• Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
Coventry University Featured Masters Courses
Cardiff University Featured Masters Courses
University of Leeds Featured Masters Courses
University of Birmingham Featured Masters Courses
"genetic" AND "medicine"×
0 miles

Masters Degrees (Genetic Medicine)

  • "genetic" AND "medicine" ×
  • clear all
Showing 1 to 15 of 98
Order by 
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Read more

Course overview

The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

Clinical Medicine in UK top 10 for overall quality of research.
Research Excellence Framework 2014

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

Find out more about the Institute of Genetic Medicine's research areas. We offer supervision for MPhil, PhD and MD in the following research areas: Cancer genetics and genome instability; Cardiovascular genetics and development; Complex disease and quantitative genetics; Developmental genetics; Gene expression and regulation in normal development and disease; Genetics of neurological disorders; Kidney genetics and development; Mitochondrial disease; Neuromuscular genetics; Stem cell biology.

For more information on these research areas see http://www.ncl.ac.uk/postgraduate/courses/degrees/genetics-mphil-phd-md/#profile

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Faculty of Medical Sciences Graduate School.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/genetics-mphil-phd-md/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/genetics-mphil-phd-md/#howtoapply

Read less
Genetic counsellors are health care professionals with specialized graduate training in the areas of medical genetics and counselling. Read more

Masters in Genetic Counselling

What is a Genetic Counsellor?

Genetic counsellors are health care professionals with specialized graduate training in the areas of medical genetics and counselling. Genetic counsellors usually work as members of a healthcare team, providing information and support to families who have members with birth defects or genetic disorders and to families who may be at risk for a variety of inherited conditions. Genetic counsellors work in a wide variety of settings, these include: general genetics, prenatal care and family planning, pediatrics, oncology, cardiology, neurology, laboratories, research, education, public health settings, and corporate environments. (NSGC website, accessed Oct 7, 2012).

GENERAL PROGRAM OVERVIEW

The Department of Medical Genetics, through Graduate and Postdoctoral Studies (G+PS) at the University of British Columbia, offers a unique two year graduate program leading to an MSc degree in Genetic Counselling. The program has full accreditation status by the American Board of Genetic Counseling (ABGC). Students, upon graduating, will be eligible to apply for “Active Candidate” status for both the ABGC and the Canadian Association of Genetic Counsellors (CAGC) certification exams.

Six students are accepted into the Program each year to begin their studies in September. Genetic counsellors, geneticists, other healthcare professionals and UBC faculty members instruct and supervise students during their course of study.

The program balances strong academic grounding, direct clinical experiences and independent research to prepare graduates for the dynamic field of genetic counselling.

Academic coursework provides a comprehensive overview of:
- Molecular genetics and genomics
- Clinical genetics
- Counselling techniques and psychology
- Bioethics

Clinical experiences cover a broad range of specialties, preparing graduates for the expanding professional role. These include both private and public settings in the areas of:
- Prenatal genetics
- Pediatric and adult genetics
- Reproductive medicine
- Cancer
- Psychiatric genetics
- Focused practical rotations in embryofetopathology, fetal ultrasound and prenatal procedures, prenatal biochemistry laboratory, molecular biochemical and cytogenetic laboratories.

Interprofessional health education prepares graduates for a patient centred, team-based approach to healthcare delivery. Collaborating with the College of Health Disciplines, unique experiences include:
- Health Mentorship Program
- The Interprofessional Education (IPE) Passport
- Rounds and educational seminars held by the Department of Medical Genetics, Hereditary Cancer Program, Child and Family
Research Institute, BC Clinical Genomics Network and other departments within the hospital and university network.

While this is not a thesis program, all graduates complete an independent research project. The program provides mentorship, research skills development and encouragement towards contributing to the published literature in genetic counselling outcomes.

Quick Facts

- Degree: Master of Science
- Specialization: Genetic Counselling
- Subject: Health and Medicine
- Mode of delivery: On campus
- Program components: Coursework only
- Faculty: Faculty of Medicine

Read less
Upon graduation from the Master’s Programme in Translational Medicine (TRANSMED) you can be expected to. -Be fluent in medical sciences and clinical practice from the point of view of a researcher. Read more
Upon graduation from the Master’s Programme in Translational Medicine (TRANSMED) you can be expected to:
-Be fluent in medical sciences and clinical practice from the point of view of a researcher.
-Be familiar with up-to-date translational research methodologies.
-Be adept at scientific reasoning and critical analysis of scientific literature.
-Acknowledge the regulatory and ethical aspects of biomedical and clinical research.
-Have mastered scientific and medical terminologies.
-Have excellent communication and interpersonal skills, enabling you to find employment in an international and interdisciplinary professional setting.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The TRANSMED studies are built upon three core educational themes:
Development of Research Skills
These include an introduction to current methodologies, which are further developed during a training period in a research group; research ethics: principles of clinical investigation; and writing of research or grant proposals.

Studies in Human Disease
These range from normal human physiology and anatomy, and basic biomedical courses, to more specialised studies covering various topics pertinent to the specialist option. You supplement these studies with clinical rounds, during which you have an opportunity to study selected patient cases in hospital wards, under the supervision of a clinician mentor.

