• Northumbria University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Warwick Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Portsmouth Featured Masters Courses
"genetic" AND "medicine"×
0 miles

Masters Degrees (Genetic Medicine)

We have 111 Masters Degrees (Genetic Medicine)

  • "genetic" AND "medicine" ×
  • clear all
Showing 1 to 15 of 111
Order by 
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Read more
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

We offer supervision for MPhil in the following research areas:

Cancer genetics and genome instability

Our research includes:
-A major clinical trial for chemoprevention of colon cancer
-Genetic analyses of neuroblastoma susceptibility
-Research into Wilms Tumour (a childhood kidney cancer)
-Studies on cell cycle regulation and genome instability

Cardiovascular genetics and development

We use techniques of high-throughput genetic analyses to identify mechanisms where genetic variability between individuals contributes to the risk of developing cardiovascular disease. We also use mouse, zebrafish and stem cell models to understand the ways in which particular gene families' genetic and environmental factors are involved in the normal and abnormal development of the heart and blood vessels.

Complex disease and quantitative genetics

We work on large-scale studies into the genetic basis of common diseases with complex genetic causes, for example autoimmune disease, complex cardiovascular traits and renal disorders. We are also developing novel statistical methods and tools for analysing this genetic data.

Developmental genetics

We study genes known (or suspected to be) involved in malformations found in newborn babies. These include genes involved in normal and abnormal development of the face, brain, heart, muscle and kidney system. Our research includes the use of knockout mice and zebrafish as laboratory models.

Gene expression and regulation in normal development and disease

We research how gene expression is controlled during development and misregulated in diseases, including the roles of transcription factors, RNA binding proteins and the signalling pathways that control these. We conduct studies of early human brain development, including gene expression analysis, primary cell culture models, and 3D visualisation and modelling.

Genetics of neurological disorders

Our research includes:
-The identification of genes that in isolation can cause neurological disorders
-Molecular mechanisms and treatment of neurometabolic disease
-Complex genetics of common neurological disorders including Parkinson's disease and Alzheimer's disease
-The genetics of epilepsy

Kidney genetics and development

Kidney research focuses on:
-Atypical haemolytic uraemic syndrome (aHUS)
-Vesicoureteric reflux (VUR)
-Cystic renal disease
-Nephrolithiasis to study renal genetics

The discovery that aHUS is a disease of complement dysregulation has led to a specific interest in complement genetics.

Mitochondrial disease

Our research includes:
-Investigation of the role of mitochondria in human disease
-Nuclear-mitochondrial interactions in disease
-The inheritance of mitochondrial DNA heteroplasmy
-Mitochondrial function in stem cells

Neuromuscular genetics

The Neuromuscular Research Group has a series of basic research programmes looking at the function of novel muscle proteins and their roles in pathogenesis. Recently developed translational research programmes are seeking therapeutic targets for various muscle diseases.

Stem cell biology

We research human embryonic stem (ES) cells, germline stem cells and somatic stem cells. ES cell research is aimed at understanding stem cell pluripotency, self-renewal, survival and epigenetic control of differentiation and development. This includes the functional analysis of genes involved in germline stem cell proliferation and differentiation. Somatic stem cell projects include programmes on umbilical cord blood stem cells, haematopoietic progenitors, and limbal stem cells.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less
The primary aim of this course is to train graduates interested in the clinical application of advances in human genetics and genomics so that they can provide and critically evaluate genetic and genomic counselling services. Read more
The primary aim of this course is to train graduates interested in the clinical application of advances in human genetics and genomics so that they can provide and critically evaluate genetic and genomic counselling services.

You will be given a thorough grounding in human genomics, genetics, genetic analysis and bioinformatics, in communication and counselling skills, and in the skills required for you to work as part of a multi-disciplinary team providing genetic and genomic counselling for families. 

The course is particularly suitable for students interested in pursuing a career as a genetic counsellor. It is designed to meet the UK Genetic Counsellor Registration Board (GCRB) Set ‘A’ educational requirement to submit a Notification of Intention to Register with the GCRB (see http://www.gcrb.org.uk/), as well as the European Board of Medical Genetics (EBMG Genetic Counsellors division) educational requirement to submit a Notification of Intention to Register with the EBMG.

Distinctive features:

The MSc in Genetic and Genomic Counselling is an innovative part-time, largely distance learning course.  Being a ‘blended learning’ course, this opens up our well established genetic counsellor training expertise to a European and international audience, as it removes the need for you to relocate to Cardiff for full time study to train as a genetic counsellor.  Instead, you will attend short intensive teaching blocks in Wales (UK) and engage in the online learning components throughout the remainder of each year.  Approved placement learning in your own location is also undertaken in year 2. 

We are committed to developing your practice in evidence-based genetic and genomic counselling, with a strong emphasis on preparing you to contribute to clinical and health services research in genetic and genomic counselling.  The programme team includes world-class researchers in genetic and genomic counselling and counselling skills are taught by an expert counsellor.

Structure

The MSc programme consists of two stages: The taught stage which lasts for a total of 24 months and the dissertation stage R which lasts for a further 12 months, following completion of the taught stages.  The total normal duration to complete the full MSc programme is three academic years, from the date of initial registration on the programme.

A placement module runs throughout Year 2 of the course.  This is supported by significant patient interaction.  Access to and concrete plans for your genetic counselling placement is a criterion for selection at interview. 

Core modules:

Introduction to Healthcare
Introduction to Genetic and Genomic Counselling
Counselling and Communication Skills
Research Methods
Introduction to Genetics, Genomics, Molecular Science and Bioinformatics
Applied Genetics and Bioinformatics in Clinical Care
Advanced Genetic and Genomic Counselling
Placement: Genetic and Genomic Counselling
Dissertation: Genetic and Genomic Counselling

Teaching

You will be taught through a combination of face-to-face and online lectures, tutorials, seminars, self-directed study and experiential learning on placement.

Lectures take a range of forms but generally they aim to provide a broad structure for each subject, to introduce key concepts, and to convey relevant up-to-date information.  In tutorials and seminars, you’ll have the opportunity to discuss particular genetic counselling and genomic counselling topics, to consolidate and receive feedback on your individual learning and to develop skills in oral presentation.  Tutorials will enable you to make individual contributions to group study, for example by summarising a particular genetic condition or your dissertation project for the group.

You will have the opportunity to practise and develop counselling, intellectual, team-working and presentational skills by participating in diverse learning activities, such as solving clinical problems, small-group discussions, debates, oral presentations, independent research tasks and written assignments as well as your practical placement activities in year 2. 

Assessment

You will be assessed through a combination of means including written work (blogs, essays), presentations, reflective pieces, video skills assessment and a dissertation.

