• Arden University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Loughborough University Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
"geographic" AND "informa…×
0 miles

Masters Degrees (Geographic Information System)

  • "geographic" AND "information" AND "system" ×
  • clear all
Showing 1 to 15 of 48
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Geographic Information and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Geographic Information and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc Geographic Information and Climate Change course provides cross-disciplinary training in the scientific basis of Geographic Information Systems (GIS), Satellite Remote Sensing and Earth System Modelling alongside aspects of climate change.

The Geographic Information and Climate Change course places particular emphasis on the technical aspects of Geographic Information Systems (GIS) and Earth Observation as well as the past, present and future global and regional environmental and climatic change.

Graduates from the Geographic Information and Climate Change course will develop hands-on technical knowledge in Geographic Information Systems and Remote Sensing together with a broad knowledge of the current scientific issues underpinning climate change, and the practical problem solving, ICT and communication skills required for a successful career in either industry or regulating bodies.

It is envisaged that graduates from the MSc Geographic Information and Climate Change course will enter careers in utilities, county councils, the environmental service industry or regulating body, or indeed be well prepared for a future career in academia.

Key Features

Students of the Geographic Information and Climate Change programme will benefit from exceptional computing facilities that include fifteen dual-processor workstations for Earth Observation, a 20-node multiprocessor Beowulf cluster, and the Department’s IBM ‘Blue Ice’ supercomputer, used mainly for climate and glaciological modelling.

Graduates from the MSc Geographic Information and Climate Change course will have broad knowledge of the current scientific issues underpinning climatic change and environmental and ecosystem dynamics, and the practical problem solving, ICT and communication skills required for a successful career in the environmental service industry, regulating bodies or academia.

Aims:

To provide advanced training in understanding the scientific issues associated with environmental dynamics and climatic change,

To provide graduates entering the environmental service industry or a regulating body with the required practical problem solving, ICT and communication skills; as well as a basic knowledge of current climate policy and environmental management,

To provide graduates continuing their academic career with the required subject specific and transferable skills.

Modules

Please Visit our website for a full description of modules for the Geographic Information and Climate Change MSc.

Fieldwork

The Stackpole residential field course introduces students taking the “Principles of Environmental Dynamics” to some of the major themes of the module: environmental systems, sea-level change and human impact on the environment, in a congenial setting in Pembrokeshire. The environmental issues facing the Stackpole Estate are discussed and placed into a historical perspective through lectures and the analysis of long term environmental records.

Research

We aim to be one of the foremost international centres for research in human and physical geography, and to provide our students with excellent teaching and superb facilities in a friendly atmosphere.

The results of the Research Excellence Framework (REF) 2014 show that Geography at Swansea University is ranked joint 9th in the UK for research impact and 11th in the UK for research environment.

Research groups include:

Environmental Dynamics

Glaciology

Global Environmental Modelling and Earth Observation

Migration, Boundaries and Identity

Social Theory and Urban Space

Facilities

The Department of Geography is well-resourced to support research: there are two dedicated computer laboratories: One of 24 computers in conjunction with Library and Information Services (LIS) providing general IT software and programmes dedicated to Geographic Information Systems (GIS) and Remote Sensing; One of 10 high-performance Linux workstations delivering software tools for advanced GIS and remote sensing applications.

We have specialist laboratory suites for: stable-isotope ratio analysis; tree ring analysis; extraction and identification of organic compounds; pollen extraction and analysis; rainfall simulation; tephra analysis; soil and sediment characterisation.

In addition, we have recently spent £1.8million on state-of-the-art teaching spaces, including IT facilities, laboratories and flexible teaching spaces.

Student profiles

“I chose to study MSc Geographic Information and Climate Change at Swansea as I had already enjoyed my undergraduate degree here. I really enjoyed that the course is quite full on, with a lot of independent work but a willingness from lecturers to help with any issues you have. Anyone considering this course I would advise to come to the university and speak with the lecturers about the potential interests they have. You get out what you put in. I want to go into a field that requires some expertise, although I feel as though I will need more experience once in or looking for a job, Swansea has provided the stepping stone for my future career. The lecturers helped me because they take a back seat, but I understand that they are there to support me when I need it. They have allowed me to be independent.”

Alice Nolan, MSc Geographic Information and Climate Change

After completing his MSc in Geographic Information and Climate Change, Thomas went on to earn a position at the Associated British Ports Marine Environmental Research. He said of his time at Swansea – “I chose MSc Geographic Information and Climate Change at Swansea University because of the funding Available (Access to Master's Scheme) and specific course content (Climate Change and GIS modules). I enjoyed studying topics in greater depth than at undergraduate level, and the opportunity to undertake my dissertation in partnership with an external organisation. The lecturers were highly approachable throughout the course, and were always available for advice outside of lectures and seminars. Studying at Master's level in Swansea provided the opportunity to build upon the knowledge and skills I acquired as an undergraduate. For example, completing my Master's dissertation in partnership with an external company enabled development of my communication and organisational skills, as well as my ability to synthesize research. These skills have been vital for development of my career in the marine consulting sector.”

Thomas Perks, MSc Geographic Information and Climate Change



Read less
Today’s societies require more and more geographical information. Think of physical planning, analyzing the spread of epidemic diseases, risk management, navigation systems, location based services, movement analysis, augmented reality, increasing use of maps and volunteered geographical information. Read more

MSc Geographical Information Management and Applications (GIMA)

Today’s societies require more and more geographical information. Think of physical planning, analyzing the spread of epidemic diseases, risk management, navigation systems, location based services, movement analysis, augmented reality, increasing use of maps and volunteered geographical information.

Our GIMA course offers a comprehensive MSc programme, focusing on the management and application of geographical information from a scientific perspective. Two additional aspects contribute to the uniqueness of the GIMA programme: GIMA is a joint venture involving four renowned Dutch universities: Utrecht, Delft, Twente and Wageningen; and GIMA is a blended learning programme, enabling you to do most of your studying from the place at which you study best (home or office). Only the first and the last week of each module are classroom-based.

Programme Summary

The MSc Geographical Information Management and Applications (GIMA) offers a challenging programme in the domain of Geographical Information Sciences (GIS). It will help you to develop your knowledge and skills in the field of geo-information management and geo-information applications. As a future geo-information specialist, you have to address a wide number of fundamental issues in today’s society such as: Why is geographical information needed and how can it be used to solve problems in the broadest variety of application fields (in flood risk management, spatial planning, location-based services, orientation and navigation, location of sales outlets, spatial aspects of crime, dealing with natural hazards and humanitarian disasters)? How can proof-of-concept geo-information and geo-information technology based solutions for societal problems be designed and implemented and how can the quality and usabiliy be evaluated? What are appropriate concepts, methods and techniques for the management of geo-information and geo-information processes, which may involve multidisciplinary teamwork?
The GIMA programme deals with all of these issues and, teaches, among other things, how to apply and manage geo-information in organisations and projects by critically understanding and using state-of-the-art geo-information theories and technology.