Development of Communication Skills
These are promoted throughout the curriculum, through utilisation of interactive approaches and discussions, problem-based learning and oral presentations. The multidisciplinary TRANSMED community encompasses a wide range of educational backgrounds and provides ample opportunities for direct interactions with medical students, science and clinical teachers to enable you to practice and adopt interdisciplinary communication skills. At the end of the course of study, your communication skills will be evaluated in the final exam, during which you will orally present your research plan to expert examiners.

Selection of the Majors

The major of the programme is Translational medicine. During your first study year you can choose any of the five available specialisation options. These options and their specific goals are:
Neuroscience and Psychobiology
-To acquire knowledge on research methodology and state-of-the-art information in systems and cognitive neuroscience, as well as in clinical neuropsychology.
-To learn to produce new scientific information in the fields of psychobiology of human life, health, and stress, and to transfer the results between basic research and clinical settings.

Cancer
-To acquire basic knowledge of the principles of neoplastic growth, cancer progression and dissemination.
-To acquire basic understanding of the interplay between different cell types during neoplastic growth.
-To acquire knowledge of major research methodologies and disease models in cancer biology.

Regenerative Medicine
-To understand the principles of developmental and stem cell biology and regenerative pharmacology as the basis of regenerative therapies.
-To be familiar with the major technologies applied in regenerative medicine, including tissue engineering, cell and organ transplantation and transplantation immunology.
-To understand the ethical principles of clinical translation of basic research and application of regenerative medicine therapies.

Metabolic Disorders
-To be able to understand the basic metabolic pathways.
-To understand the pathophysiology of metabolic disorders such as diabetes mellitus, insulin resistance, metabolic syndrome and obesity.
-To be able to use genetic knowledge as a basis for prediction, diagnosis and treatment of metabolic disorders.

Cross-Disciplinary Translational Medicine
-To achieve a broad understanding of topics and methods in the field of Translational medicine.

Programme Structure

The scope of the programme is 120 credits (ECTS) and can be completed within two academic years (60 ECTS / year).

The Master of Science in Translational medicine degree includes 60 ECTS of advanced and 60 ECTS of other studies. Both of these include both obligatory and optional studies.

The majority of the advanced studies are related to the chosen specialist option and include:
-Master’s thesis (30 ECTS)
-Placement in a research group for learning advanced methods in your selected field of study
-Methodological and human health and disease-related courses
-Clinical rounds in Helsinki University Central Hospital (HUCH) clinics
-Final examination in your field of specialisation

The other studies include e.g.
-Article analysis, scientific writing and presentation
-Biomedicine and introductory courses in research methods
-Career planning and orientation
-Individual study coaching and personal study plans
-Research ethics

You can select the optional courses based on your personal interests, or to support your chosen specialisation option. You can also include courses from other suitable Master’s programmes at the University of Helsinki, such as:
-Life Science Informatics
-Genetics and molecular biosciences
-Neuroscience
-Human Nutrition and Food Behaviour

You can also include studies in other universities under the flexible study right-agreement (JOO).

Career Prospects

The Master of Science in Translational medicine degree provides excellent opportunities to apply for and attend postgraduate studies. Currently, 50% of TRANSMED graduates are continuing their studies in doctoral programmes, either at the University of Helsinki or abroad.

TRANSMED graduates are also highly valued in the private sector. Around 35% of graduates have been employed directly by bioindustry, pharma or other health sector enterprises either in Finland or abroad. Titles include product manager, product specialist, personalised health care manager etc. All such enterprises usually recruit both at the graduate (MSc) and postgraduate (PhD) levels.

The health and health technology sectors represent a rapidly emerging field, and one of the areas with a growing importance as the population ages and the costs of new therapies steadily increase. Thus, the demand for well-trained specialists in the field of translational medicine is likely to increase in the near future, providing excellent career prospects globally.

Internationalization

The Translational Medicine major is only available in this international programme, making the programme attractive to both Finnish and international students. Indeed, opportunities for personal interaction with students from different cultures are an integral feature of the studies. During your studies, you can also volunteer to act as a tutor for the incoming international students.

The international research community in The Academic Medical Centre Helsinki actively participates in teaching in TRANSMED. You complete the research group practice for your Master’s thesis in multicultural research groups.

It is also possible to complete your Master’s thesis work or research group placement abroad, or to include coursework done at a foreign university.

Research Focus

The specialisation options of the programme – Neuroscience and psychobiology, Cancer, Regenerative medicine, Metabolic disorders, and Cross-disciplinary translational medicine – are closely aligned with the research focus areas of the Faculty of Medicine: malignancy, inflammation, metabolism, degenerative processes as well as psychiatric disorders and their mechanisms. You therefore have an opportunity to learn from, and be supervised by, the leading experts and professors in their fields.

Read less
The Genomic Medicine and Healthcare course has been developed for healthcare professionals including Specialist Medical Practitioners, General Medical Practitioners, Allied Health Professionals, Nurses and Midwives, Genetic Counsellors and those with related undergraduate degrees or equivalent professional qualifications and background experience. Read more

Genomics Medicine and Healthcare Courses

The Genomic Medicine and Healthcare course has been developed for healthcare professionals including Specialist Medical Practitioners, General Medical Practitioners, Allied Health Professionals, Nurses and Midwives, Genetic Counsellors and those with related undergraduate degrees or equivalent professional qualifications and background experience. It will be of interest to health professionals in the UK and internationally and will provide a solid foundation in the core concepts of genetics and genomics applied to modern medicine and healthcare. Although there are other courses covering the subject area, none are completely online so they are difficult and costly for global healthcare professionals to get involved. This course will reach an international audience in a cost effective, flexible and inclusive way, helping to develop a worldwide network of genomic medical and healthcare leaders.

