• University of Oxford Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
Durham University Featured Masters Courses
Coventry University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Reading Featured Masters Courses
Coventry University Featured Masters Courses
"genetics"×
0 miles

Masters Degrees (Genetics)

We have 518 Masters Degrees (Genetics)

  • "genetics" ×
  • clear all
Showing 1 to 15 of 518
Order by 
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Collaboration between staff from the University of Glasgow and the NHS West of Scotland Genetics Service enables the MSc in Medical Genetics and Genomics to provide a state-of-the-art view of the application of modern genetic and genomic technologies in medical genetics research and diagnostics, and in delivery of a high quality genetics service to patients, as well as in design of targeted therapies.

Why this programme

◾This is a fully up-to-date Medical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
◾The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
◾The MSc Medical Genetics Course is based on the south side of the River Clyde in the brand new (2015) purpose built Teaching & Learning Centre, at the Queen Elizabeth University Hospitals (we are located 4 miles from the main University Campus). The Centre also houses state of the art educational resources, including a purpose built teaching laboratory, computing facilities and a well equipped library. The West of Scotland Genetic Services are also based here at the Queen Elizabeth Campus allowing students to learn directly from NHS staff about the latest developments to this service.
◾The Medical Genetics MSc Teaching Staff have won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
◾The close collaboration between university and hospital staff ensures that the Medical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics and visit the diagnostic laboratories at the new Southern General Hospital laboratory medicine building.
◾The Medical Genetics degree explores the effects of mutations and variants as well as the current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
◾New developments in medical genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
◾You will develop your skills in problem solving, experimental design, evaluation and interpretation of experimental data, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾This MSc programme will lay the academic foundations on which some students may build in pursuing research at PhD level in genetics or related areas of biomedical science or by moving into related careers in diagnostic services.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
◾For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Medical Genetics and Genomics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.
◾The Medical Council of Hong Kong recognises the MSc in Medical Genetics and Genomics from University of Glasgow in it's list of Quotable Qualifications.

Programme structure

Genetic Disease: from the Laboratory to the Clinic

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Medical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

Students will take this course OR Omic Technologies for Biomedical Sciences OR Frontiers in Cancer Science.

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Omic technologies for the Biomedical Sciences: from Genomics to Metabolomics

Students will take this course OR Clinical Genomics OR Frontiers in Cancer Science.

Visit the website for further information

Career prospects

Research: About half of our graduates enter a research career and most of these graduates undertake and complete PhDs; the MSc in Medical Genetics and Genomics facilitates acquisition of skills relevant to a career in research in many different bio-molecular disciplines.

Diagnostics: Some of our graduates enter careers with clinical genetic diagnostic services, particularly in molecular genetics and cytogenetics.

Clinical genetics: Those of our graduates with a prior medical / nursing training often utilise their new skills in careers as clinical geneticists or genetic counsellors.

Other: Although the focus of teaching is on using the available technologies for the purpose of genetic diagnostics, many of these technologies are used in diverse areas of biomedical science research and in forensic DNA analysis. Some of our numerous graduates, who are now employed in many countries around the world, have entered careers in industry, scientific publishing, education and medicine.

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. The Clinical Genetics MSc has a specific focus on delivery of the clinical service to patients including risk analysis and application of modern genetic and genomic technologies in medical genetics research and in diagnostics and population screening.

● This is a fully up-to-date Clinical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
● The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
● The Clinical Genetics MSc Teaching Staff won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
● The close collaboration between university and hospital staff ensures that the Clinical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics at the new Queen Elizabeth University Hospital laboratory medicine building.
● The Clinical Genetics degree explores the effects of mutations and variants as well as the theoretically basis of current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
● New developments in genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
● You will develop your skills in problem solving, evaluation and interpretation of genetic data, literature searches, scientific writing, oral presentations, poster presentations and team working.
● This MSc programme will lay the academic foundations on which some students with prior MBChB or MBBS may build in pursuing careers in Clinical Genetics.
● The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
● For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Clinical Genetics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.

Programme Structure

Genetic Disease and Clinical Practice

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Distress or Disorder: Reactions to a medical diagnosis

This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.

Patient Empowerment: Supporting decisions relating to new diagnoses

This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.

