• University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
University of St Andrews Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Leeds Featured Masters Courses
"genetic" AND "epidemiolo…×
0 miles

Masters Degrees (Genetic Epidemiology)

  • "genetic" AND "epidemiology" ×
  • clear all
Showing 1 to 15 of 31
Order by 
The MSc in Medical Statistics at the University of Leicester is a well-established and successful course based in the Biostatistics and Genetic Epidemiology research groups in the Medical School of the University of Leicester. Read more
The MSc in Medical Statistics at the University of Leicester is a well-established and successful course based in the Biostatistics and Genetic Epidemiology research groups in the Medical School of the University of Leicester. This course is accredited by the Royal Statistical Society. On graduation you will be able to apply for the professional award of Graduate Statistician.

The orientation of the course is applied and vocational; it aims to produce graduates who can immediately work as medical statisticians in pharmaceutical companies, research units and the NHS.

While all necessary theory is covered, the emphasis throughout is on applying and adapting it to real-life circumstances. The central role of IT in implementing modern statistics is constantly emphasised. Students will use statistical software Stata, R, WinBUGS, MLwiN and SAS in a course dedicated computer lab.

The Core Modules

Fundamentals of Medical Statistics, Statistical Modelling, Computational Intensive Methods, Advanced Statistical Modelling, Clinical Trials and Epidemiology.
Choose one optional module from Further Topics in Medical Statistics, Genetic Epidemiology and Health Technology Assessment.
Plus a Research Project during the final 12 weeks of the course
Modules shown represent choices available to current students. The range of modules available and the content of any individual module may change in future years.

Modules are taught in week long blocks.

Course aims

The aim of the course is to produce graduates who can immediately work as medical/bio statisticians in pharmaceutical companies, university medical schools, research units and the NHS.

Funding

We have studentships available for 2017 entry, these cover UK/EU fees and may provide living expenses, please contact the Admissions Tutor for details. Eligibility criteria apply.

Key facts for this course are available at http://www2.le.ac.uk/departments/health-sciences/PG/pgt

Read less
The Centre for Population Health Sciences (CPHS) supervises postgraduate research students in a wide range of population health disciplines, including epidemiology… Read more

Research profile

The Centre for Population Health Sciences (CPHS) supervises postgraduate research students in a wide range of population health disciplines, including epidemiology, genetic epidemiology, health promotion, health services research, medical statistics, molecular epidemiology and sociology and on a wide range of topics including allergic and respiratory disease, clinical trial and statistics methodology, eHealth, ethnicity and health, genetic epidemiology of complex diseases, global health, palliative care and cancer, society and health and families and relationships.

A principal aim is to foster interdisciplinary research involving quantitative and qualitative approaches via effective collaboration with biomedical scientists, epidemiologists, social scientists and clinical researchers throughout the University and beyond.

Prospective students are encouraged to align their research proposal with one of the Centre's main areas of research and with the research interests of academic members of staff who may act as first supervisors.

Training and support

Postgraduate students will have agreed a set of taught courses with their supervisors at the beginning of the period of study.

These should include generic research-skills training and project-specific courses.

Students are also expected to attend a majority of CPHS seminars.

Facilities

The Centre for Population Health Sciences (CPHS) brings together researchers active in population health science research, including public health and primary care.

Within the school the CPHS academic staff play a large role in research project supervision.

There are also links with the Institute of Genes and Molecular Medicine and the Queen's Medical Research Institute.

Read less
Infectious diseases remain a major contributor to the global burden of disease, with HIV, malaria, measles, diarrhoeal disease and respiratory infections responsible for over 50% of premature deaths worldwide. Read more
Infectious diseases remain a major contributor to the global burden of disease, with HIV, malaria, measles, diarrhoeal disease and respiratory infections responsible for over 50% of premature deaths worldwide. However the availability of resources for interventions is limited in comparison with the scale of the challenges faced. Over the last decade there has been increasing recognition of the value of epidemiological analysis and mathematical modelling in aiding the design and interpretation of clinical trials from a population perspective and, downstream, to guide implementation, monitoring and evaluation of intervention effectiveness. The Epidemiology, Evolution and Control of Infectious Diseases (EECID) stream provides a research-based training in infectious disease epidemiology, mathematical modelling and statistics, genetics and evolution, and computational methods. The focus of the course is inter-disciplinary, with a strong applied public health element.