Our course is well timed given increasing public and professional interests in genetic and genome-level diagnostic and predictive testing for clinical management, disease risk evaluation, prevention of major complications and offering the prospect of improved prognosis. Personalised benefits include the option for reproductive choices and reducing lifetime medical or health risks by judicious use of new emerging preventive medicines and devices combined with lifestyle/behaviour modifications.

Diploma in Genomics Medicine and Healthcare Courses

Our online 1 year Postgraduate Diploma in Genomic Medicine & Healthcare is designed to be practical and clinically focused. The course will provide an integrated approach to Genomic Medicine and Healthcare and focus on applying scientific principles to direct patient care. The Genomics Diploma course is worth 120 credits and comprises 6 modules of 20 credits each.

The Diploma course aims to equip graduates with critical knowledge and understanding of genomics medicine. Graduates will be able to apply knowledge for direct clinical benefit and future study. Our Genomics Medicine Diploma course caters to the educational needs of a primary and secondary care audience and is the only one of its kind that is completely accessible online.

Our Genomic Medicine Diploma has been designed for General Medical Practitioners, Specialist Medical Practitioners (for example Paediatrics, General Medicine, Obstetrics & Gynaecology, Medical Oncology), Allied Health Professionals (Clinical Psychologists, Occupational Therapists and Physiotherapists), Nurses (Cancer, Cardiac, Paediatric, Neurology etc.) and Midwives. In addition, the course would be of interest to those with related undergraduate degrees (e.g. Dietetics, Biomedical Science, Pharmacy) or equivalent professional qualifications and background experience

On completion you will demonstrate:

- a systematic understanding of genetics and genomic factors in human diseases
- a critical awareness of current issues affecting the management of inherited human diseases
- an advanced knowledge of clinical genomics that will facilitate decision-making in unpredictable and/or complex situations
- an ability to critically evaluate current research in applied and translational genetics and genomics
- an ability to deliver management strategies for the investigation and treatment of patients with inherited human diseases
- a basic understanding of the scope and effect of genomics on treatments including horizon scanning of potential new targeted treatments for wider population

Course Structure

The online course lasts one calendar year and is a part time distance learning course. It consists of 6 modules per year, each of 6 weeks duration.

Module 1 - Principles of Medical Genetics and Genomics
Module 2 - Genetic Counselling
Module 3 - Genomics and Society
Module 4 - Practice of Clinical Genomics
Module 5 - Reproductive Genomics
Module 6 - Genomic Healthcare

Assessment

Online Diploma in Genomic Medicine and Healthcare

The course puts assessment at the heart of learning by using clinical scenarios to facilitate problem-solving, critical analysis and evidence-based care. The scenarios act as both the focus for learning and assessment thus embedding assessment within the learning process.

Each of the 6 modules have the same assessment format. Due to the online nature of the course, students are expected to login and participate in the course regularly throughout the module (ideally on a daily basis).

Students are split into groups of 10-15 students and are assigned a dedicated expert tutor who:

Facilitates clinical case discussions with the group.
Monitors, assesses and marks each student throughout the module.
Students use the skills gained during the lectures to engage with the different activities (see below).
Clinical case scenarios with case based discussion - 40%
Individual learning portfolio - 10%
Group/individual activity - 20%
Case based examination - 30%

Read less
This MSc aims to provide medical and science students with a comprehensive knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically human genetics, human embryonic development and fetal medicine. Read more
This MSc aims to provide medical and science students with a comprehensive knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically human genetics, human embryonic development and fetal medicine. There is a strong focus on the development of key skills and careers advice in the programme.

Degree information

Students will develop a knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically in the areas of basic genetics and technology, genetic mechanisms, medical genetics, organogenesis and fetal development, gametogenesis and IVF, prenatal diagnosis and screening, fetal and perinatal medicine, and preimplantation genetic diagnosis and developing technology. They gain transferable skills including information technology, analysis of scientific papers, essay writing, seminar presentation, research techniques, peer review and laboratory skills.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research project (60 credits). A Postgraduate Diploma consisting of eight core modules (120 credits, full time nine months, flexible study two to five years) is offered. There are no optional modules for this programme.

Mandatory modules
-Basic Genetics and Technology
-Gametogenesis, Preimplantation Development and IVF
-Genetic Mechanisms
-Medical Genetics
-Organogenesis and Fetal Development
-Prenatal Diagnosis and Screening
-Fetal and Perinatal Medicine
-Preimplantation Genetic Diagnosis and Developing Technology

Dissertation/report
All MSc students undertake a clinical, laboratory, audit or library-based research project, which culminates in a dissertation of 10,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, practical demonstrations in laboratories, observation days in fetal medicine and IVF units, and student presentations. There are a number of peer-led learning activities. Assessment is through essays, patient case reports, critical reviews of papers, online problem booklet, examinations and the dissertation.