Effective listening and communication skills

With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Disease Screening in Populations

This course will cover the rationale for, and requirements of, population screening programmes to detect individuals at high risk of particular conditions, who can then be offered diagnostic investigations. Students will work in groups to investigate and report on, a screening programme of their choice from any country.

Dissertation

The course will provide students with the opportunity to carry out an independent investigative project in the field of Medical Genetics and Genomics.

Teaching and Learning Methods

A variety of methods are used, including problem-based learning, case-based learning, lectures and tutorials. These are supplemented by a wide range of course-specific electronic resources for additional learning and self-assessment. As a result, you will develop a wide range of skills relevant to careers in clinical genetics. These skills include team-working and data interpretation. You will use the primary scientific literature as an information resource, although textbooks such as our own Essential Medical Genetics will also be useful. You will have the options of: attending genetic counselling clinics and gaining hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenicity of DNA sequence variants.

Visit the website for more information http://www.gla.ac.uk/postgraduate/taught/clinicalgenetics/#/programmestructure

Read less
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents. Read more
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents.

Degree Information

The programme provides a thorough grounding in modern approaches to the understanding of the genetics of disease alongside the cutting-edge research methods and techniques used to advance our understanding of development of disease. Core modules provide a broad coverage of the genetics of disease, research skills and social aspects, whilst specialised streams in Inherited Diseases, Pharmacogenetics and Computational Genomics, in which students can qualify, and the research project allow more in-depth analysis in areas of genetics.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits) and two specialist modules (30 credits) and a research project culminating in a dissertation (90 credits).

A Postgraduate Diploma consisting of six modules (four core modules in term one and two modules within the selected stream in term two) is offered, full-time nine months.

A Postgraduate Certificate consisting of four core modules in term one (60 credits) is offered, full-time three months.

Core Modules
- Advanced Human Genetics: Research Principles
- Human Genetics in Context
- Core Skills
- Basic Statistics for Medical Sciences

Specialist modules
In term two you will take specialist modules depending on the specialist stream you select: Inherited Disease (A); Pharmacogenetics (B); Computational Genomics (C).
- Applications in Human Genetics (A)
- Either Genetics of Cardiovascular Disease or Genetics of Neurological Disease (A)
- Clinical Applications of Pharmacogenetic Tests (B)
- Anti-Cancer Personalised Medicine or Pharmacogenomics, Adverse Drug Reactions and Biomarkers (B)
- Applications in Human Genetics (C)
- Statistics for Interpreting Genetic Data (C)

Dissertation/report
Students undertake an original research project investigating topical questions in genetics and genetics of human disease which culminates in a dissertation of 12,000 to 14,000 words and an oral presentation.

Teaching and learning
Students develop their knowledge and understanding of genetics of human diseases through a combination of lectures, seminars, tutorials, presentations and journal clubs. Taught modules are assessed by unseen written examination and/or, written reports, oral presentations and coursework. The research project is assessed by the dissertation and oral presentation.

Careers

Advanced training in genetic techniques including bioinformatic and statistical approaches positions graduates well for PhD studentships in laboratories using genetic techniques to examine diseases such as heart disease, cancer and neurological disorders. Another large group will seek research jobs in the pharmaceutical industry, or jobs related to genetics in healthcare organisations.

Employability
The MSc in Genetics of Human Disease facilitates acquisition of knowledge and skills relevant to a career in research in many different biomedical disciplines. About half of our graduates enter a research career by undertaking and completing PhDs and working as research associates/scientists in academia. Some of our graduates go on to jobs in the pharmaceutical industry, while others enter careers with clinical genetic diagnosis services, particularly in molecular genetics, in healthcare organisations and hospitals around the world. Those graduates with a prior medical training often utilise their new skills as clinical geneticists.

Why study this degree at UCL?

UCL is in a unique position to offer both the basic science and application of modern genetics to improve human health. The programme is a cross-faculty initiative with teaching from across the School of Life and Medical Sciences (SLMS) at UCL.

Students will be based at the UCL Genetics Institute (UGI), a world-leading centre which develops and applies biostatistical and bioinformatic approaches to human and population genetics. Opportunities to conduct laboratory or computational-based research projects are available in the laboratories of world-leading geneticists affiliated to the UGI.