Career Prospects

Career prospects for graduates with an appropriately accredited MSc in Genetic and Genomic Counselling are excellent.  In the UK and in the US, the demand for genetic counsellors has increased in recent years.  The US has seen, over the past 2—3 years, a rise in job postings from about 300/year (mirroring US graduate numbers) to over 600 in 2015.  Proportionately similar increases in job postings are being seen in the UK.  Graduates from existing UK MSc in Genetic (and Genomic) courses will be insufficient to meet the needs of the UK NHS over the next few years, as many UK genetic counsellors are approaching retirement.  The Transnational Alliance of Genetic Counsellors (a partnership of genetic counsellor educators from eighteen countries) have strongly emphasized the need for training more genetic counsellors to practice internationally, specifically across the EU, Asia and South America.

Read less
Genetic counsellors are health care professionals with specialized graduate training in the areas of medical genetics and counselling. Read more

Masters in Genetic Counselling

What is a Genetic Counsellor?

Genetic counsellors are health care professionals with specialized graduate training in the areas of medical genetics and counselling. Genetic counsellors usually work as members of a healthcare team, providing information and support to families who have members with birth defects or genetic disorders and to families who may be at risk for a variety of inherited conditions. Genetic counsellors work in a wide variety of settings, these include: general genetics, prenatal care and family planning, pediatrics, oncology, cardiology, neurology, laboratories, research, education, public health settings, and corporate environments. (NSGC website, accessed Oct 7, 2012).

GENERAL PROGRAM OVERVIEW

The Department of Medical Genetics, through Graduate and Postdoctoral Studies (G+PS) at the University of British Columbia, offers a unique two year graduate program leading to an MSc degree in Genetic Counselling. The program has full accreditation status by the American Board of Genetic Counseling (ABGC). Students, upon graduating, will be eligible to apply for “Active Candidate” status for both the ABGC and the Canadian Association of Genetic Counsellors (CAGC) certification exams.

Six students are accepted into the Program each year to begin their studies in September. Genetic counsellors, geneticists, other healthcare professionals and UBC faculty members instruct and supervise students during their course of study.

The program balances strong academic grounding, direct clinical experiences and independent research to prepare graduates for the dynamic field of genetic counselling.

Academic coursework provides a comprehensive overview of:
- Molecular genetics and genomics
- Clinical genetics
- Counselling techniques and psychology
- Bioethics

Clinical experiences cover a broad range of specialties, preparing graduates for the expanding professional role. These include both private and public settings in the areas of:
- Prenatal genetics
- Pediatric and adult genetics
- Reproductive medicine
- Cancer
- Psychiatric genetics
- Focused practical rotations in embryofetopathology, fetal ultrasound and prenatal procedures, prenatal biochemistry laboratory, molecular biochemical and cytogenetic laboratories.

Interprofessional health education prepares graduates for a patient centred, team-based approach to healthcare delivery. Collaborating with the College of Health Disciplines, unique experiences include:
- Health Mentorship Program
- The Interprofessional Education (IPE) Passport
- Rounds and educational seminars held by the Department of Medical Genetics, Hereditary Cancer Program, Child and Family
Research Institute, BC Clinical Genomics Network and other departments within the hospital and university network.

While this is not a thesis program, all graduates complete an independent research project. The program provides mentorship, research skills development and encouragement towards contributing to the published literature in genetic counselling outcomes.

Quick Facts

- Degree: Master of Science
- Specialization: Genetic Counselling
- Subject: Health and Medicine
- Mode of delivery: On campus
- Program components: Coursework only
- Faculty: Faculty of Medicine

Read less
OVERVIEW. The MSc in Experimental Medicine offers advanced research training in a broad range of laboratory based biomedical sciences. Read more

OVERVIEW

The MSc in Experimental Medicine offers advanced research training in a broad range of laboratory based biomedical sciences.

MSc in Experimental Medicine is designed for students wishing to pursue a career in experimental medicine, whether it is in academia, clinical practice, industry or government. The programme will also provide an excellent platform for progression to PhD programmes either in Queen’s or worldwide. 

MSc in Experimental Medicine will develop a strong fundamental understanding of high quality biomedical research, including experimental design and execution, data management and interpretation, and scientific communication, including publishing, presentation, and use of social media. 

The programme offers comprehensive research training with access to over 40 research groups and the state-of-the-art research facilities at the Centre for Experimental Medicine (CEM). Research facilities include Central Technology Units for Imaging and Genomics which are leading the way in research excellence and innovative healthcare. 

Experimental medicine aims to identify mechanisms of pathophysiology of disease, and demonstrate proof-of-concept evidence of the efficacy and importance of new discoveries or treatments. There is an increasing need for graduates who can undertake basic and clinical research, and translate it into improved medical treatments for patients.

This research-intensive MSc programme in Experimental Medicine will equip you with the rigorous research skills, and the innovative mentality to tackle the major medical and therapeutic challenges of the 21st century.

For further information email  or send us a message on WhatsApp

EXPERIMENTAL MEDICINE HIGHLIGHTS

The strong links between the Centre for Experimental Medicine and the biotech or biopharmaceutical sectors provides a stimulating experimental and translational environment, while also expanding your career opportunities.

PROFESSIONAL ACCREDITATIONS

  • You will have an opportunity to obtain a formally accredited certificate of training in good clinical practice (GCP) via the Inflammation, Infection and Immunity module. Students working with animal models of disease will also receive official training in animal handling, leading to a UK official animal handling personal license.

WORLD CLASS FACILITIES

  • You will be taught and mentored within the Centre for Experimental Medicine: a brand new, purpose-built institute at the heart of the Health Sciences Campus, boasting state-of-the-art research facilities. The programme offers comprehensive research training with access to over 40 research groups and the state-of-the-art research facilities at the Centre for Experimental Medicine (CEM). Research facilities include Central Technology Units for Imaging and Genomics which are leading the way in research excellence and innovative healthcare.

STUDENT EXPERIENCE

  • A strength of this MSc incorporates transdisciplinary elements throughout the degree programme, which contribute to the delivery of innovative postgraduate education and research training. Central to this programme is a multi-disciplinary team of academic and clinical specialists, with expertise ranging from molecular disease phenotyping, functional genomics, infectious disease biology, vascular biology, genetic epidemiology, imaging, immunology, stem cell biology and exploitation, unique pre-clinical models of disease, and patient-based investigation and clinical trials. The transdisciplinary expertise provided is complemented with programme access to state-of-the-art research facilities, including a diverse range of new and emerging technologies in genomics, advanced imaging, and patient-orientated research tools

COURSE STRUCTURE

Semester 1

It comprises 3 months of intensive teaching, which includes essential research skills followed by specialist chosen modules entitled “Infection & Immunity”, or “Diabetes and Cardiovascular Disease”. The remaining period will provide a unique opportunity to focus for 8 months on an extensive research project chosen from a large panel of projects offered by Principal Investigators in the CEM in one of the above themes. This period will be interspersed with monthly training to develop project-specific transferable skills, such as oral and poster presentation, and scientific writing.Semester 2

Semester 2 

You will specialise in one of these two research streams:

  • The Diabetes and Cardiovascular Disease stream is a specialised pathway within the MSc in Experimental Medicine which builds on our major strategic research strength in this globally significant area. This stream contains two complementary taught modules focusing on fundamental, experimental and translational principles of diabetes and cardiovascular disease, thereby providing good understanding of the pathophysiology of the diseases as well as current and experimental treatments. These modules will instil an appreciation of how this knowledge is being applied in the search for novel diagnostic, prognostic and therapeutic approaches for the clinical management of cardiovascular disease in diabetic patients, which is the biggest killer worldwide. Within this MSc programme, we offer a wide range of complementary experimental and translational research projects focused on the major cardiovascular complications of diabetes, including retinopathy, cardiomyopathy, peripheral vascular disease, nephropathy and pre-eclampsia (in pregnancy). 
  • The Infection and Immunity stream is another specialised pathway within the MSc in Experimental Medicine programme and exposes students to exciting concepts and their application in the field of infection biology, antimicrobial resistance, inflammatory processes and the role of immunity in health and disease. There is a strong emphasis on current developments in this rapidly accelerating field of translational medicine. Students will learn how the immune system maintains health, identifies and responds to invading pathogens or allergens and prevents repeated infections through strong adaptive immune responses. Lectures will provide an in-depth understanding of the immune system, an overview of research models used, key areas of research in inflammatory and immune-mediated pathology, and how to use this basic knowledge to identify and test new therapies. There is a considerable emphasis on clinical trial methodology within this stream and students will be introduced to the concepts of clinical trials and approaches to designing a trial to test novel methods to diagnose/prevent or treat illness.

RESEARCH PROJECT

You’ll undertake a project at the Centre of Experimental Medicine, QUB, relating to the research stream that you have chosen.

For further information email  or send us a message on WhatsApp



Read less
Based on the indicative curriculum of Health Education England, NHS England and Genomics England LTD, the Genomic Medicine course will equip research scientists… Read more

Based on the indicative curriculum of Health Education England, NHS England and Genomics England LTD, the Genomic Medicine course will equip research scientists and Health Care Professionals with; knowledge and skills to understand and interpret genomic data, an understanding of genetic and genomic techniques in a clinical setting, bioinformatic approaches required for analysis of genomic data, advanced knowledge and skills, preparing graduates to develop and deliver personalised health care. 

Key Features of the Genomic Medicine Programme

Genomic Medicine students will be introduced to:

  • The fundamentals of human genetics and genomics
  • Techniques required for DNA and RNA sequencing to study genomic variation observed in the clinical setting
  • Bioinformatic approaches required for the analysis of genomic data

Subsequent study will build on these foundations. Specific modules on the Genomic Medicine course focus on:

  • The application of genomics to Molecular Pathology of Cancer
  • Application of Genomics in Infectious Disease
  • Common and rare inherited diseases

Genomic Medicine Course Content

The Genomic Medicine course is primarily informed by the design developed to equip graduates, and a diverse range of healthcare professionals, with an appreciation and education in genomics and genomic technology. As an emerging field of expertise this knowledge and understanding of genomics will prepare Genomic Medicine graduates to translate their newfound knowledge of genomics into the clinical setting to inform patient care.

The Genomic Medicine course has been developed in line with Health Education England, NHS England and Genomics England Ltd.

Genomic Medicine students will be introduced to the fundamentals of human genetics and genomics along with techniques required for DNA and RNA sequencing to study genomic variation observed in the clinical setting. A third module entitled Data Analysis for Health and Medical Sciences, will introduce the bioinformatic approaches required for the analysis of genomic data.

Students will learn and be taught through a variety of methods including: lectures, workshops, tutorials, practical sessions, work-based learning and guest lectures by professionals, practitioners and respected academics. 

Employability is key to the Genomic Medicine programme. Our students will be able to enhance their employability skills through their education and training in genomic medicine, transforming both the specialist and general workforce within the NHS. Furthermore, for non-NHS funded students, the MSc in Genomic Medicine will prepare graduates for careers in the clinical setting for which a knowledge of genomics will improve service delivery to patients.   

The masters’ element of this programme will require students to complete a Research Project or in depth literature review. Genomic Medicine students will be encouraged to undertake their research project within the NHS, either within the students hosting NHS department or where they may expect to work following graduation.

Funding Opportunities for Genomic Medicine

Please note: fees of accepted, eligible NHS-based applicants will be paid by the Workforce Education and Development Services (WEDS).

Workforce Education and Development Services (WEDS) funding: WEDS is offering to pay the tuition fees for eligible staff working for the NHS in Wales, to study for the MSc, PG Dip or PG Cert in Genomic Medicine (part-time only).



Read less
This MSc aims to provide medical and science students with a comprehensive knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically human genetics, human embryonic development and fetal medicine. Read more

This MSc aims to provide medical and science students with a comprehensive knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically human genetics, human embryonic development and fetal medicine. There is a strong focus on the development of key skills and careers advice in the programme.

About this degree

Students will develop a knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically in the areas of basic genetics and technology, genetic mechanisms, medical genetics, organogenesis and fetal development, gametogenesis and IVF, prenatal diagnosis and screening, fetal and perinatal medicine, and preimplantation genetic diagnosis and developing technology. They gain transferable skills including information technology, analysis of scientific papers, essay writing, seminar presentation, research techniques, peer review and laboratory skills.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research project (60 credits).

A Postgraduate Diploma consisting of eight core modules (120 credits, full-time nine months, flexible study two to five years) is offered.

Mandatory modules

  • Basic Genetics and Technology
  • Gametogenesis, Preimplantation Development and IVF
  • Genetic Mechanisms
  • Medical Genetics
  • Organogenesis and Fetal Development
  • Prenatal Diagnosis and Screening
  • Fetal and Perinatal Medicine
  • Preimplantation Genetic Diagnosis and Developing Technology

Optional modules

There are no optional modules for this programme.

Dissertation/report

All MSc students undertake a clinical, laboratory, audit or library-based research project, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, practical demonstrations in laboratories, observation days in fetal medicine and IVF units, and student presentations. There are a number of peer-led learning activities. Assessment is through essays, patient case reports, critical reviews of papers, online problem booklet, examinations and the dissertation.

Further information on modules and degree structure is available on the department website: Prenatal Genetics and Fetal Medicine MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

On completion of the programme, all students will have gained knowledge of both the clinical and laboratory aspects of prenatal genetics and fetal medicine. This will enable the science-orientated students to go on to pursue research degrees, further training for careers in prenatal diagnosis or embryology, or other careers in the field or in general science. Medically-orientated students will be able to develop their careers in the field of fetal medicine.