Features of the programme

This Master programme is offered by four renowned universities in the Netherlands: Utrecht University, Delft University of Technology, University of Twente and Wageningen University. As a student, you have access to the large pool of experts from all four universities. You can choose between a full-time (two years) or parttime (four years) programme. Exemptions are possible for students who have relevant working experience, making it possible to complete a part-time programme in approximately three years. GIMA is a blended learning programme. It consists of distance learning (85%) with contact weeks at the four universities (15%).

Your future career

Graduates have excellent career prospects. The demand for managers and application specialists in geo-information in the professional market is constantly increasing. Our alumni are employed in both the private and public sector (by companies, consultancies, government organizations and research institutes) as managers, specialists and researchers. APPLICATION AND ADMISSION This programme is registered in CROHO as MSc Geographical Sciences at Utrecht University, code 60732. Application for GIMA proceeds through Utrecht University. The application deadline is 1 June 2015 for the programme that starts in September 2015. All information about application and admission requirements can be found at the GIMA website http://www.msc-gima.nl.

Alumna Gineke Snoeren.
Business consultant at ESRI Nederland. “GIS offers many opportunities and will become more important in future. That is why I decided to enrol in this programme. The course has 2 advantages. First, it does not focus solely on GIS techniques, but also at management. Second, the blended learning system is great because it combines contact teaching with distance learning. You can study in your own time with less contact hours but still contact with teachers and students at set times. Not only Dutch and foreign students take the course, but also people who are already employed in the field of GIS. You learn a lot from each other”.

Related programmes:
MSc Geo-information Science.

Read less
The Department of Geography, Environment and Development Studies offers an advanced and flexible Master's degree in Geographic Information Science (GISc) for professionals and researchers who work with (or those who wish to work with) geographically referenced data. Read more
The Department of Geography, Environment and Development Studies offers an advanced and flexible Master's degree in Geographic Information Science (GISc) for professionals and researchers who work with (or those who wish to work with) geographically referenced data. The course covers the philosophical, scientific, social, policy, environmental and technological issues associated with the use of geographic information in an international context, building on the department’s experience in teaching GISc at postgraduate level for over 20 years.

This course will introduce you to the principles and applications of GISc at an advanced level through the development of scientific knowledge, technical expertise and practical experience. You will develop the relevant theoretical background knowledge and a conceptual understanding of GISc, as well as an appreciation of the social and political context of geographical data and the implications of its use. The emphasis throughout this course is on enabling you to develop new skills that have real-world applications for your work and career.

Why study this course at Birkbeck?

Designed for those without previous Geographic Information Science (GISc) experience, or for those with some experience who want to develop their theoretical and practical knowledge.
Brings our long-term tradition of GISc teaching to students who value face-to-face support.
Teaching team includes external collaborators: researchers, private GISc consultants, and GISc professionals working in private industry and public bodies.
Learning resources include a virtual learning environment, GIS software (ArcGIS, free to UK-based students, and IDRISI, available at student rates), GIS practicals (ESRI Virtual Campus, IDRISI and selfcontained) and e-library facilities.
We offer student support and have a range of research resources.

Our research

Birkbeck is one of the world’s leading research-intensive institutions. Our cutting-edge scholarship informs public policy, achieves scientific advances, supports the economy, promotes culture and the arts, and makes a positive difference to society.

Birkbeck’s research excellence was confirmed in the 2014 Research Excellence Framework, which placed Birkbeck 30th in the UK for research, with 73% of our research rated world-leading or internationally excellent.

In the 2014 Research Excellence Framework (REF), Sociology at Birkbeck was ranked 13th in the UK.

Read less
The GIS (Geographical Information Science) MSc provides an education in the theoretical, scientific and practical aspects of GIS. Read more
The GIS (Geographical Information Science) MSc provides an education in the theoretical, scientific and practical aspects of GIS. It prepares students for technical and analytical GIS roles and is in high demand; we have very close links with industry and the majority of our students find employment prior to contemplating their degree.

Degree information

Students gain a solid grounding in the scientific principles underpinning the computational and analytical foundations of GISc. Our staff are world-leading experts in the areas of programming location-enabled Apps, spatial and 3D databases, big spatio-temporal analytics, citizen science and and human computer interaction, and the MSc therefore is able to offer a wide range of options and specialisations.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research project (60 credits). A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits), full-time nine months is offered.

Core modules - core modules introduce the theory underpinning GIS, along with programming skills (python) and the basics of spatial analysis and statistcs. You'll learn to critically engage with GIS rather than just pushing buttons - how does the way data is captured and modelled influence the results of your analysis? Do you get the same results from two different GIS packages? Knowing what is inside the 'black box' means you understand analytical results and their limitations.
-GIS Principles and Technology
-Principles of Spatial Analysis
-Mapping Science
-Representations, Structures and Algorithms

Optional modules - term two is where you start to specialise, chosing modules that fit your interests, intended career choice and/or prepare you for your dissertation. At this point you can chose a heavilty technical route (e.g. databases, programming, human computer interaction) a more analytical route (spatio-temporal data mining, network and locational analysis, databases) or a mixture of the two routes. You will need to chose four modules in total. At least 30 credits of optional modules selected from :
-Geographical Information System Design
-Spatio-Temporal Analysis and Data Mining
-Web and Mobile GIS – Apps and Programming
-Spatial Databases and Data Management

Plus no more than 30 credits of optional modules (all term two) selected from :
-Airborne Data Acquisition
-Applied Building Information Modelling
-Network and Locational Analysis
-Image Understanding
-Ocean and Coastal Zone Management
-Positioning
-Research Methods
-Terrestrial Data Acquisition

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words. Where appropriate, this may be undertaken in conjunction with one of our many industrial partners, including Arup, Joint Research Centre, British Red Cross, Transport for London.

Teaching and learning
The programme is delivered through lectures, practical classes, demonstrations and tutorials, and is supported by a series of external speakers from industry and visits to industrial who give weekly seminars describing how GIS is used in their field as well as what they are looking for when recruiting graduate GIS students. Assessment is through unseen examinations, group and individual coursework, formal and oral presentations, and the dissertation.

Careers

There are excellent employment prospects for our graduates, with starting salaries of around £25,000. Recent GIS graduates have found openings with large engineering design firms (such as Arup or WSP), specialist consultancy firms such as Deloitte or Informed Solutions, in leading professional software companies (such as ESRI or Google), with local authorities, for organisations such as Shell, Tesco, the Environment Agency, Transport for London, NHS and the Ordnance Survey.