Careers

On completion of the programme, all students will have gained knowledge of both the clinical and laboratory aspects of prenatal genetics and fetal medicine. This will enable the science-orientated students to go on to pursue research degrees, careers in embryology or prenatal diagnosis, or other careers in the field or in general science. Medically-orientated students will be able to develop their careers in the field of fetal medicine.

Top career destinations for this degree:
-Ob/Gyn Surgeon, Ente Ospedaliero Cantonale
-Trainee Embryologist, Homerton University Hospital (NHS)
-PhD Medical Genetics, The Cyprus Institute of Neurology and Genetics (CI
-Clinical Research Nurse, University College London (UCL)
-Trainee Embryologist, Life Hospital

Employability
Throughout the MSc programme students learn key skills through peer-led activities, such as evaluating and presenting orally on patient cases and media coverage of scientific papers. Basic laboratory techniques are taught as are essay writing, the critical evaluation of papers, debates and ethical discussions. We also offer a comprehensive careers programme involving our alumni, covering job applications, CV writing, general careers in science and specific advice on careers in embryology, clinical genetics, medicine and research degrees.

Why study this degree at UCL?

The UCL Institute for Women’s Health delivers excellence in research, clinical practice, education and training in order to make a real and sustainable difference to women's and babies' health worldwide.

The institute houses the UK's largest group of academics working in women's health and the UCL/UCL Hospitals NHS Foundation Trust collaboration at its core provides an academic environment in which students can pursue graduate studies taught by world-class reseachers and clinicians.

Our diversity of expertise in maternal and fetal medicine, neonatology, reproductive health and women's cancer ensures a vibrant environment in which students develop subject-specific and generic transferable skills, supporting a broad range of future employment opportunities.

Read less
The primary aim of this course is to train graduates interested in the clinical application of advances in human genetics and genomics so that they can provide and critically evaluate genetic and genomic counselling services. Read more
The primary aim of this course is to train graduates interested in the clinical application of advances in human genetics and genomics so that they can provide and critically evaluate genetic and genomic counselling services.

You will be given a thorough grounding in human genomics, genetics, genetic analysis and bioinformatics, in communication and counselling skills, and in the skills required for you to work as part of a multi-disciplinary team providing genetic and genomic counselling for families.

The course is particularly suitable for students interested in pursuing a career as a genetic counsellor. It is designed to meet the UK Genetic Counsellor Registration Board (GCRB) Set ‘A’ educational requirement to submit a Notification of Intention to Register with the GCRB (see http://www.gcrb.org.uk/), as well as the European Board of Medical Genetics (EBMG Genetic Counsellors division) educational requirement to submit a Notification of Intention to Register with the EBMG.

Distinctive features

The MSc in Genetic and Genomic Counselling is an innovative part-time, largely distance learning course. Being a ‘blended learning’ course, this opens up our well established genetic counsellor training expertise to a European and international audience, as it removes the need for you to relocate to Cardiff for full time study to train as a genetic counsellor. Instead, you will attend short intensive teaching blocks in Wales (UK) and engage in the online learning components throughout the remainder of each year. Approved placement learning in your own location is also undertaken in year 2.

We are committed to developing your practice in evidence-based genetic and genomic counselling, with a strong emphasis on preparing you to contribute to clinical and health services research in genetic and genomic counselling. The programme team includes world-class researchers in genetic and genomic counselling and counselling skills are taught by an expert counsellor.

Read less
Our master’s program appeals to those interested in a more patient-centered approach to helping people achieve and maintain optimal wellness through focus on the whole person, rather than simply their symptoms. Read more
Our master’s program appeals to those interested in a more patient-centered approach to helping people achieve and maintain optimal wellness through focus on the whole person, rather than simply their symptoms.

Highlights:

- Accredited program offered in collaboration with the Institute for Functional Medicine (IFM)
- Rigorous, clinically-applicable curriculum that is continually reviewed and updated with new research and findings
- 100 percent online format with flexible schedule options
- Engaging online learning experience featuring distinguished and dedicated instructors and an expert support network to reinforce clinical and academic skills
- Program satisfies educational requirements to sit for many national nutrition certification exams

Don’t miss your chance to enroll in our spring term!

MISSION

The mission of the UWS master’s in human nutrition and functional medicine (HNFM) program is to prepare learners to serve as outstanding health care clinicians, consultants, educators, administrators and researchers in the field of human nutrition and functional medicine.

PROGRAM

Our clinically-oriented human nutrition and functional medicine program is the only fully accredited master’s degree in functional medicine, having been granted regional accreditation from the Northwest Commission on Colleges and Universities, the highest level of academic accreditation available in the U.S. This program is 100 percent online as offered as a collaborative endeavor between UWS and the Institute for Functional Medicine (IFM), the organization which founded and developed the key functional medicine concepts used today.

Functional medicine is a science-based, patient-centered and systems-oriented approach to helping people achieve and maintain excellent health. This is accomplished primarily through natural methods, with diet and nutrition as a central focus. It is a forefront model for health care practice that seeks to address the causes of disease and dysfunction rather than suppressing symptoms. Founded on a holistic view of health, functional medicine delves deep into the biochemical and genetic individuality of each patient.

Why choose UWS for a master’s in nutrition?