Recent career destinations for this degree

  • Doctor, South West Yorkshire Partnership NHS Foundation Trust
  • Senior Genetic Counsellor, King Faisal Specialist Hospital & Research Centre
  • Trainee Clinical Embryologist, George's Memorial Medical Centre
  • Clinical Research Nurse, UCL
  • PhD in Prenatal Diagnosis, National and Kapodistrian University of Athens

Employability

Throughout the MSc programme students learn key skills through peer-led activities, such as evaluating and presenting orally on patient cases and media coverage of scientific papers. Students learn how to write essays and patient case reports and how to critically evaluate papers. They also have the opportunity to take part in debates and ethical discussions and to learn basic laboratory techniques. We offer a comprehensive careers programme involving our alumni, covering job applications, CV writing, general careers in science and specific advice on careers in embryology, clinical genetics, medicine and research degrees.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The UCL Institute for Women’s Health delivers excellence in research, clinical practice, education and training in order to make a real and sustainable difference to women's and babies' health worldwide.

The institute's UCL/UCL Hospitals NHS Foundation Trust collaboration provides an academic environment in which students can pursue graduate studies taught by world-class researchers and clinicians.

Our diversity of expertise in maternal and fetal medicine, neonatology, reproductive health and women's cancer ensures a vibrant environment in which students develop subject-specific and generic transferable skills, supporting a broad range of future employment opportunities.



Read less
The Genomic Medicine and Healthcare course has been developed for healthcare professionals including Specialist Medical Practitioners, General Medical Practitioners, Allied Health Professionals, Nurses and Midwives, Genetic Counsellors and those with related undergraduate degrees or equivalent professional qualifications and background experience. Read more

Genomics Medicine and Healthcare Courses

The Genomic Medicine and Healthcare course has been developed for healthcare professionals including Specialist Medical Practitioners, General Medical Practitioners, Allied Health Professionals, Nurses and Midwives, Genetic Counsellors and those with related undergraduate degrees or equivalent professional qualifications and background experience. It will be of interest to health professionals in the UK and internationally and will provide a solid foundation in the core concepts of genetics and genomics applied to modern medicine and healthcare. Although there are other courses covering the subject area, none are completely online so they are difficult and costly for global healthcare professionals to get involved. This course will reach an international audience in a cost effective, flexible and inclusive way, helping to develop a worldwide network of genomic medical and healthcare leaders.

Our course is well timed given increasing public and professional interests in genetic and genome-level diagnostic and predictive testing for clinical management, disease risk evaluation, prevention of major complications and offering the prospect of improved prognosis. Personalised benefits include the option for reproductive choices and reducing lifetime medical or health risks by judicious use of new emerging preventive medicines and devices combined with lifestyle/behaviour modifications.

Diploma in Genomics Medicine and Healthcare Courses

Our online 1 year Postgraduate Diploma in Genomic Medicine & Healthcare is designed to be practical and clinically focused. The course will provide an integrated approach to Genomic Medicine and Healthcare and focus on applying scientific principles to direct patient care. The Genomics Diploma course is worth 120 credits and comprises 6 modules of 20 credits each.

The Diploma course aims to equip graduates with critical knowledge and understanding of genomics medicine. Graduates will be able to apply knowledge for direct clinical benefit and future study. Our Genomics Medicine Diploma course caters to the educational needs of a primary and secondary care audience and is the only one of its kind that is completely accessible online.

Our Genomic Medicine Diploma has been designed for General Medical Practitioners, Specialist Medical Practitioners (for example Paediatrics, General Medicine, Obstetrics & Gynaecology, Medical Oncology), Allied Health Professionals (Clinical Psychologists, Occupational Therapists and Physiotherapists), Nurses (Cancer, Cardiac, Paediatric, Neurology etc.) and Midwives. In addition, the course would be of interest to those with related undergraduate degrees (e.g. Dietetics, Biomedical Science, Pharmacy) or equivalent professional qualifications and background experience

On completion you will demonstrate:

- a systematic understanding of genetics and genomic factors in human diseases
- a critical awareness of current issues affecting the management of inherited human diseases
- an advanced knowledge of clinical genomics that will facilitate decision-making in unpredictable and/or complex situations
- an ability to critically evaluate current research in applied and translational genetics and genomics
- an ability to deliver management strategies for the investigation and treatment of patients with inherited human diseases
- a basic understanding of the scope and effect of genomics on treatments including horizon scanning of potential new targeted treatments for wider population

Course Structure

The online course lasts one calendar year and is a part time distance learning course. It consists of 6 modules per year, each of 6 weeks duration.

Module 1 - Principles of Medical Genetics and Genomics
Module 2 - Genetic Counselling
Module 3 - Genomics and Society
Module 4 - Practice of Clinical Genomics
Module 5 - Reproductive Genomics
Module 6 - Genomic Healthcare

Assessment

Online Diploma in Genomic Medicine and Healthcare

The course puts assessment at the heart of learning by using clinical scenarios to facilitate problem-solving, critical analysis and evidence-based care. The scenarios act as both the focus for learning and assessment thus embedding assessment within the learning process.

Each of the 6 modules have the same assessment format. Due to the online nature of the course, students are expected to login and participate in the course regularly throughout the module (ideally on a daily basis).

Students are split into groups of 10-15 students and are assigned a dedicated expert tutor who:

Facilitates clinical case discussions with the group.
Monitors, assesses and marks each student throughout the module.
Students use the skills gained during the lectures to engage with the different activities (see below).
Clinical case scenarios with case based discussion - 40%
Individual learning portfolio - 10%
Group/individual activity - 20%
Case based examination - 30%

Read less
Our Master of Research (MRes) in Translational Medicine will give you the research skills you need to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare. Read more

Our Master of Research (MRes) in Translational Medicine will give you the research skills you need to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare.

Our understanding of the molecular basis of disease and drug mechanisms has improved dramatically in recent years, yet there is a distinct shortage of individuals able to apply this knowledge into effective clinical benefit. The core aim is to train the next generation of scientists able to 'fast-track' biological and scientific data into advanced therapies and diagnostics tools.

With advances in technology, graduates are faced with heightened expectations to conduct effective bioscience research. Employers demand skillsets with biological, medical, physical and computational characteristics, and our course is designed to provide this breadth of training.

You will learn omics skills and techniques such as genetics, genomics, transcriptomics, proteomics and metabolomics. Our training in metabolomic techniques is novel for a UK course, while our teaching on the integration of different omic platforms and data in a systems medicine strategy is also unique.

The MRes course consists of four taught units - which together make up the PGCert - plus an extended 35-week project that can be undertaken at the University, the Manchester Cancer Research Centre or a teaching hospital in Greater Manchester.

You can choose from a range of projects covering areas such as the use of gene expression profiling, proteomics, metabolomics, stem cell research, tissue culture or pharmacogenetics in the biology of cancer, cardiovascular disease, infectious diseases, stroke or diabetes.

Completing our course will open up a route into PhD research. You may also pursue a career in academia or the pharmaceutical or biotechnology industries, or as a clinical academic.