Read less
Programme description. The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which also include Animal Breeding & Genetics and Human Complex Trait Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Linkage and Association in Genome Analysis
  • Statistics and Data Analysis
  • Research Proposal
  • Dissertation

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Quantitative Genetic Models
  • Functional Genomic Technologies
  • Animal Genetic Improvement
  • Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to undertake research in evolutionary and quantitative genetics, population genetics and evolutionary genomics.

  • A thorough understanding of general concepts in population and quantitative genetics and genomics
  • In-depth knowledge of evolutionary genetics
  • A solid grounding in the statistical methods required for quantitative biology
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Read more
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

We offer supervision for MPhil in the following research areas:

Cancer genetics and genome instability

Our research includes:
-A major clinical trial for chemoprevention of colon cancer
-Genetic analyses of neuroblastoma susceptibility
-Research into Wilms Tumour (a childhood kidney cancer)
-Studies on cell cycle regulation and genome instability

Cardiovascular genetics and development

We use techniques of high-throughput genetic analyses to identify mechanisms where genetic variability between individuals contributes to the risk of developing cardiovascular disease. We also use mouse, zebrafish and stem cell models to understand the ways in which particular gene families' genetic and environmental factors are involved in the normal and abnormal development of the heart and blood vessels.

Complex disease and quantitative genetics

We work on large-scale studies into the genetic basis of common diseases with complex genetic causes, for example autoimmune disease, complex cardiovascular traits and renal disorders. We are also developing novel statistical methods and tools for analysing this genetic data.

Developmental genetics

We study genes known (or suspected to be) involved in malformations found in newborn babies. These include genes involved in normal and abnormal development of the face, brain, heart, muscle and kidney system. Our research includes the use of knockout mice and zebrafish as laboratory models.

Gene expression and regulation in normal development and disease

We research how gene expression is controlled during development and misregulated in diseases, including the roles of transcription factors, RNA binding proteins and the signalling pathways that control these. We conduct studies of early human brain development, including gene expression analysis, primary cell culture models, and 3D visualisation and modelling.

Genetics of neurological disorders

Our research includes:
-The identification of genes that in isolation can cause neurological disorders
-Molecular mechanisms and treatment of neurometabolic disease
-Complex genetics of common neurological disorders including Parkinson's disease and Alzheimer's disease
-The genetics of epilepsy

Kidney genetics and development

Kidney research focuses on:
-Atypical haemolytic uraemic syndrome (aHUS)
-Vesicoureteric reflux (VUR)
-Cystic renal disease
-Nephrolithiasis to study renal genetics

The discovery that aHUS is a disease of complement dysregulation has led to a specific interest in complement genetics.

Mitochondrial disease

Our research includes:
-Investigation of the role of mitochondria in human disease
-Nuclear-mitochondrial interactions in disease
-The inheritance of mitochondrial DNA heteroplasmy
-Mitochondrial function in stem cells

Neuromuscular genetics

The Neuromuscular Research Group has a series of basic research programmes looking at the function of novel muscle proteins and their roles in pathogenesis. Recently developed translational research programmes are seeking therapeutic targets for various muscle diseases.

Stem cell biology

We research human embryonic stem (ES) cells, germline stem cells and somatic stem cells. ES cell research is aimed at understanding stem cell pluripotency, self-renewal, survival and epigenetic control of differentiation and development. This includes the functional analysis of genes involved in germline stem cell proliferation and differentiation. Somatic stem cell projects include programmes on umbilical cord blood stem cells, haematopoietic progenitors, and limbal stem cells.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology.

Quantitative Genetics & Genome Analysis is part of a suite of programmes offering specialist routes in Animal Breeding & Genetics, Evolutionary Genetics, or Human Complex Trait Genetics.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

Applicants who wish to select their area of specialisation during the programme should apply for this umbrella programme. Applicants with a preferred programme option should apply via the following links:

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Compulsory courses

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Statistics and Data Analysis
  • Linkage and Association in Genome Analysis
  • Research Proposal
  • Dissertation

Option courses (selected according to degree specialisation):

  • Quantitative Genetic Models
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Animal Genetic Improvement
  • Functional Genomic Technologies
  • Molecular Phylogenetics
  • Bioinformatics
  • Evolutionary Quantitative Genetics

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which include Animal Breeding & Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Linkage and Association in Genome Analysis
  • Genetics of Human Complex Traits
  • Quantitative Genetic Models
  • Statistics and Data Analysis
  • Research Project Proposal
  • Dissertation.