Employability
Students will develop specific skills including a fundamental understanding of GIS and its application to real-world problems, through theoretical lectures covering the foundations of the science – how data is captured, map creation, generalisation, spatial data management, spatial analysis, data quality and error, and spatial algorithms. Students will develop strong technical (python, R, Java, HTML, Javascript, SQL) and analytical skills (data mining, human computer interaction and usability), and in order to fully understand the principles behind GIS will make use of multiple GIS packages, both proprietary and free/open source (ArcGIS, QGIS).

Why study this degree at UCL?

This highly regarded MSc has been running for nearly 30 years and is taught by internationally recognised academics. Our specialist GIS laboratory offers the latest open source and proprietary software and our unique dual focus on the computer science and analytical aspects of GIS means that you will be able to develop your skills in multiple directions.

Our close links with industry (a strong alumni group and weekly industrial seminars) mean that you will be able to directly link your classroom learning with your future career as a GIS professional; you can also undertake your dissertation with an industrial partner.

As well as weekly industrial seminars, you will have the option to do an industry-linked project, and you will be able to attend our annual GIS careers event, which is co-organized with the UK Assocation of Geographic Infrormation.

Read less
Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools. Read more

Why take this course?

Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools.

This course emphasises the acquisition of practical GIS skills. We use a wide range of industry-standard software tools and a structured approach to the analysis of spatial data through project work.

What will I experience?

On this course you can:

Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by experts, who have extensive industrial and consultancy experience and strong research portfolios
Practise your GIS data collection skills in a range of environments

What opportunities might it lead to?

The wide range of career opportunities across public and private sectors and in university-based research, coupled with the rapid rate of technological change, mean that major organisations and industrial firms are finding it essential to update their skills through advanced study. We therefore aim to meet this demand by tailoring our course to the needs of both regional and national markets.

Here are some routes our graduates have pursued:

Environmental consultancies
Geographical information science specialists
Working for the Environmental Agency
Working for the Ordnance Survey

Module Details

The academic year is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a dissertation which will take approximately five months to complete.

Here are the units you will study:

Principles of Geographic Information Science: Beginning with an overview of the development of GIS, the first part of this unit examines data sources and data capture, as well as hardware and software tools. The second part deals with vector-based data structures and data management, followed by vector GIS operations, such as overlay and buffering. You will undertake a project to create a GIS of your own, which may be presented as a seminar session. Practical exercises are undertaken using MapInfo. You will then go on to develop an understanding of raster-based approaches to GIS, cartographic modelling and related areas of image processing which are often applied in remote sensing. Topics include raster data models and data compression techniques, raster GIS and cartographic modelling, imaging systems and image processing, geometric correction techniques and GIS/remote sensing integration in the raster domain. Practical work uses MapInfo, ArcGIS - ArcMap and ERDAS Imagine.

GIS and Database Management Systems: Your major focus on this unit will be the use of industry-standard methods and tools to develop competence in the successive stages of database design, development and implementation. You will have an introduction to data analysis techniques, followed by an examination of alternative types of database system and the rules of relational database design. There is extensive treatment of the SQL query language in standard databases and for attribute query within a GIS. You will be introduced to advanced topics including database programming and computer-aided database design. You will also consider the Object-Relational databases and spatial data types, explore the use of spatial queries using the ORACLE relational database management system and examine procedural database programming and web database connectivity. Practical work for this unit uses the ORACLE relational database management system, running in full client-server mode.

Applied Geographic Information Systems: On this unit you will develop a general, inferential, model-based approach to the analysis of quantitative data within a geographical framework. You will examine a range of underlying concepts including model specification, bias, linearity, robustness and spatial autocorrelation. You will subsequently develop these in the context of a unified framework for analysis. Practical work is based on ArcGIS - ArcMap.

Research Methods and Design: This unit will introduce you to the basic principles of research design and methodology, enabling you to develop a critical approach to the selection and evaluation of appropriate methods for different types of research problem.

Modelling and Analysis and the Web: This unit gives you the chance to consider the use of GIS technology for creating terrain models and explore the basics of photogrammetry, as well as analytical and digital techniques for photogrammetric data capture. You will also look at Orthophotography, LiDAR and RADAR systems. ArcGIS is used for spatial analysis, such as buffering and overlay techniques. You will also explore and exemplify data transfer between GIS software systems and technologies for internet-based GIS.

Dissertation: This provides an opportunity for you to pursue a particular topic to a greater depth than is possible within the taught syllabus. It can take a variety of forms, for example GIS-based analysis of original data sources and digital datasets, case studies of GIS adoption in public or private sector organisations, the development of new software tools/applications or the design of GIS algorithms. The final submission takes the form of an extended written report or dissertation of a maximum of 15,000 words.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

The majority of assessment takes the form of practical exercises and project-based activity. This enables you to become familiar with industry-standard software systems and develop your skills by applying your newfound expertise in areas that particularly interest you.

Student Destinations

GIS technology is now very widely deployed in many organisations ranging from utility companies, telecommunications networks, civil engineering, retailing, local and national government, international charities and NGOs, the National Health Service, environmental organisations, banking and finance, and insurance. GIS has become an essential part of the world's information infrastructure.

You can expect to go on to find work in organisations such as local authorities, health authorities, conservation organisations, banks and insurance companies, amongst others. Many of our previous graduates are now employed all over the world, working on a whole variety of GIS-related projects in a very wide range of different organisations and industries.

Read less
The Remote Sensing and Geographic Information Systems Master of Science Program at UAE University is the first of its kind in the region. Read more
The Remote Sensing and Geographic Information Systems Master of Science Program at UAE University is the first of its kind in the region. It is designed to provide you with the theoretical background and practical skills to start or advance your career in remote sensing and GIS. Our curriculum has been specifically developed to suit students from diverse academic backgrounds and professional occupations. No prior remote sensing or GIS experience is required to excel in the program. (Total credit hours is 30 for theses and 34 for no-theses). For more details on this program, click here: http://www.chss.uaeu.ac.ae/en/rsgis/index.shtml

Program Objectives

‌•Discuss the theoretical background and practical skills for a career in Remote Sensing or GIS.
‌•Identify the recent advances in Remote Sensing, GIS and GNSS relating that with scientific research and its role in the society.
‌•Apply analytical and spatial thinking skills needed for successful use of remote sensing and GIS in solving spatial problems.

Program Learning Outcomes

‌•Upon successful completion of this program, students will be able to:
‌•Discuss the theoretical principles of remote sensing and GIS and their role in modeling and solving environmental, urban and social issues.
‌•Recognize advanced analysis and interpretation skills needed in remote sensing and GIS.
‌•Apply practical remote sensing and GIS procedures for assessing and solving environmental, urban, geologic and societal problems.
‌•Communicate remote sensing and GIS related ideas and results both orally and in writing.
‌•Develop remote sensing and GIS project management, team work and leadership skills.
‌•Produce scientific research related to the applications of remote sensing and GIS.