This program includes advanced instruction in clinical nutrition, similar to other master’s level nutrition programs, but it goes far beyond by also presenting extensive educational content on functional medicine principles and practices derived from the Institute for Functional Medicine. These include important interdisciplinary and evidence-based perspectives, patient assessments and clinical interventions designed to enhance the function of the whole person.

It is primarily a clinically focused degree, with emphasis on treating individual or multiple conditions and their risk factors using dietary and nutritional interventions. Every course contains elements of clinical assessment and diagnosis. There is also a strong focus on wellness promotion and general health in order to meet the clinician’s primary goal of preventing disease and metabolic dysfunction before they occur.

SCHEDULE

The program consists of 50 quarter-credits of graduate coursework (33 semester credits) and can be completed in seven quarters (under two years) if taken at the recommended pace of 7-8 credits (usually two courses) per quarter, though students may move more quickly or more slowly through the program. We recognize that the life situations of our students vary considerably in terms of their family, employment and community commitments, thus we are flexible with regard to speed and prefer that students take the time they need in order to learn the material well.

Additionally, it is possible to take a leave of absence for a quarter or more if needed. As long as the intended schedule is communicated with the registrar, it is possible to extend the program to better suit a student’s individual needs.

Classes are admitted twice per year, with Fall (October) and Spring (April) starts.

Read less
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. Read more
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. The course offers a wide choice of modules and provides training in clinical tropical medicine at the Hospital for Tropical Diseases.

The Diploma in Tropical Medicine & Hygiene (DTM&H):
All students going on the MSc will take the Diploma in Tropical Medicine & Hygiene. Students with a prior DTM&H, or holding 60 Masters level credits from the East African Diploma in Tropical Medicine & Hygiene may apply for exemption from Term 1 via accreditation of prior learning.

Careers

Graduates from this course have taken a wide variety of career paths including further research in epidemiology, parasite immunology; field research programmes or international organisations concerned with health care delivery in conflict settings or humanitarian crises; or returned to academic or medical positions in low- and middle-income countries.

Awards

The Frederick Murgatroyd Award is awarded each year for the best student of the year. Donated by Mrs Murgatroyd in memory of her husband, who held the Wellcome Chair of Clinical Tropical Medicine in 1950 and 1951.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/tmih_progspec.pdf)

Visit the website http://www.lshtm.ac.uk/study/masters/mstmih.html

Objectives

By the end of this course students should be able to:

- understand and describe the causation, pathogenesis, clinical features, diagnosis, management, and control of the major parasitic, bacterial, and viral diseases of developing countries

- demonstrate knowledge and skills in diagnostic parasitology and other simple laboratory methods

- understand and apply basic epidemiological principles, including selecting appropriate study designs

- apply and interpret basic statistical tests for the analysis of quantitative data

- critically evaluate published literature in order to make appropriate clinical decisions

- communicate relevant medical knowledge to patients, health care professionals, colleagues and other groups

- understand the basic sciences underlying clinical and public health practice

Structure

Term 1:
All students follow the course for the DTM&H. Term 1 consists entirely of the DTM&H lectures, seminars, laboratory practical and clinical sessions, and is examined through the DTM&H examination and resulting in the award of the Diploma and 60 Master's level credits at the end of Term 1.

Terms 2 and 3:
Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). Recognising that students have diverse backgrounds and experience, the course director considers requests to take any module within the School's portfolio, provided that this is appropriate for the student.

*Recommended modules

- Slot 1:
Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries*
Clinical Virology*
Epidemiology & Control of Malaria*
Advanced Immunology 1
Childhood Eye Disease and Ocular Infection
Designing Disease Control Programmes in Developing Countries
Drugs, Alcohol and Tobacco
Economic Evaluation
Generalised Liner Models
Health Care Evaluation
Health Promotion Approaches and Methods
Maternal & Child Nutrition
Molecular Biology & Recombinant DNA Techniques
Research Design & Analysis
Sociological Approaches to Health
Study Design: Writing a Proposal

- Slot 2:
Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine*
Conflict and Health*
Design & Analysis of Epidemiological Studies*
Advanced Diagnostic Parasitology
Advanced Immunology 2
Clinical Bacteriology 1
Family Planning Programmes
Health Systems; History & Health
Molecular Virology; Non Communicable Eye Disease
Population, Poverty and Environment
Qualitative Methodologies
Statistical Methods in Epidemiology

- Slot 3:
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries*
Control of Sexually Transmitted Infections*
Advanced Training in Molecular Biology
Applied Communicable Disease Control
Clinical Immunology
Current Issues in Safe Motherhood & Perinatal Health
Epidemiology of Non-Communicable Diseases
Implementing Eye Care: Skills and Resources
Medical Anthropology and Public Health
Modelling & the Dynamics of Infectious Diseases
Nutrition in Emergencies
Organisational Management
Social Epidemiology
Spatial Epidemiology in Public Health
Tropical Environmental Health
Vector Sampling, Identification & Incrimination

- Slot 4:
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine*
Epidemiology & Control of Communicable Diseases*
Ethics, Public Health & Human Rights*
Global Disability and Health*
Immunology of Parasitic Infection: Principles*
Analytical Models for Decision Making
Clinical Bacteriology 2
Design & Evaluation of Mental Health Programmes
Environmental Epidemiology
Evaluation of Public Health Interventions
Genetic Epidemiology
Globalisation & Health
Molecular Biology Research Progress & Applications
Nutrition Related Chronic Diseases
Population Dynamics & Projections
Reviewing the Literature
Sexual Health
Survival Analysis and Bayesian Statistics
Vector Biology & Vector Parasite Interactions