Based in the Department of Infectious Disease Epidemiology in the Faculty of Medicine, the stream provides an opportunity to learn, in a supportive and stimulating environment, from leaders in the field who are actively engaged in research and advise leading public health professionals, policy-makers, governments, international organisations and pharmaceutical companies, both nationally and internationally, on a range of diseases include pandemic influenza, HIV, TB, malaria, polio and neglected tropical diseases (NTDs).

This stream is linked to the Wellcome Trust 4-year PhD programme in the Epidemiology, Evolution and Control of Infectious Diseases which includes up to 5 funded studentships each year. Up to 3 further 1+3 MRC studentships are also available each year.

The emphasis of the course will be to provide a thorough training in epidemiology, mathematical modelling and statistics, and genetics and evolution, as applied to infectious diseases. This research-orientated training will incorporate taught material, practical sessions in statistical software (R) and C programming as well as wider generic training in the research and communication skills needed to interact with public health agencies. Through the two research-based projects students will be exposed to the latest developments in the field and will gain first-hand experience in applying the methods they are taught to questions of public-health relevance.

Individuals who complete the course will have developed the ability to:

-Describe the biology, epidemiology and control of major global infectious diseases
-Interpret and present epidemiological data
-Undertake statistical analysis of infectious disease data including applying modern methods for statistical inference
-Develop and apply mathematical models to understand infectious disease dynamics, evolution and control
-Analyse genetic data using modern techniques and interpret their relevance to infectious disease epidemiology
-Critically evaluate research papers and reports
-Write and defend research reports and publications
-Communicate effectively through writing, oral presentations and IT to facilitate further study or employment in epidemiology and public health
-Exercise a range of transferable skills

This will be achieved through a course of lectures, seminars, tutorials and technical workshops. Please note that Postgraduate Diplomas and Certificates for part-completion are not available for this course.

The stream will be based in the Department of Infectious Disease Epidemiology on the St Mary’s campus of Imperial College London.

Each student chooses two projects over the course of the year from the wide range available. Students are guided in this choice by the stream organiser and their personal tutor and are advised to take contrasting projects to ensure a balanced training.

Read less
Today more than ever, quantitative skills form an essential basis for successful careers in ecology, conservation, and animal and human health. Read more
Today more than ever, quantitative skills form an essential basis for successful careers in ecology, conservation, and animal and human health. This Masters programme provides specific training in data collection, modelling and statistical analyses as well as generic research skills. It is offered by the Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), a grouping of top researchers who focus on combining field data with computational and genetic approaches to solve applied problems in epidemiology and conservation.

Why this programme

-This programme encompasses key skills in monitoring and assessing biodiversity critical for understanding the impacts of environmental change.
-It covers quantitative analyses of ecological and epidemiological data critical for animal health and conservation.
-You will have the opportunity to base your independent research projects at the University field station on Loch Lomond (for freshwater or terrestrial-based projects); Millport field station on the Isle of Cumbria (for marine projects); or Cochno farm in Glasgow (for research based on farm animals). We will also assist you to gain research project placements in zoos or environmental consulting firms whenever possible.
-The uniqueness of the programme is the opportunity to gain core skills and knowledge across a wide range of subjects, which will enhance future career opportunities, including entrance into competitive PhD programmes. For example, there are identification based programmes offered elsewhere, but most others do not combine practical field skills with molecular techniques, advanced informatics for assessing biodiversity based on molecular markers, as well as advanced statistics and modelling. Other courses in epidemiology are rarely ecologically focused; the specialty in IBAHCM is understanding disease ecology, in the context of both animal conservation and implications for human public health.
-You will be taught by research-active staff using the latest approaches in quantitative methods, sequence analysis, and practical approaches to assessing biodiversity, and you will have opportunites to actively participate in internationally recognised research. Some examples of recent publications lead by students in the programme: Blackburn, S., Hopcraft, J. G. C., Ogutu, J. O., Matthiopoulos, J. and Frank, L. (2016), Human-wildlife conflict, benefit sharing and the survival of lions in pastoralist community-based conservancies. J Appl Ecol. doi:10.1111/1365-2664.12632. Rysava, K., McGill, R. A. R., Matthiopoulos, J., and Hopcraft, J. G. C. (2016) Re-constructing nutritional history of Serengeti wildebeest from stable isotopes in tail hair: seasonal starvation patterns in an obligate grazer. Rapid Commun. Mass Spectrom., 30:1461-1468. doi: 10.1002/rcm.7572. Ferguson, E.A., Hampson, K., Cleaveland, S., Consunji, R., Deray, R., Friar, J., Haydon, D. T., Jimenez, J., Pancipane, M. and Townsend, S.E., 2015. Heterogeneity in the spread and control of infectious disease; consequences for the elimination of canine rabies. Scientific Reports, 5, p. 18232. doi: 10.1038/srep18232.
-A unique strength of the University of Glasgow for many years has been the strong ties between veterinarians and ecologists, which has now been formalised in the formation of the IBAHCM. This direct linking is rare but offers unique opportunities to provide training that spans both fundamental and applied research.

