
  • Coastal Dynamics and Fluvial Systems: Natural and human-induces processes, patterns, and products in the world's coasts and rivers;
  • Hydrology: Movement, distribution, and quality of water on Earth;
  • Environmental Geochemistry: Processes that control the functioning of natural environments at the Earth's surface.

The Earth Surface and Water programme trains students to quantitatively study the natural and human-induced physical and chemical processes, patterns, and dynamics of Earth’s continental and coastal systems as well as their responses to global change. Students explore and understand the modelling capabilities of the past, present, and future as well as the evolution of Earth’s environment, including human impact on this evolution.



Read less
Pipeline Integrity Management is a corporate validated award offered by Northumbria University in partnership with Penspen Ltd. as a Postgraduate Certificate (PG Cert), a Postgraduate Diploma (PG Dip) and a Masters (MSc). Read more
Pipeline Integrity Management is a corporate validated award offered by Northumbria University in partnership with Penspen Ltd. as a Postgraduate Certificate (PG Cert), a Postgraduate Diploma (PG Dip) and a Masters (MSc).

Each award must be studied in sequence; therefore all modules shown in the PG Cert and PG Dip must be completed before the Masters Project may be studied. For more information on the PGCert and PGDip portions of this course, please view the relevant hyperlinks below:
PGCert - https://www.northumbria.ac.uk/study-at-northumbria/courses/pipeline-integrity-management-dtpimp6/

PGDip - https://www.northumbria.ac.uk/study-at-northumbria/courses/pipeline-integrity-management-dtppip6/

Oil and gas are the world’s major sources of primary energy, and 3,500,000 km of large diameter, high pressure pipelines transport most of these hydrocarbons around the world. The pipelines carry vast quantities of energy and represent big business; for example, a large pipeline transporting 1,000,000 barrels of oil per day, with oil priced at $US100/barrel, will deliver $US36.5 billion of oil each year!

Many of these pipelines are ageing – they are typically over 30 years old - but are required to operate for many more decades to meet increasing demand, and as new sources of oil and gas are discovered. Hence, their ‘integrity’ (safety and security of supply) is a major challenge for their operators. Pipelines have an excellent safety record, but failures do occur, sometimes with tragic consequences.

There is a shortage of skilled pipeline engineers in the world today, together with an increasing need, as the pipelines continue to age, for pipeline engineers with specific skills in pipeline integrity. This distance learning course enables students to understand and apply the theory and practice of pipeline integrity engineering in a work-based environment. The course aims to produce highly skilled and professional graduates in key aspects of pipeline integrity - in particular ensuring the continued safety of ageing pipelines.

This is the first course of its kind and a market-leader, its development primarily driven by the skills-crisis within the industry. The masters typically takes 36 months to complete (PG Dip + 12 months) and is available with January and September starts. It is achieved after completing a total of 180 credits (the PG Dip 120 credits in Integrity Assessments, Land Pipeline Engineering, Pipelines and Geohazards, Pipelines Risk and Materials Technology, plus a further 60 credits from the MSc Project).

On completion of the course, students will have relevant skills in dealing with the special problems facing pipelines: assessing pipeline damage, assessing risk, and corrosion problems, as well as general knowledge in pipeline engineering. The course presents a holistic view of pipeline integrity, which ensures students understand the history, theory, and foundations of the technologies they will use.

Read less
New Zealand is a recognised leader in disaster management, which makes it the perfect place to study the topic. Read more

Invest in your future

New Zealand is a recognised leader in disaster management, which makes it the perfect place to study the topic. Our significant, multi-hazard activity keeps disaster management at the forefront of government policy – and recent disasters both here and around the globe have highlighted a need for expert knowledge in managing them.

The Master of Disaster Management offers students a variety of knowledge and skills to implement a holistic approach to managing unexpected events such as disasters and emergencies. It focuses on key issues of disaster resilience and disaster risk reduction, ensuring you are equipped to apply this knowledge to planning frameworks, policy-making and devising solutions in different and complex environments.

This programme draws on expertise from across the University of Auckland – such as Science, Architecture and Planning, Development Studies and Environmental Law – and includes the world-recognised research we’ve undertaken to date.

The MDisMgt is intended to prepare you for a leadership role in a disaster management career and/or humanitarian aid field. Many professions, including engineers, urban designers, project managers, economists, health workers, aid workers, scientists and government officials, can benefit significantly from expert knowledge and skills gained in this highly relevant programme.

Programme structure

Taught (120 points or 180 points)
Full-time or part-time

The Master of Disaster Management is a flexible programme – you can study full or part-time, and depending on your existing qualifications, will undertake either a 120-point (12 months full-time/four years part-time) or 180-point (18 months full-time/six-years part time) degree. As well as the three core courses, you’ll select from a variety of electives to suit your schedule and interests.

The programme also includes a research element (45 points), where you will address a topic relevant to disaster management. The MDisMgt research project develops your knowledge of how to support community resilience and the built environment after a disaster. It will help you demonstrate critical thinking and analytical skills, and give you the ability to independently solve a real-world issue in disaster settings.

Courses and electives

You’ll take three core courses (of 15 points each): Disaster Risk Management, Disaster Management and Resilience, and Project Management.

Depending on your degree (120 or 180 points), you’ll select two or six elective courses. Electives may include:

• Infrastructure Asset Management
• Construction Logistics Engineering
• Natural Resources Law
• Human Rights Litigation
• Global Public Health
• Gender and Development
• Geohazards
• Specialist Counselling Skills and Approaches
• Working with Grief and Loss

Next generation research at the University of Auckland

The Faculty of Engineering is dedicated to providing you with all the facilities, flexibility and support needed for you to develop the skills needed for the workforce. We boast research themes and programmes that provoke interdisciplinary projects, bringing together expertise from our five departments, other faculties, and industry partners and research organisations. Collaborative study is strongly encouraged – postgraduates in particular have the benefit of experiencing cohorts with diverse academic and industry backgrounds.

You will gain access to world-renowned experts who actively demonstrate the positive impacts research have on society. High-performance equipment and labs beyond industry standards are at your fingertips. Our facilities extend beyond study hours – we take pride in our involvement in student events and associations across the University, and are dedicated to providing you with academic, personal and career advice. We encourage you to take advantage of our resources, and use them to expand the possibilities of your research and career path.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X