- Slot 5:
AIDS*
Antimicrobial Chemotherapy*
Mycology*
Advanced Statistical Methods in Epidemiology
Analysing Survey & Population Data
Applying Public Health Principles in Developing Countries
Environmental Health Policy
Integrated Vector Management
Integrating Module: Health Promotion
Molecular Cell Biology & Infection
Nutrition Programme Planning
Pathogen Genomics
Principles and Practice of Public Health

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/ttmi.html

Project Report:
During the summer months (July - August), students complete a research project in a subject of their choice, for submission by early September. Projects may involve writing up and analysing work carried out before coming to the School, a literature review, or a research study proposal. Some students gather data overseas or in the UK for analysis within the project. Such projects require early planning.

Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved. The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mstmih.html#sixth

Read less
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments. Read more
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments.

You’ll study how to apply molecular approaches to the diagnosis, prevention and treatment of a range of cancers, chronic, autoimmune and genetic diseases. You’ll also carry out a research project in one of these areas within a research group at the forefront of the field. Project supervision is assured by outstanding academics and clinicians working on cutting-edge research.

This flexible programme allows you to develop core scientific skills and follow your professional interests with a choice of optional modules. You'll be part of a world-renowned School and will be taught by internationally recognised scholars.

Throughout the programme you will:

- gain an in-depth knowledge and understanding of the principles, application and potential of molecular medicine
- learn techniques in the field of molecular biology, immunology, cell biology and chemistry
- develop the ability to carry out molecular, biological and bioinformatics research for investigation of human diseases
- be able to engage in research projects using the latest technologies that generate results with scientific impact and the potential for improving patient health
- learn to critically evaluate current issues in molecular medicine, translate research findings into clinical applications, and recognise commercial opportunities

Programme structure

Starting in September, the MSc in Molecular Medicine is a full time, twelve months programme which combines a seven month research project with some taught modules.

The MSc programme comprises of a 180 credits, consisting of:

A research project: 75 credits
Scientific core skills: 45 credits including Bioinformatics and Research Methods

A choice of student-selected modules: 60 credits

• Human Molecular Genetics
• Immunity and Disease
• Animal Models of Disease
• Stem Cell Biology
• Cancer Biology
• Genetic Epidemiology

Career Prospects

This exciting programme provides excellent training for:

- science graduates looking for an opportunity to go on to do doctoral research, enter academic medicine or pursue a career in industry, clinical service or a related discipline;
- clinicians interested in an clinical academic career.

Many of our past students are now doing PhDs across the UK or internationally. Some are working in NGOs or in the industry. Talented graduates from the MSc will be strongly supported to join PhD programmes in the institutes here at the University.

We anticipate that an MSc Molecular Medicine will be ideal preparation for those intending to secure clinical fellowships.

Why study at the University of Leeds?

The University of Leeds has been named University of the Year 2017 by The Times and The Sunday Times’ Good University Guide.

Teaching is stimulating and delivered by active scientists and clinicians, many of whom are world-leading in their research fields. You will benefit from small group teaching including lectures, workshops, laboratory practicals, seminars and tutorials.

Your research will be based in one of the internationally-renowned Institutes of the School of Medicine. You will be able to choose from a wide range of research opportunities in Biomedical and Clinical Sciences, Cancer and Pathology or Rheumatology.

Read less
This exciting new course follows a curriculum designed by Health Education England and is suitable for healthcare professionals and other students with an interest in Genomic Medicine. Read more
This exciting new course follows a curriculum designed by Health Education England and is suitable for healthcare professionals and other students with an interest in Genomic Medicine. As a jointly taught programme delivered by both King’s and St George’s, University of London, students will benefit from the breadth of expertise provided by both institutions.

Key Benefits

- Jointly taught by King’s and St George’s
- Institutions with world-class research, clinical and teaching expertise across the full spectrum of Genomic Medicine
- Integrated within the South London Genomic Medicine Centre
- King’s ranked 1st in the UK for Clinical Medicine (REF 2014, proportion of overall submission that was ranked 4* or 3*)
- St George’s clinical research ranked fourth for impact
- King’s ranked 11th in the world for Clinical, Pre-Clinical and Health (Times Higher Education World University Rankings 2014/15)
- Both campuses are co-located with leading teaching hospitals
- Institutional expertise in multi-professional education
- St George’s scored 92% overall student satisfaction in Postgraduate Taught Experience Survey 2014
- King’s ranked 16 in the world in the QS World University Rankings 2014/15

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/genomic-medicine-msc-pg-dip-pg-cert.aspx

Course detail

- Description -

Students will learn about the way in which recent technological advances have transformed how genetic data is generated, analysed and presented and its relevance to a range of clinical scenarios. This will be a flexible programme, structured to provide options for PGCert and PgDip awards as well as the MSc.

- Course purpose -

The Genomics Medicine programme is designed for students who wish to acquire training in genomic technologies and the interpretation of their findings within a medical context. An MSc in Genomic Medicine will provide career opportunities for a range of professions from laboratory based researchers to diagnostic and healthcare professionals.