Programme structure

The programme provides a strong grounding in scientific writing and communication, statistical analysis, and experimental design. It is designed for flexibility, to enable you to customise a portfolio of courses suited to your particular interests.

You can choose from a range of specialised options that encompass key skills in:
-Monitoring and assessing biodiversity – critical for understanding the impacts of environmental change
-Quantitative analyses of ecological and epidemiological data – critical for animal health and conservation
-Ethics and legislative policy – critical for promoting humane treatment of both captive and wild animals.

Core courses
-Key research skills (scientific writing, introduction to R, advanced linear models, experimental design and power analysis)
-Measuring biodiversity and abundance
-Programming in R
-Independent research project

Optional courses
-Molecular analyses for biodiversity and conservation
-Biodiversity informatics
-Molecular epidemiology and phylodynamics
-Infectious disease ecology and the dynamics of emerging disease
-Single-species population models
-Multi-species models
-Spatial and network processes in ecology & epidemiology
-Introduction to Bayesian statistics
-Freshwater sampling techniques
-Invertebrate identification
-Vertebrate identification
-Human Dimensions of Conservation
-Principles of Conservation Ecology
-Protected Area Management
-Animal welfare science
-Legislation related to animal welfare
-Enrichment of animals in captive environments
-Care of captive animals
-Biology of suffering
-Assessment of physiological state

Career prospects

You will gain core skills and knowledge across a wide range of subjects that will enhance your selection chances for competitive PhD programmes. In addition to academic options, career opportunities include roles in zoos, environmental consultancies, government agencies, ecotourism and conservation biology, and veterinary or public health epidemiology.

Read less
This course equips students with the knowledge and statistical skills to make valuable contributions to medical research as well as public health in low-, middle- and high-income countries. Read more
This course equips students with the knowledge and statistical skills to make valuable contributions to medical research as well as public health in low-, middle- and high-income countries. Epidemiological methods underpin clinical medical research, public health practice and health care evaluation to investigate the causes of disease and to evaluate interventions to prevent or control disease.

Graduates enter careers in medical research, public health and community medicine, epidemiological field studies, drug manufacturers, government or NGOs.

The Nand Lal Bajaj and Savitri Devi Prize is awarded to the best project each year. The prize was donated by Dr Subhash Chandra Arya, former student, in honour of his parents Dr Nand Lal Bajaj and Mrs Savitri Devi.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/epi_progspec.pdf)

Visit the website http://www.lshtm.ac.uk/study/masters/mse.html

Additional Requirements

Additional requirements for the MSc Epidemiology are:

- evidence of numeracy skills (e.g. A level Mathematics or Statistics or a module with a good mark in their university degree)

- it is preferable for a student to have some work experience in a health-related field

Any prospective student who does not meet the above minimum entry requirement, but who has relevant professional experience, may still be eligible for admission. Please contact the course directors () if you are not sure whether this is the right course for you.

Objectives

By the end of this course, students should be able to:

- demonstrate advanced knowledge and awareness of the role of epidemiology and its contribution to other health-related disciplines

- choose appropriate designs and develop detailed protocols for epidemiological studies

- enter and manage computerised epidemiological data and carry out appropriate statistical analyses

- assess the results of epidemiological studies (their own or other investigators'), including critical appraisal of the study question, study design, methods and conduct, statistical analyses and interpretation

Structure

Term 1:
All students take the compulsory modules and usually take optional modules.

Compulsory modules are:
- Clinical Trials
- Epidemiology in Practice
- Extended Epidemiology
- Statistics for Epidemiology and Population Health .

Optional modules include:
- Demographic Methods
- Molecular Epidemiology of Infectious Diseases

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.).