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Quantitative Genetic Models
  • Functional Genomic Technologies
  • Animal Genetic Improvement
  • Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to practical problems in the biomedical industry, and to undertake research in quantitative and population genetics and genome analysis.

  • A thorough understanding of general concepts in population and quantitative genetics and genomics
  • In-depth knowledge of complex trait genetics in humans
  • A solid grounding in the statistical methods required for quantitative biology
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
The science of human genetics has been transformed in the past decade. Following the sequencing of the entire human genome, a wealth of resources is now available to researchers aiming to identify the genetic variants that influence human health. Read more
The science of human genetics has been transformed in the past decade. Following the sequencing of the entire human genome, a wealth of resources is now available to researchers aiming to identify the genetic variants that influence human health. These findings will shed light on the underlying molecular pathology of many diseases that are poorly understood at present, eventually paving the way for novel treatment and prevention strategies. The speed at which these discoveries are being made is accelerating, and it is likely that molecular genetics will soon underpin much of modern medicine.

Career Pathways:
The MSc in Human Molecular Genetics programme is designed to prepare you for a genetics research career, either in human gene function and genetic disease, or molecular approaches to diagnosis and health care biotechnology. It provides a broad grounding in Human Genetics, with emphasis on molecular aspects, to give a solid basis for subsequent academic or industrial research, or for entry to NHS Genetics training. Approximately 40% of our students go on to do a PhD, 40% become research assistants/associates, while others go on to jobs in industry or further studies (bioinformatics/computing medicine). One or two students every year enter the NHS in clinical genetics training posts.

Programme Structure:
You will study the fundamentals of human and molecular genetics, models of inheritance for rare and common/ complex polygenic diseases, cytogenetics, analytical methods in human genetics and genomics, animal models and transgenesis, gene therapy, epigenetics, cancer genetics and an introduction to clinical genetics and genetic counselling services.

There are four weeks of intensive laboratory practical sessions, as well as computer science practicals applied to problems in genetics, genomics and bioinformatics, regular research seminars on site, student seminar and journal presentations, study group activities and a six-month full-time research project in the summer.

The programme is based on an average 20 hours contact time per week. This will vary between 15 hours in most weeks and approximately 40 hours during intensive practicals and projects. Private study time is included within the schedule: you are expected to contribute an additional 10-15 hours private study per week to the course. We do not recommend you try to support yourself by taking a part-time employment whilst studying as your work may suffer.

Assessment:
There are 3 x 3-hour written papers in late February, coursework assessments (poster presentation, analytical methods in genetics, oral presentation), a project report and a viva examination in September.

Programme Location:
The programme is primarily based at Hammersmith Campus in West London although some teaching modules are held at St Mary's Campus and the Northwick Park Campus.

Read less
Programme description. The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Genomics and Experimental Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics. This programme forms part of the quantitative genetics and genome analysis suite of programmes offering three specialist routes, which also include Human Complex Trait Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Statistics and Data Analysis
  • Linkage and Association in Genome Analysis
  • Animal Genetic Improvement
  • Quantitative Genetic Models
  • Research Proposal
  • Dissertation

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Functional Genomic Technologies
  • Evolutionary Quantitative Genetics

Learning outcomes

  • An understanding of general concepts in population and quantitative genetics and genomics
  • A solid grounding in the statistical methods required
  • In-depth knowledge of animal improvement and complex trait analysis
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
Research profile. The MRC Human Genetics Unit (HGU), is part of the Institute of Genetics and Molecular Medicine (IGMM) within the College of Medicine and Veterinary Medicine at the University of Edinburgh. Read more

Research profile

The MRC Human Genetics Unit (HGU), is part of the Institute of Genetics and Molecular Medicine (IGMM) within the College of Medicine and Veterinary Medicine at the University of Edinburgh. As well as delivering outstanding research, the institute creates a vibrant scientific community and a friendly research environment rich in both scientific and social opportunities.