Program Structure

‌•Required Courses (18.00 hours)
‌•Principles of Remote Sensing
‌•Fundamentals of GIS
‌•Digital Image Processing in RS
‌•Spatial Analysis Using GIS
‌•Local & Web Based Services GIS
‌•Database Management Systems
‌•Seminar on Management Issues in RS&GIS
‌•Geo-Statistics

Elective Courses - 6CH for Thesis option and 12CH for Non-Thesis option (12.00 hours)

‌•Coastal Management
‌•Spatial Data Collection
‌•Advanced Remote Sensing
‌•Satellite Positioning
‌•Software Engineering for GIS
‌•Selected Topics
‌•Project Management
‌•Transport Applications of GIS
‌•Urban and Environmental Applications of Remote sensing and GIS
‌•Remote Sensing and GIS for Petroleum

Thesis or Capstone

Required Courses (Min CH:4 and Max CH:6) (6.00 hours)

‌•Capstone
‌•Thesis

Read less
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation. Read more
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation.

The Geographical Information Systems (GIS) pathway aims to provide students with a broadly based postgraduate qualification in the field of GIS. Importantly, it offers students choice in the selection of their application area (with a range of units available). The pathway helps students to develop an in-depth knowledge of the issues involved in applying GIS to solving spatial problems with an understanding of the constraints imposed by the application area(s) and the interactions between data, methods, people, and technology.

The first year of study (equivalent to PgC in GIS) involves three core units:

Foundations of GIS -
This unit provides an introduction to Geographical Information Systems (GIS) from conceptual, theoretical, and practical perspectives. Students will learn about the different methods used in geographic encoding and spatial data modelling before employing such datasets in a software environment. The unit concludes with a review of contemporary issues in GIS. Key elements of the curriculum include: Origins of GIS; Representation, Modelling and Geovisualisation; Software Skills; GIS: Today and Tomorrow.

Spatial Data Infrastructures -
Spatial data is key to any GIS project. This unit investigates how spatial data is sourced and also aims to provide students with the requisite knowledge and practical skills to identify and evaluate, against recognised national and international quality standards, spatial data for use in GI-based projects. Key elements of the curriculum include: Spatial Data; Data Standards and Infrastructures; Sourcing Spatial Data; Data Quality; Evaluating Fitness for Purpose.

Databases -
GIS are fundamentally information systems which provide specialist facilities for the creation, storage and manipulation of spatial and attribute data. Much of the functionality offered by GIS software is shared with conventional database software. Indeed, most GIS - at their core - have a conventional database management system (DBMS) around which spatial functionality has been wrapped. It is essential that GIS specialists have a thorough understanding of database theory, design and implementation. Key elements of the curriculum include: Why Databases?; Relational Databases; Critiquing Relational Databases; Implementation and Interrogation.

The second year of study (equivalent to the PgD in GIS) involves one core and two elective units:

Methods in GIS (core) -
The concepts, theories and methods behind the application of GIS are examined in detail. The unit explores research design, data analysis and interpretation and presentation. Special focus is given to methods of spatial analysis and their implementation using GIS software. Key elements of the curriculum include: Research Design; Qualitative and Quantitative Techniques; Fundamentals of Spatial Analysis; Recent Advances in Spatial Analysis.

Two elective units are chosen from:

Distributed GIS -
This unit discusses the most vibrant and rapidly developing area of geospatial technology. Desktop GIS packages are increasingly looking like the specialist packages for serious users that, in truth, they always were. Now, for the very large majority of people who really only want to look at the location of things, we can offer WebGIS systems that deliver what they need directly into their web-browsers. This unit explains the concepts and methods of Internet GIS, development and its applications. Key elements of the curriculum include: From Desktop to Distributed GI Services; Technologies in Distributed GIS; Building the GeoWeb; Tutorials.

Environmental Applications of GIS -
GIS and related technologies such as remote sensing have been widely employed in environmental applications for almost forty years. The advent of satellite remote sensing allowed reliable synoptic data to be available to scientists who have developed numerous models. This together with the decision-making tools and spatially-referenced framework of GIS offers significant support to researchers investigating different environmental phenomena. Data from remote sensing, GPS and other sources provide a valuable input into GIS models for environmental monitoring, modelling and prediction. This unit introduces case study examples of how GIS and related technologies can be used in environmental applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Applicability and benefits of GIS; Practical Problem Solving and Evaluation using techniques such as Terrain Analysis, Multicriteria Evaluation, Landscape Metrics etc.

Remote Sensing for GIS Applications -
This unit provides students with an introduction to the principles of remote sensing and explores its role in data gathering/information extraction for GIS applications. Key elements of the curriculum include: Principles of Remote Sensing; Satellite Systems; Quantitative Data; GIS Integration.

Social Applications of GIS -
Where an investigation into social, economic, political, and cultural characteristics and phenomena is required, GIS provides a powerful tool. For social applications such as crime mapping and healthcare resource management, GIS can be used effectively to help model, monitor and enable (spatial) decision making based on existing criteria. Social systems are often highly organised and complex - GIS allows this complexity to be effectively distilled into an abstraction representing the most causally related behaviour. This unit introduces case tudy examples of how GIS can be used in social applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Exemplars of GIS use in Social Applications, e.g. health, crime and urban transportation; Evaluation of the Benefits of GIS; Practical Problem Solving techniques.

Spatial Databases and Programming -
The importance of programming and GIS as part of a larger system, which involves spatial databases, software development and programme coding, has been increasingly realised in GIS practice. This unit aims to develop your geospatial skills in building enterprise oriented databases (e.g. geo-database and server) and creating application-oriented GIS models through programming. This unit also helps you to critically evaluate the issues and trends in enterprise GIS and GIS application development from the perspective of software engineering and geospatial technology. Key elements of the curriculum include: Spatial Databases; Design and Quality; Programming; Tutorials.

The final year of study (the MSc stage) requires the student to design and undertake a substantial and unique independent research project, to be presented as an academic dissertation (max. of 15,000 words).

Read less
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation. Read more
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation.

The Applied Geographical Information Systems (Applied GIS) pathway aims to develop students in-depth knowledge of GIS-based methods for monitoring the social/human and natural environments. It will also help develop the student's understanding of the spatial interaction of social/human and environmental factors. Importantly, it seeks to increase the student's capability to extract social/human and/or environmental information from a variety of sources, such as remotely sensed data, and to undertake analysis and assessment using appropriate methods within a GIS framework.