*Recommended modules

- Slot 1:
Study Design: Writing a Proposal (compulsory)

- Slot 2:
Statistical Methods in Epidemiology (compulsory)

- Slot 3:
Epidemiology of Non-Communicable Diseases*
Medical Anthropology and Public Health*
Social Epidemiology*
Spatial Epidemiology in Public Health*
Applied Communicable Disease Control
Control of Sexually Transmitted Infections
Current Issues in Safe Motherhood & Perinatal Health
Medical Anthropology and Public Health; Nutrition in Emergencies
Tropical Environmental Health

- Slot 4:
Environmental Epidemiology*
Epidemiology & Control of Communicable Diseases*
Genetic Epidemiology*
Design and Evaluation of Mental Health Programmes
Ethics, Public Health & Human Rights; Globalisation & Health; Nutrition Related Chronic Disease

- Slot 5:
Advanced Statistical Methods in Epidemiology*
AIDS
Applying Public Health Principles in Developing Countries
Integrated Vector Management
Principles and Practice of Public Health

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tepi.html

Residential Field Trip

This course has a compulsory two-day residential retreat outside London. This is held on the Wednesday and Thursday of the first week in Term 1. This is included in the £200 field trip fee.

Day field trip to Oxford

A one-day field trip to Oxford usually takes place in November during reading week. Students are encouraged to attend but it is not a compulsory part of the course.

Project Report

During the summer months (July - August), students complete a written research project on a topic selected in consultation with their tutor, for submission by early September. This can be a data-analysis of an adequately powered study, a study protocol, a systematic review or an infectious disease modelling study. Students do not usually travel abroad to collect data.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mse.html#sixth

Read less
This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Read more
This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Students will gain specialised skills in applying scientific concepts, evaluating scientific data and carrying out modern immunological techniques. Students will benefit from the unique mix of immunology, vaccinology, molecular biology, virology, bacteriology, parasitology, mycology and clinical medicine at the School.

Infectious diseases represent an increasingly important cause of human morbidity and mortality throughout the world. Vaccine development is thus of great importance in terms of global health. In parallel with this growth, there has been a dramatic increase in studies to identify the innate, humoral or cellular immunological mechanisms which confer immunity to pathogenic viruses, bacteria, fungi and parasites. As a result, increasing numbers of scientists, clinicians and veterinarians wish to develop their knowledge and skills in these areas.

The flexible nature of the course allows students to focus on attaining a broader understanding of infectious disease through attending taught units. Students can also undertake an extended research project within groups led by experienced team leaders. Such projects can involve basic investigations of immune mechanisms or applied field based studies.

Graduates from this course go into research positions in academia and industry, and further training such as PhD study.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/iid_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msiid.html

Objectives

By the end of this course students should be able to:

- demonstrate specialist knowledge and understanding of the basic principles of host immunity to infection against the diverse range of pathogens which confront human populations

- apply this specialist knowledge to a range of practical skills and techniques, in particular modern molecular and cellular techniques for assessing immune responses to pathogens

- critically assess, select and apply appropriate research methods to investigate basic immunological mechanisms and applied issues in the immunology of infection

- critically evaluate primary scientific data and the published scientific literature

- integrate and present key immunological concepts at an advanced level, both verbally and in written form

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by two compulsory modules:

- Immunology of Infectious Diseases
- Analysis & Design of Research Studies

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which may be taken only after consultation with the Course Directors.

*Recommended modules

- Slot 1:
Advanced Immunology 1 (compulsory)

- Slot 2:
Advanced Immunology 2 (compulsory)

- Slot 3:
Advanced Training in Molecular Biology*
Clinical Immunology*
Extended Project*
Basic Parasitology
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries

- Slot 4:
Extended Project*
Immunology of Parasitic Infection: Principles*
Molecular Biology Research Progress & Applications*
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine
Epidemiology & Control of Communicable Diseases
Ethics, Public Health & Human Rights
Genetic Epidemiology

- Slot 5:
AIDS*
Antimicrobial Chemotherapy*
Extended Project*
Molecular Cell Biology & Infection*
Mycology*

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tiid.html

Residential Field Trip

Towards the end of Term 1, students get the opportunity to hear about the latest, most exciting aspects of immunological research at the British Society of Immunology Congress. The cost is included in the £500 field trip fee.