The aim of the MRC Human Genetics Unit is to advance the understanding of genetic factors implicated in human disease and normal and abnormal development and physiology. Our PhD and MSc programmes harnesses strengths in different research disciplines (genetics, molecular biology, biochemistry and cell biology) tied to our scientific themes (disease mechanisms, biomedical genomics and genome regulation). Our program also provides a strong focus on computational biology, and state of the art imaging as part of the Edinburgh Super-Resolution Imaging Consortium. Over 30 principal investigators based in the MRC HGU contribute to these cross-disciplinary programmes spanning fundamental to clinical research.



Read less
This MSc aims to provide medical and science students with a comprehensive knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically human genetics, human embryonic development and fetal medicine. Read more
This MSc aims to provide medical and science students with a comprehensive knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically human genetics, human embryonic development and fetal medicine. There is a strong focus on the development of key skills and careers advice in the programme.

Degree information

Students will develop a knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically in the areas of basic genetics and technology, genetic mechanisms, medical genetics, organogenesis and fetal development, gametogenesis and IVF, prenatal diagnosis and screening, fetal and perinatal medicine, and preimplantation genetic diagnosis and developing technology. They gain transferable skills including information technology, analysis of scientific papers, essay writing, seminar presentation, research techniques, peer review and laboratory skills.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research project (60 credits). A Postgraduate Diploma consisting of eight core modules (120 credits, full time nine months, flexible study two to five years) is offered. There are no optional modules for this programme.

Mandatory modules
-Basic Genetics and Technology
-Gametogenesis, Preimplantation Development and IVF
-Genetic Mechanisms
-Medical Genetics
-Organogenesis and Fetal Development
-Prenatal Diagnosis and Screening
-Fetal and Perinatal Medicine
-Preimplantation Genetic Diagnosis and Developing Technology

Dissertation/report
All MSc students undertake a clinical, laboratory, audit or library-based research project, which culminates in a dissertation of 10,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, practical demonstrations in laboratories, observation days in fetal medicine and IVF units, and student presentations. There are a number of peer-led learning activities. Assessment is through essays, patient case reports, critical reviews of papers, online problem booklet, examinations and the dissertation.

Careers

On completion of the programme, all students will have gained knowledge of both the clinical and laboratory aspects of prenatal genetics and fetal medicine. This will enable the science-orientated students to go on to pursue research degrees, careers in embryology or prenatal diagnosis, or other careers in the field or in general science. Medically-orientated students will be able to develop their careers in the field of fetal medicine.

Top career destinations for this degree:
-Ob/Gyn Surgeon, Ente Ospedaliero Cantonale
-Trainee Embryologist, Homerton University Hospital (NHS)
-PhD Medical Genetics, The Cyprus Institute of Neurology and Genetics (CI
-Clinical Research Nurse, University College London (UCL)
-Trainee Embryologist, Life Hospital

Employability
Throughout the MSc programme students learn key skills through peer-led activities, such as evaluating and presenting orally on patient cases and media coverage of scientific papers. Basic laboratory techniques are taught as are essay writing, the critical evaluation of papers, debates and ethical discussions. We also offer a comprehensive careers programme involving our alumni, covering job applications, CV writing, general careers in science and specific advice on careers in embryology, clinical genetics, medicine and research degrees.

Why study this degree at UCL?

The UCL Institute for Women’s Health delivers excellence in research, clinical practice, education and training in order to make a real and sustainable difference to women's and babies' health worldwide.

The institute houses the UK's largest group of academics working in women's health and the UCL/UCL Hospitals NHS Foundation Trust collaboration at its core provides an academic environment in which students can pursue graduate studies taught by world-class reseachers and clinicians.

Our diversity of expertise in maternal and fetal medicine, neonatology, reproductive health and women's cancer ensures a vibrant environment in which students develop subject-specific and generic transferable skills, supporting a broad range of future employment opportunities.

Read less
Genetics and genomics have become an integral part of the healthcare service. Our modern programme, which we’re constantly adapting to reflect professional and technological changes, will advance your skills, knowledge and insight in the challenging sector of genetic healthcare. Read more
Genetics and genomics have become an integral part of the healthcare service. Our modern programme, which we’re constantly adapting to reflect professional and technological changes, will advance your skills, knowledge and insight in the challenging sector of genetic healthcare. Study part-time over three years and choose the modules you want to study. You’ll leave fully equipped to provide more effective, efficient and better quality practice for the patients who rely on you.