Special features

Extensive research experience

The 35-week research project for the MRes award offers the chance to conduct ambitious projects in areas such as cancer, cardiovascular disease, inflammation, mental health, infectious diseases, stroke or diabetes, using methods such as stem cell research, proteomics, metabolomics, tissue culture or pharmacogenetics.

Integrated focus on key topics

Our course has a strong and integrated focus on genetics, genomics, proteomics and metabolomics biotechnology and data interpretation, which are strengths within Manchester and are identified as core areas of bioscience growth.

Teaching and learning

Teaching comprises four taught units delivered using a variety of face-to-face, workshop and e-learning approaches and an extended 35-week research project for the MRes award.

Examples of research projects include the following.

  • Statins in translational cerebral ischemia: systematic review and meta-analysis of pre-clinical studies.
  • Parallel gene expression profiling and histological analysis of tumour tissue microarrays.
  • Development of a New Drug For Alzheimer's Disease by Drug Repositioning.
  • Identification of genetic variants predisposing to autoimmune idiopathic inflammatory myopathies.
  • Effects of differentiating agents on breast cancer stem cells and their sensitivity to DNA-damaging therapies.
  • Molecular characterisation of prostate cancer.
  • Inhibitors of IAPP Aggregation and Toxicity. 
  • New Therapies for Type II Diabetes.
  • Identifying novel monotherapy and combination therapies for the treatment of Glioma.
  • Translation of in vitro to in vivo: investigating the utility of in vitro drug transporter assays to predict inductive effects in the clinic.
  • In vivo mechanistic analysis of cancer drug combination therapies.
  • Using silk as a biomaterial for nerve regeneration.
  • The role of the local tissue environment in immune activation following myocardial damage.
  • Identifying genes that drive Breast Cancer to Bone Metastasis
  • High throughput genetic testing in rare disease: applications of personalised medicine.
  • Drug resistance and heterogeneity in CML following treatment with imatinib and following perturbation caused by nanoparticle delivery of miRNAs.
  • Investigation of a panel of drugs to inhibit the pro-tumourgenic actions of macrophages in breast cancer.
  • 3D anatomical reconstruction and molecular mapping of the atrioventricular ring tissues in human embryonic heart and adult rat heart.
  • Identification of the genetic basis of disorders associated with the presence of intracranial calcification.
  • Species variability in metabolism as a translational factor influencing susceptibility to adverse drug reactions in man.

Find out more by visiting the postgraduate teaching and learning page.

Career opportunities

More than 50% of our graduates progress into PhD research at Manchester or other universities such as Cambridge, Imperial College London, Newcastle, Glasgow, Liverpool and Bristol.

Around 15% pursue a career in the pharmaceutical or biotechnology industry in the UK or abroad.

Approximately 25% are intercalating medics who complete their medical education. An estimated 10% pursue an undergraduate medical degree.



Read less
Our Genomics Medicine programme follows a curriculum designed by Health Education England and is aligned with the 100,000 genomes project, led by Genomics England and NHS England, which intends to transform the use of genomic medicine in the NHS. Read more

Our Genomics Medicine programme follows a curriculum designed by Health Education England and is aligned with the 100,000 genomes project, led by Genomics England and NHS England, which intends to transform the use of genomic medicine in the NHS. This course is jointly taught by both King’s and St George’s, University of London, allowing you to benefit from the breadth of expertise provided by both institutions including their membership of the South London NHS Genome Medicine Centre. The programme is suitable for healthcare professionals and other students with an interest in Genomic Medicine.

Key Benefits

  • Jointly taught by King’s and St George’s, University of London – institutions with world-class research, clinical and teaching expertise across the full spectrum of Genomic Medicine
  • Integrated within the South London Genomic Medicine Centre
  • King’s ranked 1st in the UK for Clinical Medicine (REF 2014, proportion of overall submission that was ranked 4* or 3*)
  • King’s ranked 16th in the world for Clinical, Pre-Clinical and Health (Times Higher Education World University Rankings 2016/17)
  • Both campuses are co-located with leading teaching hospitals
  • Institutional expertise in multi-professional education

Description

Our Genomic Medicine programme, taught jointly with St George’s, is an opportunity to explore how recent technological advances have transformed the way that genetic data is generated, analysed and presented, and its relevance to a range of clinical scenarios.

The Genomics Medicine programme is designed for healthcare professionals and other students who wish to train in genomic technologies and the interpretation of genomic data within a medical context.

The study programme is made up of optional and required modules. The MSc pathway requires modules totalling 180 credits to complete the programme, including either 60 or 30 credits from a research project and dissertation or literature review. The Postgraduate Diploma pathway requires modules totalling 120 credits, while the Postgraduate Certificate requires you to study modules totalling 60 credits to complete the course. If you are studying full-time, you will complete the course in one year, from September to September. If you are studying part-time, your programme will take two years to complete.

Course purpose

The Genomics Medicine programme is designed for healthcare professionals and other students who wish to acquire training in genomic technologies and the interpretation of their findings within a medical context.

Course format and assessment

Modules taught in one week blocks including face to face and on line teaching. Learning material delivered as lectures, tutorials and workshops. Each taught module assessed by two pieces of assessment that varies between modules and include multiple choice questions, extended essays, case studies or role play.

Locations

  • King's College London, Guy's Campus
  • St George's, University of London

Career prospects

An MSc in Genomic Medicine will provide career opportunities for a range of professions from laboratory based researchers to diagnostic and healthcare professionals.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
Our master’s program appeals to those interested in a more patient-centered approach to helping people achieve and maintain optimal wellness through focus on the whole person, rather than simply their symptoms. Read more
Our master’s program appeals to those interested in a more patient-centered approach to helping people achieve and maintain optimal wellness through focus on the whole person, rather than simply their symptoms.

Highlights:

- Accredited program offered in collaboration with the Institute for Functional Medicine (IFM)
- Rigorous, clinically-applicable curriculum that is continually reviewed and updated with new research and findings
- 100 percent online format with flexible schedule options
- Engaging online learning experience featuring distinguished and dedicated instructors and an expert support network to reinforce clinical and academic skills
- Program satisfies educational requirements to sit for many national nutrition certification exams

Don’t miss your chance to enroll in our spring term!

MISSION

The mission of the UWS master’s in human nutrition and functional medicine (HNFM) program is to prepare learners to serve as outstanding health care clinicians, consultants, educators, administrators and researchers in the field of human nutrition and functional medicine.

PROGRAM

Our clinically-oriented human nutrition and functional medicine program is the only fully accredited master’s degree in functional medicine, having been granted regional accreditation from the Northwest Commission on Colleges and Universities, the highest level of academic accreditation available in the U.S. This program is 100 percent online as offered as a collaborative endeavor between UWS and the Institute for Functional Medicine (IFM), the organization which founded and developed the key functional medicine concepts used today.

Functional medicine is a science-based, patient-centered and systems-oriented approach to helping people achieve and maintain excellent health. This is accomplished primarily through natural methods, with diet and nutrition as a central focus. It is a forefront model for health care practice that seeks to address the causes of disease and dysfunction rather than suppressing symptoms. Founded on a holistic view of health, functional medicine delves deep into the biochemical and genetic individuality of each patient.