Project Report

During the summer months (July - August), students complete a research project on an immunological subject, for submission by early September. Some of these projects may take place with collaborating scientists overseas or in other colleges or institutes in the UK. Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msiid.html#sixth

Read less
This course provides core training in the theoretical and practical aspects of medical parasitology, covering the protozoan and metazoan parasites of humans and the vectors which transmit them. Read more
This course provides core training in the theoretical and practical aspects of medical parasitology, covering the protozoan and metazoan parasites of humans and the vectors which transmit them. Students will gain specialised skills to enable them to pursue a career in research, control or teaching related to medical parasitology.

Graduates enter a range of global health fields ranging from diagnostics through to applied basic research and operational control to higher degree studies and academic/teaching-related positions.

The Patrick Buxton Memorial Medal and Prize is awarded to the best student of the year. Founded by relatives of Patrick Alfred Buxton, Professor in Entomology, who died in 1955.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mp_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmp.html

Additional Requirements

An additional preferred requirement for the MSc Parasitology is an interest in parasites of public health importance and disease transmission. Any student who does not meet the minimum entry requirement above but who has relevant professional experience may still be eligible for admission. Qualifications and experience will be assessed from the application.

Objectives

By the end of this course students should be able to demonstrate:

- detailed knowledge and understanding of the biology, life cycles, pathogenesis, and diagnosis of parasitic infections in humans and their relevance for human health and control

- detailed knowledge and understanding of the biology and strategies for control of the vectors and intermediate hosts of human parasites

- carry out practical laboratory identification of parasite stages both free and in tissues and diagnose infections

- specialised skills in: advanced diagnostic, molecular, immunological, genetic, chemotherapeutic, ecological and/or control aspects of the subject

- the ability to design a laboratory or field-based research project, and apply relevant research skills

- prepare a written report including a critical literature review of relevant scientific publications, and show competence in communicating scientific findings

Structure

Term 1:
There is a two-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by three compulsory core modules:

- Parasitology & Entomology
- Analysis & Design of Research Studies
- Critical Skills for Tropical Medicine

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). Some modules can be taken only after consultation with the Course Director.

*Recommended modules

- Slot 1:
Epidemiology & Control of Malaria*
Molecular Biology & Recombinant DNA Techniques*
Advanced Immunology 1
Designing Disease Control Programmes in Developing Countries

- Slot 2:
Advanced Diagnostic Parasitology*
Advanced Immunology 2
Design & Analysis of Epidemiological Studies
Statistical Methods in Epidemiology

- Slot 3:
Vector Sampling, Identification & Incrimination*
Advanced Training in Molecular Biology
Spatial Epidemiology in Public Health
Tropical Environmental Health

- Slot 4:
Immunology of Parasitic Infection: Principles*
Molecular Biology Research Progress & Applications*
Vector Biology & Vector Parasite Interactions*
Epidemiology & Control of Communicable Diseases
Genetic Epidemiology

- Slot 5 :
Antimicrobial Chemotherapy*
Integrated Vector Management*
Molecular Cell Biology & Infection*
AIDS

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmpa.html

Residential Field Trip

There is a compulsory one week field course, after the Term 3 examinations, on vector and parasite sampling and identification methods.The cost of £630 is included in the field trip fee.

Project Report

During the summer months (July - August), students complete a research project, for submission by early September. This may be based on a critical review of an approved topic, analysis of a collection of results or a laboratory study.Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmp.html#sixth

Read less
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. Read more
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. The course offers a wide choice of modules and provides training in clinical tropical medicine at the Hospital for Tropical Diseases.

The Diploma in Tropical Medicine & Hygiene (DTM&H):
All students going on the MSc will take the Diploma in Tropical Medicine & Hygiene. Students with a prior DTM&H, or holding 60 Masters level credits from the East African Diploma in Tropical Medicine & Hygiene may apply for exemption from Term 1 via accreditation of prior learning.

Careers

Graduates from this course have taken a wide variety of career paths including further research in epidemiology, parasite immunology; field research programmes or international organisations concerned with health care delivery in conflict settings or humanitarian crises; or returned to academic or medical positions in low- and middle-income countries.