- Course format and assessment -

Modules taught in one week blocks including face to face and on line teaching. Learning material delivered as lectures, tutorials and workshops. Each taught module assessed by two pieces of assessment that varies between modules and include multiple choice questions, extended essays, case studies or role play.

Careers

This course is designed for students who wish to acquire training in genomic technologies and the interpretation of their findings within a medical context. An MSc in Genomic Medicine will provide career opportunities for a range of professions from laboratory based researchers to diagnostic and healthcare professionals.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

[About Postgraduate Study at King’s College London:]]

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
Genomic Medicine MSc is suitable for doctors, healthcare professionals and other students with an interest in Genomic Medicine. This course follows a curriculum designed by Health Education England and is suitable for healthcare professionals and other students with an interest in Genomic Medicine. Read more
Genomic Medicine MSc is suitable for doctors, healthcare professionals and other students with an interest in Genomic Medicine.

Overview

This course follows a curriculum designed by Health Education England and is suitable for healthcare professionals and other students with an interest in Genomic Medicine. As a jointly taught programme delivered by St George’s, University of London and King's College London, students will benefit from the breadth of expertise provided by both institutions.

Students will learn how recent technological advances have transformed how genetic data is generated, analysed and presented and its relevance to a range of clinical scenarios. This will be a flexible programme, structured to provide options for PGCert and PgDip awards as well as the MSc.

Funding is available from Health Education England (HEE) for NHS employees wishing to apply for the programme (and individual modules). Prospective students wishing to apply for this funding should do so before applying for the course.

Highlights

- Taught jointly by St George’s and King's
- Institutions with world-class research, clinical and teaching expertise across the full spectrum of Genomic Medicine
- Integrated within the South London Genomic Medicine Centre
- Both campuses are co-located with leading teaching hospitals
- Institutional expertise in multi-professional education
- St George’s scored 92% overall student satisfaction in Postgraduate Taught Experience Survey 2014
- King’s clinical research ranked third in the UK, eleventh in the world
- St George’s clinical research ranked 4th for impact
- Both institutions are ranked among the top 200 universities in the world according to the recent Times Higher Education World University Rankings

Modules

This MSc award will consist of 8 core modules with a selection of optional modules.

Core modules:
- Introduction to human genetics and genomics (15 credits)
- Omics techniques and their application to genomic medicine (15 credits)
- Genomics of common and rare inherited diseases (15 credits)
- Genomics in cancer pathology (15 credits)
- Pharmacogenomics and stratified healthcare (15 credits)
- Application of genomics in infectious disease (15 credits)
- Bioinformatics, interpretation, statistics and data quality assurance (15 credits)
- 60 Credit Research project or 30 Credit library-based dissertation

Optional modules
- Ethical, legal and social issues in applied genomics (15 credits)
- Counselling skills in genomics (15 credits)
- Cardiovascular genetics and genomics (15 credits)

Careers

This course is designed for students who wish to acquire training in genomic technologies and the interpretation of their findings within a medical context. An MSc in Genomic Medicine will provide career opportunities for a range of professions from laboratory based researchers to diagnostic and healthcare professionals.

Studying

Teaching will be delivered at both St George’s and King's sites and will include a variety of methods including lectures, seminars, workshops and online formats.

Progress throughout the course will be assessed through a variety of methods, including MCQ, written and oral presentations.

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. The Medical Genetics MSc covers the delivery of a modern clinical genetics service, including risk analysis and application of modern genetic and genomic technologies in medical genetics research and in diagnostics and population screening.

Why this programme

-This is a fully up-to-date Medical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
-The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
-The Medical Genetics MSc Teaching Staff have won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
-The close collaboration between university and hospital staff ensures that the Medical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics and visit the diagnostic laboratories at the new Southern General Hospital laboratory medicine building.
-The Medical Genetics degree explores the effects of mutations and variants as well as the current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
-New developments in medical genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
-You will develop your skills in problem solving, experimental design, evaluation and interpretation of experimental data, literature searches, scientific writing, oral presentations, poster presentations and team working.
-This MSc programme will lay the academic foundations on which some students may build in pursuing research at PhD level in genetics or related areas of biomedical science.
-The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
-For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Medical Genetics and Genomics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.
-The Medical Council of Hong Kong recognises the MSc in Medical Genetics and Genomics from University of Glasgow in it's list of Quotable Qualifications.

Programme structure

-Genetic Disease: from the Laboratory to the Clinic
-Case Investigations in Medical Genetics and Genomics
-Clinical Genomics - Students will take this course OR Omic Technologies for Biomedical Sciences OR Frontiers in Cancer Science.
-Omic technologies for the Biomedical Sciences: from Genomics to Metabolomics - Students will take this course OR Clinical Genomics OR Frontiers in Cancer Science.
-Frontiers in Cancer Science - Students will take this course OR Clinical Genomics OR Omic Technologies for Biomedical Sciences.
-Disease Screening in Populations
-SNP Assay Design and Validation
-Medical Genetics and Genomics Dissertation

Teaching and Learning Methods
A variety of methods are used, including problem-based learning, case-based learning, lectures, tutorials and laboratories. These are supplemented by a wide range of course-specific electronic resources for additional learning and self-assessment. As a result, you will develop a wide range of skills relevant to careers in research, diagnostics or clinical genetics. These skills include team-working, data interpretation and experimental design. You will use the primary scientific literature as an information resource, although textbooks such as our own Essential Medical Genetics will also be useful. You will have the options of: attending genetic counselling clinics and gaining hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.