Why choose UWS for a master’s in nutrition?

This program includes advanced instruction in clinical nutrition, similar to other master’s level nutrition programs, but it goes far beyond by also presenting extensive educational content on functional medicine principles and practices derived from the Institute for Functional Medicine. These include important interdisciplinary and evidence-based perspectives, patient assessments and clinical interventions designed to enhance the function of the whole person.

It is primarily a clinically focused degree, with emphasis on treating individual or multiple conditions and their risk factors using dietary and nutritional interventions. Every course contains elements of clinical assessment and diagnosis. There is also a strong focus on wellness promotion and general health in order to meet the clinician’s primary goal of preventing disease and metabolic dysfunction before they occur.

SCHEDULE

The program consists of 50 quarter-credits of graduate coursework (33 semester credits) and can be completed in seven quarters (under two years) if taken at the recommended pace of 7-8 credits (usually two courses) per quarter, though students may move more quickly or more slowly through the program. We recognize that the life situations of our students vary considerably in terms of their family, employment and community commitments, thus we are flexible with regard to speed and prefer that students take the time they need in order to learn the material well.

Additionally, it is possible to take a leave of absence for a quarter or more if needed. As long as the intended schedule is communicated with the registrar, it is possible to extend the program to better suit a student’s individual needs.

Classes are admitted twice per year, with Fall (October) and Spring (April) starts.

Read less
The aim of this programme is to provide individuals with the skills to explore, analyse and interpret contemporary biological data. Read more
The aim of this programme is to provide individuals with the skills to explore, analyse and interpret contemporary biological data. This course offers Masters level instruction in Bioinformatics and Genetic Epidemiology.

You will develop key skills necessary to analyse genomics data for gene discovery, including genomewide association studies (GWAS) and post-GWAS applications such as gene-set and polygenic genetic epidemiology analysis.

This programme has been designed for biomedical scientists and informaticians looking to undertake a career in academic research, the biotechnology, pharmaceutical or health care industries.

Distinctive features

• This course was first established over a decade ago as a response to the emerging informatics needs of the genetics and genomics communities following the completion of the first drafts of the human genome project. Subsequent advances in research technologies and analytic approaches have dictated the continuing evolution of this programme to provide contemporary instruction in these new essential skills

• Providing a strong platform for students entering from the biological, mathematical or computational sciences, this course provides modules in core complementary areas such as in computation/scripting, statistics and molecular biology; the fundamental building blocks necessary to succeed in bioinformatic analysis and interpretation

• As an introduction – you will be taught essential organisational and coding skills required for effective bioinformatics and biostatistical analysis.

• One of the unique components of this course is the extended instruction in statistics provided by the Statistics for Bioinformatics and Genetic Epidemiology module.

• You will also be introduced to the molecular and cellular biology behind the data within the Introduction to Bioinformatics Module. This is invaluable if you are entering from non-life sciences backgrounds to make informed decisions around data interpretation.

• You will extend your bioinformatics and biostatistics studies by focusing on the genetic epidemiology and gene discovery approaches including GWAS and copy-number variation (CNV) analysis, and post-GWAS approached such as pathway/network, gene-set and polygenic epidemiological methods.

• We are committed to developing transferable skills and to improving graduate employability. We want highly capable graduate informaticians who can fulfil the growing bioinformatics needs of local, national and international employers.   

Structure

The course can be completed in one year with full-time study or in three years by part-time study.

Both full-time and part-time students register initially for the MSc Bioinformatics and Genetic Epidemiology.

A Postgraduate Certificate exit point is available for students successfully completing 60 credits of the taught element (module restrictions apply).

A Postgraduate Diploma exit point is available for students successfully completing 120 credits of the taught element (module restrictions apply).

Core modules:

Computing for Bioinformatics and Genetic Epidemiology
Statistics for Bioinformatics and Genetic Epidemiology
Introduction to Bioinformatics
Case Studies in Bioinformatics and Biostatistics
Genetic Epidemiology - Association and Linkage
Post-GWAS Genetic Epidemiology
Dissertation in Genetic Epidemiology

Teaching

The programme is delivered as face-2-face learning. Students will find course materials, links to related materials and assessments via Cardiff University’s Virtual Learning Environment (VLE) ‘Learning Central'

Career Prospects

This programme has been designed with the needs of academic research, the biotechnology, pharmaceutical and health care industries in mind. Instruction in computational and statistical biosciences will enable individuals to work effectively within a multidisciplinary bioinformatics and genetic epidemiology arena.

Read less
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. Read more

This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. The course offers a wide choice of modules and provides training in clinical tropical medicine at the Hospital for Tropical Diseases.

The Diploma in Tropical Medicine & Hygiene (DTM&H):

All students going on the MSc will take the Diploma in Tropical Medicine & Hygiene. Students with a prior DTM&H, or holding 60 Masters level credits from the East African Diploma in Tropical Medicine & Hygiene may apply for exemption from Term 1 via accreditation of prior learning.

Careers

Graduates from this course have taken a wide variety of career paths including further research in epidemiology, parasite immunology; field research programmes or international organisations concerned with health care delivery in conflict settings or humanitarian crises; or returned to academic or medical positions in low- and middle-income countries.

Awards

The Frederick Murgatroyd Award is awarded each year for the best student of the year. Donated by Mrs Murgatroyd in memory of her husband, who held the Wellcome Chair of Clinical Tropical Medicine in 1950 and 1951.

- Full programme specification (pdf) (https://www.lshtm.ac.uk/files/tmih_progspec.pdf)

Visit the website https://www.lshtm.ac.uk/study/masters/tropical-medicine-international-health

Objectives

By the end of this course students should be able to:

- understand and describe the causation, pathogenesis, clinical features, diagnosis, management, and control of the major parasitic, bacterial, and viral diseases of developing countries

- demonstrate knowledge and skills in diagnostic parasitology and other simple laboratory methods

- understand and apply basic epidemiological principles, including selecting appropriate study designs

- apply and interpret basic statistical tests for the analysis of quantitative data

- critically evaluate published literature in order to make appropriate clinical decisions

- communicate relevant medical knowledge to patients, health care professionals, colleagues and other groups

- understand the basic sciences underlying clinical and public health practice

Structure

Term 1:

All students follow the course for the DTM&H. Term 1 consists entirely of the DTM&H lectures, seminars, laboratory practical and clinical sessions, and is examined through the DTM&H examination and resulting in the award of the Diploma and 60 Master's level credits at the end of Term 1.

Terms 2 and 3:

Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). Recognising that students have diverse backgrounds and experience, the course director considers requests to take any module within the School's portfolio, provided that this is appropriate for the student.