The first year of study (equivalent to PgC in GIS) involves three core units:

Foundations of GIS -
This unit provides an introduction to Geographical Information Systems (GIS) from conceptual, theoretical, and practical perspectives. Students will learn about the different methods used in geographic encoding and spatial data modelling before employing such datasets in a software environment. The unit concludes with a review of contemporary issues in GIS. Key elements of the curriculum include: Origins of GIS; Representation, Modelling and Geovisualisation; Software Skills; GIS: Today and Tomorrow.

Spatial Data Infrastructures -
Spatial data is key to any GIS project. This unit investigates how spatial data is sourced and also aims to provide students with the requisite knowledge and practical skills to identify and evaluate, against recognised national and international quality standards, spatial data for use in GI-based projects. Key elements of the curriculum include: Spatial Data; Data Standards and Infrastructures; Sourcing Spatial Data; Data Quality; Evaluating Fitness for Purpose.

Databases -
GIS are fundamentally information systems which provide specialist facilities for the creation, storage and manipulation of spatial and attribute data. Much of the functionality offered by GIS software is shared with conventional database software. Indeed, most GIS - at their core - have a conventional database management system (DBMS) around which spatial functionality has been wrapped. It is essential that GIS specialists have a thorough understanding of database theory, design and implementation. Key elements of the curriculum include: Why Databases?; Relational Databases; Critiquing Relational Databases; Implementation and Interrogation.

The second year of study (equivalent to the PgD in GIS) involves one core and two elective units:

Methods in GIS (core) -
The concepts, theories and methods behind the application of GIS are examined in detail. The unit explores research design, data analysis and interpretation and presentation. Special focus is given to methods of spatial analysis and their implementation using GIS software. Key elements of the curriculum include: Research Design; Qualitative and Quantitative Techniques; Fundamentals of Spatial Analysis; Recent Advances in Spatial Analysis.

Two elective units are chosen from:

Environmental Applications of GIS -
GIS and related technologies such as remote sensing have been widely employed in environmental applications for almost forty years. The advent of satellite remote sensing allowed reliable synoptic data to be available to scientists who have developed numerous models. This together with the decision-making tools and spatially-referenced framework of GIS offers significant support to researchers investigating different environmental phenomena. Data from remote sensing, GPS and other sources provide a valuable input into GIS models for environmental monitoring, modelling and prediction. This unit introduces case study examples of how GIS and related technologies can be used in environmental applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Applicability and benefits of GIS; Practical Problem Solving and Evaluation using techniques such as Terrain Analysis, Multicriteria Evaluation, Landscape Metrics etc.

Remote Sensing for GIS Applications -
This unit provides students with an introduction to the principles of remote sensing and explores its role in data gathering/information extraction for GIS applications. Key elements of the curriculum include: Principles of Remote Sensing; Satellite Systems; Quantitative Data; GIS Integration.

Social Applications of GIS -
Where an investigation into social, economic, political, and cultural characteristics and phenomena is required, GIS provides a powerful tool. For social applications such as crime mapping and healthcare resource management, GIS can be used effectively to help model, monitor and enable (spatial) decision making based on existing criteria. Social systems are often highly organised and complex - GIS allows this complexity to be effectively distilled into an abstraction representing the most causally related behaviour. This unit introduces case tudy examples of how GIS can be used in social applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Exemplars of GIS use in Social Applications, e.g. health, crime and urban transportation; Evaluation of the Benefits of GIS; Practical Problem Solving techniques.

The final year of study (the MSc stage) requires the student to design and undertake a substantial and unique independent research project, to be presented as an academic dissertation (max. of 15,000 words).

Read less
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation. Read more
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation.

The Geographical Information Systems (GIS) pathway aims to provide students with a broadly based postgraduate qualification in the field of GIS. Importantly, it offers students choice in the selection of their application area (with a range of units available). The pathway helps students to develop an in-depth knowledge of the issues involved in applying GIS to solving spatial problems with an understanding of the constraints imposed by the application area(s) and the interactions between data, methods, people, and technology.

The first year of study (equivalent to PgC in GIS) involves three core units:

Foundations of GIS -
This unit provides an introduction to Geographical Information Systems (GIS) from conceptual, theoretical, and practical perspectives. Students will learn about the different methods used in geographic encoding and spatial data modelling before employing such datasets in a software environment. The unit concludes with a review of contemporary issues in GIS. Key elements of the curriculum include: Origins of GIS; Representation, Modelling and Geovisualisation; Software Skills; GIS: Today and Tomorrow.

Spatial Data Infrastructures -
Spatial data is key to any GIS project. This unit investigates how spatial data is sourced and also aims to provide students with the requisite knowledge and practical skills to identify and evaluate, against recognised national and international quality standards, spatial data for use in GI-based projects. Key elements of the curriculum include: Spatial Data; Data Standards and Infrastructures; Sourcing Spatial Data; Data Quality; Evaluating Fitness for Purpose.

Databases -
GIS are fundamentally information systems which provide specialist facilities for the creation, storage and manipulation of spatial and attribute data. Much of the functionality offered by GIS software is shared with conventional database software. Indeed, most GIS - at their core - have a conventional database management system (DBMS) around which spatial functionality has been wrapped. It is essential that GIS specialists have a thorough understanding of database theory, design and implementation. Key elements of the curriculum include: Why Databases?; Relational Databases; Critiquing Relational Databases; Implementation and Interrogation.

The second year of study (equivalent to the PgD in GIS) involves one core and two elective units:

Methods in GIS (core) -
The concepts, theories and methods behind the application of GIS are examined in detail. The unit explores research design, data analysis and interpretation and presentation. Special focus is given to methods of spatial analysis and their implementation using GIS software. Key elements of the curriculum include: Research Design; Qualitative and Quantitative Techniques; Fundamentals of Spatial Analysis; Recent Advances in Spatial Analysis.

Two elective units are chosen from:

Distributed GIS -
This unit discusses the most vibrant and rapidly developing area of geospatial technology. Desktop GIS packages are increasingly looking like the specialist packages for serious users that, in truth, they always were. Now, for the very large majority of people who really only want to look at the location of things, we can offer WebGIS systems that deliver what they need directly into their web-browsers. This unit explains the concepts and methods of Internet GIS, development and its applications. Key elements of the curriculum include: From Desktop to Distributed GI Services; Technologies in Distributed GIS; Building the GeoWeb; Tutorials.

Environmental Applications of GIS -
GIS and related technologies such as remote sensing have been widely employed in environmental applications for almost forty years. The advent of satellite remote sensing allowed reliable synoptic data to be available to scientists who have developed numerous models. This together with the decision-making tools and spatially-referenced framework of GIS offers significant support to researchers investigating different environmental phenomena. Data from remote sensing, GPS and other sources provide a valuable input into GIS models for environmental monitoring, modelling and prediction. This unit introduces case study examples of how GIS and related technologies can be used in environmental applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Applicability and benefits of GIS; Practical Problem Solving and Evaluation using techniques such as Terrain Analysis, Multicriteria Evaluation, Landscape Metrics etc.