There are weekly optional supplementary tutorials on topics that are selected by students

Electronic Resources
-Access to a continually updated Moodle (virtual learning environment) with extensive additional teaching and self-assessment materials.
-An online web-portal with regularly updated direct links to >70 worldwide genetic databases & online algorithms (plus the latest new genetics discoveries), all easily accessible and grouped into useful categories.

Career prospects

Research: About half of our graduates enter a research career and most of these graduates undertake and complete PhDs; the MSc in Medical Genetics and Genomics facilitates acquisition of skills relevant to a career in research in many different bio-molecular disciplines.

Diagnostics: Some of our graduates enter careers with clinical genetic diagnostic services, particularly in molecular genetics and cytogenetics.

Clinical genetics: Those of our graduates with a prior medical / nursing training often utilise their new skills in careers as clinical geneticists or genetic counsellors.

Other: Although the focus of teaching is on using the available technologies for the purpose of genetic diagnostics, many of these technologies are used in diverse areas of biomedical science research and in forensic DNA analysis. Some of our numerous graduates, who are now employed in many countries around the world, have entered careers in industry, scientific publishing, education and medicine.

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. The Clinical Genetics MSc has a specific focus on delivery of the clinical service to patients including risk analysis and application of modern genetic and genomic technologies in medical genetics research and in diagnostics and population screening.

● This is a fully up-to-date Clinical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
● The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
● The Clinical Genetics MSc Teaching Staff won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
● The close collaboration between university and hospital staff ensures that the Clinical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics at the new Queen Elizabeth University Hospital laboratory medicine building.
● The Clinical Genetics degree explores the effects of mutations and variants as well as the theoretically basis of current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
● New developments in genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
● You will develop your skills in problem solving, evaluation and interpretation of genetic data, literature searches, scientific writing, oral presentations, poster presentations and team working.
● This MSc programme will lay the academic foundations on which some students with prior MBChB or MBBS may build in pursuing careers in Clinical Genetics.
● The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
● For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Clinical Genetics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.

Programme Structure

Genetic Disease and Clinical Practice

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Distress or Disorder: Reactions to a medical diagnosis

This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.

Patient Empowerment: Supporting decisions relating to new diagnoses

This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.

Effective listening and communication skills

With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Disease Screening in Populations

This course will cover the rationale for, and requirements of, population screening programmes to detect individuals at high risk of particular conditions, who can then be offered diagnostic investigations. Students will work in groups to investigate and report on, a screening programme of their choice from any country.

Dissertation

The course will provide students with the opportunity to carry out an independent investigative project in the field of Medical Genetics and Genomics.

Teaching and Learning Methods

A variety of methods are used, including problem-based learning, case-based learning, lectures and tutorials. These are supplemented by a wide range of course-specific electronic resources for additional learning and self-assessment. As a result, you will develop a wide range of skills relevant to careers in clinical genetics. These skills include team-working and data interpretation. You will use the primary scientific literature as an information resource, although textbooks such as our own Essential Medical Genetics will also be useful. You will have the options of: attending genetic counselling clinics and gaining hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenicity of DNA sequence variants.

Visit the website for more information http://www.gla.ac.uk/postgraduate/taught/clinicalgenetics/#/programmestructure

Read less
Queen Mary University of London in collaboration with University College London, Public Health England, and Great Ormond Street Hospital. Read more
Queen Mary University of London in collaboration with University College London, Public Health England, and Great Ormond Street Hospital

This is a flexible MSc course designed to provide healthcare professionals with a multi-disciplinary perspective on genomics and its application in medicine. You will be trained in state-of-the-art genomic platforms and informatics tools and how to apply them in the analysis and interpretation of whole genome sequence data from patients. The course is taught by a team of experts of international calibre in a stimulating research environment next to the Genomics England.

NHS professionals can apply for places sponsored by Health Education England (HEE)
See also http://www.genomicseducation.hee.nhs.uk/genomicsmsc/

Two intakes per year: September and January
- Full time taught “in house”
- Part time-distance learning

Advances in technology and informatics have fuelled an exponential growth in genomics research which in turn has transformed our understanding of disease biology and opening new avenues in drug discovery and patient treatment. Genomics has strong potential to impact patient care but will require highly trained professionals to implement it both at the level of the health care system, the pharmaceutical industry, and the broader biomedical sector.

The MSc Programme in Genomic Medicine is designed to provide healthcare professionals with a multi-disciplinary perspective on genomics and its application in medicine in particular rare genetic diseases, cancer and infection.

The overall aim of the programme is to offer participants the knowledge and training in genomics required to provide, develop and advance specialist scientific services around genomic medicine within healthcare systems. The programme will work closely with Genomics England to train students to analyse high quality genomic data and offer them the possibility to interact with international experts in this field. Working directly with patient data from the 100,000 genomes project will offer students hands on experience on how genomics may be applied to diagnosis and patient treatment. The course will offer opportunities for research and work experience projects in the participating NHS Trusts under UCL Partners.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X