*Recommended modules

- Slot 1:

Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries*

Clinical Virology*

Epidemiology & Control of Malaria*

Advanced Immunology 1

Childhood Eye Disease and Ocular Infection

Designing Disease Control Programmes in Developing Countries

Drugs, Alcohol and Tobacco

Economic Evaluation

Generalised Liner Models

Health Care Evaluation

Health Promotion Approaches and Methods

Maternal & Child Nutrition

Molecular Biology & Recombinant DNA Techniques

Research Design & Analysis

Sociological Approaches to Health

Study Design: Writing a Proposal

- Slot 2:

Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine*

Conflict and Health*

Design & Analysis of Epidemiological Studies*

Advanced Diagnostic Parasitology

Advanced Immunology 2

Clinical Bacteriology 1

Family Planning Programmes

Health Systems; History & Health

Molecular Virology; Non Communicable Eye Disease

Population, Poverty and Environment

Qualitative Methodologies

Statistical Methods in Epidemiology

- Slot 3:

Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries*

Control of Sexually Transmitted Infections*

Advanced Training in Molecular Biology

Applied Communicable Disease Control

Clinical Immunology

Current Issues in Safe Motherhood & Perinatal Health

Epidemiology of Non-Communicable Diseases

Implementing Eye Care: Skills and Resources

Medical Anthropology and Public Health

Modelling & the Dynamics of Infectious Diseases

Nutrition in Emergencies

Organisational Management

Social Epidemiology

Spatial Epidemiology in Public Health

Tropical Environmental Health

Vector Sampling, Identification & Incrimination

- Slot 4:

Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine*

Epidemiology & Control of Communicable Diseases*

Ethics, Public Health & Human Rights*

Global Disability and Health*

Immunology of Parasitic Infection: Principles*

Analytical Models for Decision Making

Clinical Bacteriology 2

Design & Evaluation of Mental Health Programmes

Environmental Epidemiology

Evaluation of Public Health Interventions

Genetic Epidemiology

Globalisation & Health

Molecular Biology Research Progress & Applications

Nutrition Related Chronic Diseases

Population Dynamics & Projections

Reviewing the Literature

Sexual Health

Survival Analysis and Bayesian Statistics

Vector Biology & Vector Parasite Interactions

- Slot 5:

AIDS*

Antimicrobial Chemotherapy*

Mycology*

Advanced Statistical Methods in Epidemiology

Analysing Survey & Population Data

Applying Public Health Principles in Developing Countries

Environmental Health Policy

Integrated Vector Management

Integrating Module: Health Promotion

Molecular Cell Biology & Infection

Nutrition Programme Planning

Pathogen Genomics

Principles and Practice of Public Health

Further details for the course modules - https://www.lshtm.ac.uk/study/courses/masters-degrees/module-specifications

Project Report:

During the summer months (July - August), students complete a research project in a subject of their choice, for submission by early September. Projects may involve writing up and analysing work carried out before coming to the School, a literature review, or a research study proposal. Some students gather data overseas or in the UK for analysis within the project. Such projects require early planning.

Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved. The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mstmih.html#sixth



Read less
Our MSc in Genomic Medicine is accredited by Health Education England and designed to fulfil the aspirations of the . 100,000 Genome Project. Read more

Our MSc in Genomic Medicine is accredited by Health Education England and designed to fulfil the aspirations of the 100,000 Genome Project to create a world-class NHS workforce that understands and applies genomics for patient care.

This course is ideal whether you are a member of NHS staff or a science graduate. NHS professionals will learn how genomics impact on their area of clinical practice, while science graduates will receive training to help them gain employment in the healthcare sector (eg as a biomedical scientist or in genomic counselling) or pursue a PhD in the field.

We emphasise the practice of genomics and bioinformatics in the NHS and academia as a partnership between multiple stakeholders, including clinical, academic and industrial involvement.

As such, you will learn from clinical experts from the Manchester Centre for Genomic Medicine , The University of Manchester, Liverpool University, Public Health England, AstraZeneca and Qiagen.

Our MSc consists of taught units and a literature review or a bioinformatics-based project. You will be encouraged to use your intellectual curiosity, creativity and critical thinking in the practical application of genomics and bioinformatics.

MRes students will write a literature review and a research proposal (project 1) before going on to complete a six-month practical research project.

Teaching and learning

We take a student-focused and patient-centred approach to teaching and learning.

The course content is delivered using a combination of online and face-to-face methods including lectures, problem and evidence-based learning, workshops and collaborative learning.

The face-to-face elements are designed to help you develop the deeper contextualised specialist knowledge and critical evaluative skills necessary for a questioning and innovative approach to your learning and clinical practice.

You will learn from healthcare professionals and industry partners who are working at the forefront of practice and clinical research and can draw on their scholarship and expertise to help you build your knowledge.

If you choose to study the MRes qualification, the 25-week lab-based research project will provide excellent practical training in a number of research methods and techniques.

Course unit details

The MSc is divided into 15-credit core and optional units. Full-time students will normally do a 60-credit research project, and part-time students a 30-credit literature review.

Course collaborators

We collaborate with the following organisations to deliver this MSc:

What our students say

"So far, I have completed four modules on Bioinformatics, Human Genetics, Pharmacogenomics and Genetic Counselling. I can honestly say that I have thoroughly enjoyed each of these and they have opened my eyes to the potential transformation of healthcare in the NHS through genomic medicine."

Bradley Horn, Genetic Technologist

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service .

CPD opportunities

Several units from this MSc can be taken as standalone courses for continuing professional development (CPD). Please visit the Genomic Medicine (CPD units) page for further information.

Career opportunities

Our course is designed to support and upskill healthcare professionals working in the NHS in areas where genomic medicine is becoming part of clinical practice.

Our science graduates have gone on to apply their new skills in service labs in their home countries, gained employment in the NHS, undertaken further study for genomic counselling, or have continued their research to pursue a PhD in the field.

Accrediting organisations

This course is accredited by Health Education England.



Read less
OVERVIEW. The MSc in Cancer Medicine will provide students with new knowledge of how precision medicine can improve and shape future healthcare. Read more

OVERVIEW

The MSc in Cancer Medicine will provide students with new knowledge of how precision medicine can improve and shape future healthcare. Students will gain hands-on experience of molecular techniques and the equipment/devices used in a modern molecular laboratory; the course will provide training in laboratory and research skills that are applicable across multiple scientific disciplines in a supportive learning environment. Students will be able to evaluate how novel therapeutic approaches can be used to stratify patients into treatment groups for better clinical management (stratified / precision medicine). They will observe the delivery of precision medicine through tours of the Northern Ireland Cancer Centre.

There are optional modules in the second semester allowing students to explore.the fundamental principles of Carcinogenesis and the translational approaches (including cutting edge technologies) which allow cancer scientists and clinicians to advance our understanding and treatment of cancers. The Precision Cancer Medicine stream provides a comprehensive overview of the current understanding of the Hallmarks of Cancer from the role of genetic/epigenetic alterations, cell cycle control and metastases/angiogenesis to the development of applications to help diagnose cancers earlier, improve treatments, rationally design clinical trials and reduce chemotherapy drug resistance.