Remote Sensing for GIS Applications -
This unit provides students with an introduction to the principles of remote sensing and explores its role in data gathering/information extraction for GIS applications. Key elements of the curriculum include: Principles of Remote Sensing; Satellite Systems; Quantitative Data; GIS Integration.

Social Applications of GIS -
Where an investigation into social, economic, political, and cultural characteristics and phenomena is required, GIS provides a powerful tool. For social applications such as crime mapping and healthcare resource management, GIS can be used effectively to help model, monitor and enable (spatial) decision making based on existing criteria. Social systems are often highly organised and complex - GIS allows this complexity to be effectively distilled into an abstraction representing the most causally related behaviour. This unit introduces case tudy examples of how GIS can be used in social applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Exemplars of GIS use in Social Applications, e.g. health, crime and urban transportation; Evaluation of the Benefits of GIS; Practical Problem Solving techniques.

Spatial Databases and Programming -
The importance of programming and GIS as part of a larger system, which involves spatial databases, software development and programme coding, has been increasingly realised in GIS practice. This unit aims to develop your geospatial skills in building enterprise oriented databases (e.g. geo-database and server) and creating application-oriented GIS models through programming. This unit also helps you to critically evaluate the issues and trends in enterprise GIS and GIS application development from the perspective of software engineering and geospatial technology. Key elements of the curriculum include: Spatial Databases; Design and Quality; Programming; Tutorials.

The final year of study (the MSc stage) requires the student to design and undertake a substantial and unique independent research project, to be presented as an academic dissertation (max. of 15,000 words).

Read less
The programme of Master of Science in Applied Geographic Information Systems (hereafter MSc in Applied GIS), a single-degree coursework Master’s programme hosted in Department of Geography at NUS, is designed to reflect the cutting-edge technologies and latest developments in GIS and its applications with the reputation of NUS Geography as one of the top 10 geography departments around the world. Read more

OVERVIEW

The programme of Master of Science in Applied Geographic Information Systems (hereafter MSc in Applied GIS), a single-degree coursework Master’s programme hosted in Department of Geography at NUS, is designed to reflect the cutting-edge technologies and latest developments in GIS and its applications with the reputation of NUS Geography as one of the top 10 geography departments around the world. This innovative programme provides an exciting opportunity for the prospective students to study at NUS, the top university in Asia, as a pathway to a PhD or further practical career in applied GIS or related disciplines.

We offer two tracks of training (Thesis Track and Project Track). The Thesis Track includes a research thesis component, which covers thesis preparation and the GIS research thesis itself. It aims to attract students with interests in applied GIS research and developing their research skills. The Project Track includes a GIS project component. It is designed for students who require practical GIS skills or an upgrade to their existing GIS expertise to progress their careers.

WHO SHOULD APPLY

Those who currently use or who wish to use GIS and its applications to their full extent will find the programme useful. Applications cover, but certainly not limited to, spatial assessment and management of natural resources, environmental/disaster monitoring and assessment, demographic analysis, public health, forensic sciences, transportation and urban planning, and business marketing.

Working professionals looking to deepen their skills in applied GIS or broaden their horizon outside their current field can leverage on this programme to boost career prospects in the GIS industry. The part-time study scheme allows working professionals the flexibility to balance study with work and personal commitments.

DURATION

Full-time students will study over three semesters, which start in Semester 1 (August–November), continue in Semester 2 (January–April), and end in Semester 3 (May–July). Students will take modules during the first two semesters and produce a thesis (for Thesis Track) or a project report (for Project Track) during the third semester.

Under normal circumstances, the period of candidature is 12 months of full-time study or 24 months of part-time study from the date of commencement of the course. The maximum period of candidature for both tracks of the MSc Programme is 24 months of full-time study or 36 months of part-time study from the date of commencement of the course, inclusive of approved leave of absence and medical leave. Leave of absence of up to one year will not be counted towards a candidate’s maximum candidature. Subsequent leave will be considered as part of the candidature.

GRADUATION REQUIREMENTS

The graduation requirements for both Thesis Track and Project Track are as follows:

(a) Thesis Track: students are required to complete six core modules and any two elective modules.
(b) Project track: students are required to complete five core modules and any four elective modules.

See more detailed requirements at the website: http://www.fas.nus.edu.sg/geog/graduates/MSc_Applied_GIS.html

PROGRAMME STRUCTURE

The Programme is structured to prepare students with applied GIS skills for carrying out research (Research Track) or for addressing industry needs (Project Track). It consists of core compulsory modules that provide trainings in fundamental GIS skills and basic applications, and elective modules that provide insights into specialized GIS applications in fields such as transportation, urban informatics, and environmental management. For the detailed information of the modules in the programme, please refer to "Modules" tab on the website(http://www.fas.nus.edu.sg/geog/graduates/MSc_Applied_GIS.html#ps).

FEES AND PAYMENT

The tuition fee for AY2016-2017 intake is S$30,000 (inclusive of GST) for the entire programme for all students on the MSc irrespective of nationality. A non-refundable deposit of S$2,000, which counts toward the tuition fee, is due upon acceptance of the admission offer to the programme. Other fees payable follow the prevailing rates set by the University( http://www.fas.nus.edu.sg/prospective/grad/coursework/fees.html).

HOW TO APPLY

The application deadline is 15 January every year (to begin in August). For August 2016 admission, the application period is from 1 November 2015 to 15 January 2016. You are encouraged to apply online via the NUS Graduate Admission System here: https://inetapps.nus.edu.sg/GDA2/Home.aspx

Read less
This MSc Programme is based at our ORKNEY CAMPUS in the far north of Scotland - a unique opportunity to study a live marine environment. Read more

MSc Marine Resource Management

This MSc Programme is based at our ORKNEY CAMPUS in the far north of Scotland - a unique opportunity to study a live marine environment.

As man increases his demands upon the oceans, their sustainable development will depend on a rational management strategy for the total resource.

The professional working in the marine environment is constantly required to be multidisciplinary, and able to appreciate the conflicts that arise between conservation and development.

The MRM programme (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-resource-management-mrm-/ ) considers the sustainable development, use, conservation and management of marine resources.