Key features

-Steer your career in the direction you want. We offer a wide range of modules, so you can choose to group modules together to create the combination that suits your previous education and experience and your career aspirations. Focused themes include practical genetics, genetic science and counselling skills.
-Engage with a course specifically designed to address the needs of professionals wishing to develop their careers in genetic counselling or genetic nursing.
-Learn from research-active staff at the forefront of knowledge, conducting research into Applied Health Genetics.
-Study four core modules shared by all our pathway awards: Health and Social Care Futures, Advancing Research Knowledge in Practice 1 and 2, and the dissertation.
-Benefit from the flexibility our programme offers. You can take much of the course by distance learning. Modules taught face-to-face (such as counselling skills) are delivered in short, intensive blocks to enable you to complete them with minimum travel and time away from your work.
-Balance work and further education with our programme by studying part-time over three years.
-Our Genetic Science modules and the Counselling Skills modules are designed to satisfy the requirements of the Genetic Counsellor Registration Board for UK genetic counsellor registration.
-Achieve the European Core Competences for genetic nurses and genetic counsellors.
-Choose to study the Counselling Skills module and update and enhance your counselling skills.
-Develop practical skills and increase knowledge on all genetics modules by combining theory with an applied approach.
-Use your registration portfolio as a registered genetic counsellor to obtain credits towards the award via the Accreditation of Prior Experiential Learning system.

Course details

Postgraduate certificate - to achieve a postgraduate certificate, you will need to earn 60 credits. You’ll be able to study either two genetics modules at 30 credits each, or all three at 20 credits each – counselling skills for genetic healthcare, genetic science for health professionals and practical genetics for health professionals.

Postgraduate diploma - to gain a postgraduate diploma, you’ll need to earn 120 credits. 60 of these will be made up from the two or three core modules undertaken in Year 1, with 40 credits coming from the core modules in Year 2, advancing research knowledge in practice 1 and advancing research knowledge in practice 2. Depending on the modules taken during Year 1, you will either undertake the remaining genetics module worth 20 credits or another optional 20 credit module.

Master of Science - for a full masters degree, you will need to earn a total of 180 credits. You will study the same core modules as the postgraduate diploma, with the extra 60 credits coming from a research project in an area of study related to genetic healthcare.

Please note: availability of modules may vary according to demand; module dates are therefore subject to change.

Year 1
The Health Genetics pathway has three core specialist modules, which are all worth either 20 or 30 credits. Optional modules – you must complete two 30 credit options or all three 20 credit options.
Optional modules
-IMS550 Practical Genetics for Health Professionals (Advanced)
-IMS552 Counselling Skills for Genetic Healthcare (Advanced)
-IMS551 Counselling Skills for Genetic Healthcare
-IMS553 Genetic Science for Health Professionals (advanced)
-IMS536 Genetic Science for Health Professionals
-IMS549 Practical Genetics for Health Professionals

Year 2
Please note: you must choose the remaining 20 credit genetics module if two 30 credit modules were taken in Year 1.
Optional modules
-MCH501 Advancing Research Knowledge in Practice 1
-MCH502 Advancing Research Knowledge in Practice 2

Final year
-MCH504 Dissertation

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The MSc in Nutrition and Genetics aims to educate students in molecular biology principles that explain the interactions between human DNA and nutrition. Read more
The MSc in Nutrition and Genetics aims to educate students in molecular biology principles that explain the interactions between human DNA and nutrition.

Why study Nutrition and Genetics?

The degree provides students with the knowledge and understanding of the progress, advantages and limitations of personalised nutrition. Finally, the programme will provide students with the necessary practical skills associated with molecular nutrition techniques.

NHS England states that “the shift to personalised medicine is already underway” and the NHS National Genetics and Genomics Education Centre has developed specific learning outcomes that need to be achieved by currently practising and future dietitians.