The Radiation Oncology stream will develop skills in understanding the biological principles of radiotherapy and its clinical applications in the treatment of cancer. This will include the physical and chemical basis of radiation interactions and the biological consequences of radiation exposures. Clinical aspects of Radiation Oncology will be covered including principle of advanced radiotherapy delivery, cancer imaging techniques and biomarker discovery.

Importantly, both streams show how our improved understanding of the molecular processes driving cancer growth and spread can be ‘translated’ through research-intensive MSc projects to improve the treatment and survival of cancer patients.

For further information email  or send us a message on WhatsApp

CANCER MEDICINE HIGHLIGHTS

The strong links between us and the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also expanding your career opportunities.

GLOBAL OPPORTUNITIES

INDUSTRY LINKS

  • The strong links between us and the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also expanding your career opportunities.

WORLD CLASS FACILITIES

  • The Programme will be taught in the Centre for Cancer Research & Cell Biology a purpose-built institute at the heart of the Health Sciences Campus, boasting state-of-the-art research facilities

INTERNATIONALLY RENOWNED EXPERTS

  • We have an international reputation in this area, achieved through; high-impact peer review publications; significant international research funding and the establishment of successful spin-out companies.

COURSE STRUCTURE

Semester 1

Research Translational: from Concept to Commercialisation (Full Year)

  • This module covers the principles of disease biology and new technological developments that increase our understanding of disease processes. It develops an appreciation of the importance of innovation, business awareness and leadership skills in the translation of discovery science to clinical implementation.

Diagnosis and Treatment (Semester 1)

  • This module provides a comprehensive overview of the diagnosis and treatment of the common solid and haematological malignancies, including breast, ovarian, genitourinary and gastrointestinal cancers as well as the leukaemias. An overview of the common diagnostic pathways in clinical practice will be provided, and this will including gaining an understanding of imaging modalities and histopathological techniques in routine use. 

Cancer Biology (Semester 1)

  • This module provides a comprehensive overview of the fundamental principles of carcinogenesis highlighting how normal control processes are bypassed during tumour formation. The pathogenic mechanisms to be discussed will range from genomic alterations in key gene families, to epigenetic mechanisms of gene control, alterations in kinase activities or protein turnover, or activation of aberrant phenotypes such as invasion and angiogenesis.Semester 2

Students will make a selection from the following modules:

  • Precision Cancer Stream
  • Cancer Genetics & Genomics
  • Translational Cancer Medicine

OR

  • Radiation Oncology and Medical Physics (ROMP)
  • Biology of Radiotherapy

Clinical Radiation

Building on the biological basis of radiotherapy, this module will develop knowledge and skills in understanding clinical radiotherapy and medical imaging. Through the delivery of a multidisciplinary taught programme, students will cover clinical tumour and normal tissue biology, radiological imaging and the design of radiotherapy treatment plans. This will develop the clinical rationale for radiotherapy in the treatment of cancer and highlight emerging treatment combinations and techniques for biomarker discovery in radiation oncology.Biology and Imaging

Research Project

You will undertake a project in the Centre for Cancer Research and Cell Biology.

Dissertation

This module comprises the write-up contribution to the overall research element of the programme, with the Research Project (SCM 8067). The Dissertation will represent the student’s personal studies in the literature, a description of their experimental execution of their project, data presentation, analysis and interpretation, followed by critical discussion and conclusions.

For further information email  or send us a message on WhatsApp



Read less
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments. Read more

The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments.

You’ll study how to apply molecular approaches to the diagnosis, prevention and treatment of a range of cancers, chronic, autoimmune and genetic diseases. You’ll also carry out a research project in one of these areas within a research group at the forefront of the field. Project supervision is assured by outstanding academics and clinicians working on cutting-edge research.

This flexible programme allows you to develop core scientific skills and follow your professional interests with a choice of optional modules. You'll be part of a world-renowned School and will be taught by internationally recognised scholars.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Course content

You’ll build core scientific skills through four compulsory modules studied over two terms. Alongside these, your optional modules (two each term) allow you to tailor your study to your interests. Modules typically last 11 weeks.

Throughout the programme you will:

  • gain an in-depth knowledge and understanding of the principles, application and potential of molecular medicine
  • learn techniques in the field of molecular biology, immunology, cell biology and chemistry
  • develop the ability to carry out molecular, biological and bioinformatics research for investigation of human diseases
  • be able to engage in research projects using the latest technologies that generate results with scientific impact and the potential for improving patient health
  • learn to critically evaluate current issues in molecular medicine, translate research findings into clinical applications, and recognise commercial opportunities.

Research project

You’ll spend approximately half of the programme on your individual research project, which usually runs from April to August. The research project allows you to work as part of a research team in a cutting edge discipline.

You will have a wide choice of research opportunities in Applied Health Research, Cancer and Pathology, Cardiovascular, Genes and Development and Musculoskeletal Research. You select your project from a range of research projects offered to MSc Molecular Medicine students.

The research project is based in one of the research laboratories at the St James’s University Hospital campus.

Course structure

Compulsory modules

  • Research Informatics and Dissemination 15 credits
  • Preparing for the Research Project 15 credits
  • Research Project 80 credits
  • Research Methods in Clinical Sciences 10 credits

Optional modules

  • Introduction to Genetic Epidemiology 15 credits
  • Human Molecular Genetics 15 credits
  • Immunity and Disease 15 credits
  • Animal Models of Disease 15 credits
  • Stem Cell Biology: A Genomics and Systems Biology Approach to Haematopoiesis 15 credits
  • Cancer Biology and Molecular Oncology 15 credits

For more information on typical modules, read Molecular Medicine MSc in the course catalogue

Learning and teaching

The taught components of the programme provide a perfect knowledge background and research training to get the best out of your research project.

You’ll be taught by active scientists and clinicians who are world-leading in their research fields, through lectures, workshops, laboratory practicals, seminars and tutorials. All our students judged the programme as “intellectually stimulating” in 2014 student survey.

Teaching is mainly at St James's University Hospital, a busy research facility with research laboratories and a teaching laboratory, computer cluster, library and meeting rooms. You can easily get to and from the University campus with the free NHS shuttlebus.

We encourage you to participate in the School of Medicine Institutes’ activities, such as the invited speaker seminar series. You also have access to all the wider University of Leeds facilities.

Assessment

A major objective of the programme is to train you to formulate your own ideas and express them logically, and this will be tested in every module assessment.

A typical module will be assessed by two assignments. Assessments include written assignments, as well as delivering presentations and posters, and leading discussions.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Career opportunities

This exciting programme provides excellent training for:

  • science graduates looking for an opportunity to go on to do doctoral research, enter academic medicine or pursue a career in industry, clinical service




Read less

Show 10 15 30 per page



Cookie Policy    X