Core themes include:
- Marine environmental systems.
- Resource management and conservation.
- Valuation and project management.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Overview

This is a 12 month full-time MSc degree course taught at our Orkney Campus. It involves studying 8 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

Programme content

- Conservation, Sustainable Development & Resource Management
This course takes a broad look at the principles of sustainability and sustainable resource use, including environmental ethics. You will explore the challenges faced by policy makers and marine managers when incorporating these broad principles into policy and practice. You will learn about how sensitive habitats and the species they support are managed and protected, and how impacts from development are mitigated. The course gives an introduction to biodiversity conservation and the biodiversity action planning process, as well as examining issues around the relationship between conservation and science.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Oceanography & Marine Biology
This course is designed to give you an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources. You will also learn about marine ecosystems and how these may be impacted by energy extraction and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

- Resource Development
This course examines the exploitation and use of marine resources (including oil and gas, fisheries, transport, renewables, aquaculture and tourism), issues associated with development in the marine environment (including pollution and waste) and how these activities are regulated. You will learn about marine technologies and the challenges of developing and deploying technologies to exploit resources in the marine environment.

- Introduction to Marine Spatial Planning
This course introduces students to the emerging policy and practice of marine planning (global and regional). It examines political, jurisdictional and rights issues in the introduction of economic activities into the marine commons (the ‘Blue Growth Agenda’). The framework of marine legislation is explained and methods of conflict resolution are explored. A series of international case studies will identify the various tools and techniques being used around the world to manage human activity and balance conservation interests with demands for economic growth.

- GIS
Geographic Information System mapping is a tool which is now widely used by both developers and regulators in the management and development of marine resources. Within the context of Marine Spatial Planning the use of GIS has rapidly become the standard means of collating and analysing spatial information regarding resource use. This course will explain the principles and provide hands-on experience of applying state of the art mapping software in project based case studies.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including field trips, guest lectures and practicals, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-marine-resource-management-mrm-/

Read less
The MSc Marine Biology aims to train graduates in multiple areas of marine biology and equip them with professional certificates in Sea Survival, Powerboat Handling, Marine Radio and First Aid as well as necessary field skills. Read more
The MSc Marine Biology aims to train graduates in multiple areas of marine biology and equip them with professional certificates in Sea Survival, Powerboat Handling, Marine Radio and First Aid as well as necessary field skills.

The areas of marine biology covered in this master’s course include fisheries and aquaculture, genetics, marine ecology and conservation, marine mammals and ecological aspects of Geographic Information System (GIS). In addition, the course has a significant field work component including ship work as well as survey and sampling techniques training. This course, run entirely by the School of Biological, Earth and Environmental Sciences at University College Cork, will provide an understanding of these various disciplines and skills needed in order to meet the growing demand for trained marine biologists at home and abroad.

Visit the website: http://www.ucc.ie/en/ckr38/

Course Details

On successful completion of this course, you will be able to:

- demonstrate a clear understanding and integration of knowledge of marine flora and fauna, the marine environment and its biological and physical properties and processes
- assess the sustainability of exploitation (fisheries and aquaculture) and assess the impact of other anthropogenic factors on the marine environment
- define the roles of management and conservation across the marine environment
- demonstrate a wide range of research skills (field and laboratory) including safety-related and professional qualifications
- apply the knowledge and skills acquired in this course in the working environment enabling the development of policy.

Format

This full-time 12-month course is split into Part I taught modules running from September to April and Part II, a four-month research project for students passing Part I. The course includes ship time experience aboard the Irish State research vessel, Celtic Voyager and field work day trips to various locations in County Cork as well as a week-long residential field course in the West of Scotland in March. In addition, students undertake professional certificate courses in January and February at the National Maritime College of Ireland in Ringaskiddy, Cork

Part I of the course consists of eight taught modules to the value of 60 credits involving lectures, practicals, seminars and fieldwork. Part II is a substantial research project (BL6017) to the value of 30 credits for those passing Part I. Each of the prescribed taught modules will be examined by a written paper and/or continuous assessment. Each student progressing to Part II of the course must submit the research project in an area of marine biology by a date as prescribed by the School of BEES.

Part I

BL6010 Characteristics of the Marine Environment (5 credits)
BL6012Marine Megafauna (10 credits)
BL6013Marine Fisheries and Aquaculture (10 credits)
BL6014Marine Fieldwork and Survey Techniques (10 credits)
BL6015Practical Marine Workplace Skills (5 credits)
BL6016Marine Ecology and Conservation (10 credits)
BL6019 Ecological Applications of Geographical Information Systems (5 credits)
BL6020 Genetics and the Marine Environment (5 credits)

Part II - Four-Month Research Project

BL6017Marine Biology Research Project (30 credits)

Assessment

The taught modules in the course are assessed by a combination of written examinations and continuous assessment elements (including essays, practical reports, critiques, seminars, dossiers and analytical elements). The four-month research project is assessed by a dissertation, project seminar and an assessment of your practical ability throughout the duration of the project.

Careers

As well as a number of professionally certified courses that will be provided throughout the course, students will also gain a variety of technical skills associated with research and computer skills (GIS in particular). Many transferable skills are also fostered through different learning approaches, including critical thinking, problem solving, report writing, oral presentations, statistical analysis, independent research and time management.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
With the rapid development of smart sensors, smartphones and social media, "big" data is ubiquitous. Read more
With the rapid development of smart sensors, smartphones and social media, "big" data is ubiquitous. This new MSc teaches the foundations of GIScience, database, spatial analysis, data mining and analytics to equip professionals with the tools and techniques to analyse, represent and model large and complex spatio-temporal datasets.

Degree information

Students will be equipped with computational foundations and skills needed for big data analytics including visualisation, prediction, clustering and simulation with statistical and machine learning approaches, as well as retrieving and mining big (open) data, web services and cloud computing, web and mobile applications, by practising with real case data and open software.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a dissertation/report (60 credits).

A Postgraduate Diploma, four core modules (60 credits), two optional modules (60 credits), full-time nine months is offered.

Core modules
-GIS Principles and Technology
-Principles of Spatial Analysis
-Spatial Databases and Data Management
-Spatio-temporal Analysis and Data Mining

Choose four options from the following:
-Introductory Programming (requires Applied Machine Learning option)
-Complex Networks and Web
-Representation, Structures and Algorithms
-Mapping Science
-Supervised Learning (requires Applied Machine Learning)
-Web Mobile GIS
-Information Retrieval & Data Mining (requires Introductory Programming)
-Geographic Information System Design
-Applied Machine Learning (requires Introductory Programming, and Supervised Learning)

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, and laboratory practicals. Assessment is through examination, coursework, practicals, dissertation, and poster presentation.

Careers

Graduates from this programme are expected to find positions in consultancy, local government, public industry, and the information supply industry, as well as in continued research. Possible career paths could include: data scientist in the social media, finance, health, telecoms, retail or construction and planning industries; developer of spatial tools and specialised spatial software; researcher or entrepreneur.