Freelance dietitians and nutritionists already feel the need to include elements of genetics and personalised nutrition in their consultations. An extensive market analysis on consumer trends (DataMonitor) showed that one of the main food-consumer “mega” trends is that people of all ages are more proactively addressing their health in a more personalised manner. The UK is one of the leading countries in consumer rates who consider the idea of using genetics in nutritional advice.

Why St Mary's?

St Mary’s University, Twickenham is the first and only university in the UK that offers a degree in Nutrition and Genetics. Teaching staff at St Mary’s have great experience teaching Nutrition and they also conduct research in the field of Nutrition and Genetics. St Mary’s University has been ranked as the top London university for student experience and we are proud of the excellent tutoring support we offer. The specific programme offers the opportunity for students to carry out their Research Project at the University of Navarra (Pamplona, Spain) as part of the Erasmus exchange programme.

Course Content

What you will study
-Principles of molecular biology
-Genetics in health and disease
-Nutrient-gene interactions
-Genetics and personalised nutrition
-Applied personalised nutrition
-Genetic tests in nutrition
-Research Project

Please note: All information is correct at the time of publication. However, course content is regularly updated and this may result in some changes, which will be communicated to students before their programme begins.

Career Prospects

Graduates of the MSc in Nutrition and Genetics will have gained an expertise in incorporating elements of genetic profiling in nutritional and dietary assessments and regimes. Also, graduates of this programme will be in a unique position to work for (or with) companies that offer genotyping services; such companies are becoming increasingly popular, creating the need for such expertise.

Finally, the specific degree is the ideal platform for a career in research considering that graduates will be in the advantageous position to combine two distinct scientific disciplines (Nutrition and Genetics).

Read less
Molecular genetics is the study of genes at the molecular level. It focuses on the processes that underlie the expression of the genetic information from the DNA into the functional proteins that execute the genetic programme. Read more
Molecular genetics is the study of genes at the molecular level. It focuses on the processes that underlie the expression of the genetic information from the DNA into the functional proteins that execute the genetic programme. Within the School of Life Sciences research in molecular genetics is concentrated in the Human Genetics, Fungal Biology, and Developmental Genetics and Gene Control groups. In the Human Genetics group research in this area includes studies of the molecular basis of myotonic dystrophy and the identification of genes involved in cardiac development; the molecular genetics of muscle disease; mouse models of muscle disorders and molecular genetic approaches to anthropology and human population genetics. In the Fungal Biology group there are studies on the molecular events that determine stress responses during polarised growth, protein folding and secretion in yeasts and filamentous fungi; the molecular and cellular effects of stress on yeast cells and the genetic mechanisms that control sex in fungi. The Developmental Genetics and Gene Control group focuses on the mechanisms of eukaryotic gene expression and the genetics of vertebrate embryonic development. Developmental studies are focussed largely upon the mechanisms that control stem cell fate. Projects on the control of gene expression address the machinery used by cells to achieve appropriate levels of functional transcripts. These studies include control of transcription and the mechanisms of RNA maturation.

APPLICATION PROCEDURES
After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Genetics is the scientific study of inheritance and as such is a very broad research area. Within the School of Life Sciences, research in Genetics is focussed on the Institute of Genetics, most groups of which are located within the Queen's Medical Centre. Read more
Genetics is the scientific study of inheritance and as such is a very broad research area. Within the School of Life Sciences, research in Genetics is focussed on the Institute of Genetics, most groups of which are located within the Queen's Medical Centre. Projects in genetics cover a wide spectrum from population and evolutionary genetics through to molecular and biochemical genetics. They have the common aim of understanding how the genetic material achieves its functions and how it is passed down through generations. Some of the research involves classic genetic approaches including the isolation of mutants with specific phenotypes and the study of their behaviour in genetic crosses. These studies involve model organisms that include bacteria, yeasts and other fungi, Xenopus, zebrafish and mice. Other research in Genetics at Nottingham employs molecular techniques and bioinformatics to address fundamental evolutionary problems such as the evolution of AIDS viruses, the genetic changes that are associated with speciation and the evolution of transposable elements and genome structure. There also projects available in Genetics research groups who are focussing on the systems responsible for maintaining gene and genome integrity and securing accurate chromosome transmission in bacteria, archaea, yeast and vertebrates.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less

Show 10 15 30 per page



Cookie Policy    X