Employability
Graduates will be equipped with essential principles and technical skills in managing, modelling, spatial and spatial-temporal analysis, visualising and simulating "big" spatio-temporal data, with emphasis on real development skills including: Java, JavaScript, Python and R. Business Intelligence (BI) skills will also be taught via practical case studies and close collaborations with leading industrial companies and institutions. All these skills are highly valued in big data analysis.

Why study this degree at UCL?

As one of the world’s top universities, UCL excels across the physical and engineering sciences, social sciences and humanities.

Spanning two UCL faculties, this interdisciplinary programme exploits the complementary research interests and teaching programmes of three departments (Civil, Environmental & Geomatic Engineering, Computer Science, and Geography).

Students on the Spatio-Temporal Analytics and Big Data Mining programme will be part of a vibrant, enthusiastic, and international research environment in which collaboration and free-ranging debate are strongly encouraged. This is supported by weekly research seminars and industrial seminars from top employers in the field.

Read less
With declining fossil energy resources, environmental pollution and climate change, the need for sustainable energy supply is becoming more important. Read more
With declining fossil energy resources, environmental pollution and climate change, the need for sustainable energy supply is becoming more important. The international community has agreed upon the use of renewable energy as an instrument towards a sustainable energy development. Management of energy resources and technologies is a global issue and it needs well trained workforce – from policy level to practitioner level.

The objective of the program is to form such experts. Focusing on developing countries in the tropics and subtropics the MSc. Renewable Energy Management emphasizes a holistic approach considering both technical and socioeconomic aspects of energy management. Participants are provided with appropriate knowledge, methods and skills to analyze current problems in the field of renewable energy usage and related sectors.

Target groups of the program are recently graduated professionals with working experience in public or private institutions, authorities and enterprises of the energy sector. The applicants should be active in or dealing with energy or natural resources management and have an interest in learning and working in an intercultural and multidisciplinary environment.

The master program “Renewable Energy Management” (REM) provides a practice oriented and skills-based learning experience in which students develop their capacity for critical thinking, and creative problem solving. It addresses bachelor’s degree holders principally in Engineering, Natural Sciences and Social Sciences with experience in the area of energy, who aim to deepen their knowledge in Renewable Energy Resources Management and wish to acquire management and leadership skills as well as regional and intercultural competences. These experts should have a sound knowledge base in one of the many fields of renewable energy management. They ought to be able to assess renewable energy resources and develop appropriate solutions considering the complex linkages of renewable energy with economic, social and ecological aspects.

Contents

The studies cover a period of four semesters. The fourth semester is dedicated to the master thesis.

The didactic concept consists of two components: a technical and a social. The technical component provides the participants with the relevant and up to date knowledge necessary to take decisions towards a sustainable management of natural resources. The social component is equally important and aims at equipping the participants with the communicative, intercultural and managerial skills necessary to take up leadership positions in the natural resources sector and to work effectively in the framework of international cooperation.

Some of the core modules covered in this master include: Management of natural resources systems, International Cooperation and Development, Economics and governance. These are complimented by Methods and Tools such as using the Geographic Information System and Remote Sensing, environmental monitoring and Statistics, and learning to apply the knowledge in Projects.

Tuition

Semester contribution fees, additional fees for field trips, conference participation and course materials. For more information on the semester contribution fees: https://www.th-koeln.de/en/academics/fees_5908.php

Funding

Applicants may receive one of the limited numbers of scholarships. Available are full time scholarships from the DAAD EPOS Program for applicants from DAC-list countries.

Read less
This MSc is based at our ORKNEY CAMPUS in the far north of Scotland. A unique opportunity to study a live marine environment. Marine planning, including spatial planning, is a fast developing discipline of global interest with excellent employment prospects. Read more
This MSc is based at our ORKNEY CAMPUS in the far north of Scotland. A unique opportunity to study a live marine environment.

Marine planning, including spatial planning, is a fast developing discipline of global interest with excellent employment prospects. Ambition to create jobs and growth in the ‘Blue Economy’ is made real by new technologies giving access to the wealth of resources in the oceans and seas. New approaches are needed to govern the interactions among marine industries while maintaining the aspiration for healthy seas and the conservation of ecosystems. Adaptation to the effects of climate change adds to the importance of marine planning as an essential tool in marine management.

The MSc in Marine Planning for Sustainable Development is based at the Orkney Campus but is available also at the Edinburgh Campus. Orkney is a global centre for marine energy research and development. A unique concentration of marine expertise and activity provides students with unparalleled access to key participants in the sustainable development and planning of marine industries.

The MSc involves studying eight taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

SEMESTER 1

A11MP Introduction to Marine Planning
Introduces students to the emerging policy and practice of marine planning (global and regional). It examines political, jurisdictional and rights issues in the introduction of economic activities into the marine commons (the ‘Blue Growth Agenda’). The framework of marine legislation is explained and methods of conflict resolution are explored. A series of international case studies will identify the various tools and techniques being used around the world to manage human activity and balance conservation interests with demands for economic growth.

A11OC Oceanography & Marine Ecology
Designed to give an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources and to develop other maritime industries. Marine ecosystems are also studied and how these may be impacted by human activities and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

A11ER Economics of Renewable Energy
Orkney is a world leading centre for the research and testing of marine renewables. The economics of the energy sector are studied in the context of the whole renewable energy sector, both marine and terrestrial, with particular focus on wave and tidal projects underway in the vicinity of the University.

A11DM Marine Resource Development
Examines the exploitation and use of marine resources (including oil and gas, fisheries, shipping, marine renewables, aquaculture and tourism), issues associated with development in the marine environment (including pollution and waste) and how these activities are regulated. You will learn about marine technologies in the Blue Economy and the challenges of developing and deploying technologies to exploit resources in the marine environment.


SEMESTER 2

A11PK Environmental Policy & Risk
This course explores the legal and policy context of marine governance. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of marine developments. A practical EIA exercise is undertaken.


A11GI GIS for Marine and Environmental Scientists
Geographic Information System mapping is a tool which is now widely used by both developers and regulators in the management and development of marine resources. Within the context of Marine Spatial Planning the use of GIS has rapidly become the standard means of collating and analysing spatial information regarding resource use. This course will explain the principles and provide hands-on experience of applying state of the art mapping software in project based case studies.

A11DA Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

A11VY Practical Marine Survey
A practical field study course into the methods and techniques of marine survey. The opportunity for dive study if suitably qualified.

Additional information
This MSc is based at our ORKNEY CAMPUS. By studying in Orkney you will benefit from a number of activities including field trips, guest lectures and practical activities, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.


Assistance with funding is available, please visit our website for further details and information on how to apply.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses to help you meet the English language requirement prior to starting your masters programme:

- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Read less

Show 10 15 30 per page



Cookie Policy    X