Awards

The Frederick Murgatroyd Award is awarded each year for the best student of the year. Donated by Mrs Murgatroyd in memory of her husband, who held the Wellcome Chair of Clinical Tropical Medicine in 1950 and 1951.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/tmih_progspec.pdf)

Visit the website http://www.lshtm.ac.uk/study/masters/mstmih.html

Objectives

By the end of this course students should be able to:

- understand and describe the causation, pathogenesis, clinical features, diagnosis, management, and control of the major parasitic, bacterial, and viral diseases of developing countries

- demonstrate knowledge and skills in diagnostic parasitology and other simple laboratory methods

- understand and apply basic epidemiological principles, including selecting appropriate study designs

- apply and interpret basic statistical tests for the analysis of quantitative data

- critically evaluate published literature in order to make appropriate clinical decisions

- communicate relevant medical knowledge to patients, health care professionals, colleagues and other groups

- understand the basic sciences underlying clinical and public health practice

Structure

Term 1:
All students follow the course for the DTM&H. Term 1 consists entirely of the DTM&H lectures, seminars, laboratory practical and clinical sessions, and is examined through the DTM&H examination and resulting in the award of the Diploma and 60 Master's level credits at the end of Term 1.

Terms 2 and 3:
Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). Recognising that students have diverse backgrounds and experience, the course director considers requests to take any module within the School's portfolio, provided that this is appropriate for the student.

*Recommended modules

- Slot 1:
Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries*
Clinical Virology*
Epidemiology & Control of Malaria*
Advanced Immunology 1
Childhood Eye Disease and Ocular Infection
Designing Disease Control Programmes in Developing Countries
Drugs, Alcohol and Tobacco
Economic Evaluation
Generalised Liner Models
Health Care Evaluation
Health Promotion Approaches and Methods
Maternal & Child Nutrition
Molecular Biology & Recombinant DNA Techniques
Research Design & Analysis
Sociological Approaches to Health
Study Design: Writing a Proposal

- Slot 2:
Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine*
Conflict and Health*
Design & Analysis of Epidemiological Studies*
Advanced Diagnostic Parasitology
Advanced Immunology 2
Clinical Bacteriology 1
Family Planning Programmes
Health Systems; History & Health
Molecular Virology; Non Communicable Eye Disease
Population, Poverty and Environment
Qualitative Methodologies
Statistical Methods in Epidemiology

- Slot 3:
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries*
Control of Sexually Transmitted Infections*
Advanced Training in Molecular Biology
Applied Communicable Disease Control
Clinical Immunology
Current Issues in Safe Motherhood & Perinatal Health
Epidemiology of Non-Communicable Diseases
Implementing Eye Care: Skills and Resources
Medical Anthropology and Public Health
Modelling & the Dynamics of Infectious Diseases
Nutrition in Emergencies
Organisational Management
Social Epidemiology
Spatial Epidemiology in Public Health
Tropical Environmental Health
Vector Sampling, Identification & Incrimination

- Slot 4:
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine*
Epidemiology & Control of Communicable Diseases*
Ethics, Public Health & Human Rights*
Global Disability and Health*
Immunology of Parasitic Infection: Principles*
Analytical Models for Decision Making
Clinical Bacteriology 2
Design & Evaluation of Mental Health Programmes
Environmental Epidemiology
Evaluation of Public Health Interventions
Genetic Epidemiology
Globalisation & Health
Molecular Biology Research Progress & Applications
Nutrition Related Chronic Diseases
Population Dynamics & Projections
Reviewing the Literature
Sexual Health
Survival Analysis and Bayesian Statistics
Vector Biology & Vector Parasite Interactions

- Slot 5:
AIDS*
Antimicrobial Chemotherapy*
Mycology*
Advanced Statistical Methods in Epidemiology
Analysing Survey & Population Data
Applying Public Health Principles in Developing Countries
Environmental Health Policy
Integrated Vector Management
Integrating Module: Health Promotion
Molecular Cell Biology & Infection
Nutrition Programme Planning
Pathogen Genomics
Principles and Practice of Public Health

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/ttmi.html

Project Report:
During the summer months (July - August), students complete a research project in a subject of their choice, for submission by early September. Projects may involve writing up and analysing work carried out before coming to the School, a literature review, or a research study proposal. Some students gather data overseas or in the UK for analysis within the project. Such projects require early planning.

Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved. The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mstmih.html#sixth

Read less
Public Health is about preventing disease, prolonging life and promoting health through the efforts of society. This is the ideal programme if you are a professional or new to the subject and you wish to address today’s problems in public health. Read more

Programme description

Public Health is about preventing disease, prolonging life and promoting health through the efforts of society.

This is the ideal programme if you are a professional or new to the subject and you wish to address today’s problems in public health.

This programme is taught on-campus, but we also offer a part-time MPH by online distance learning which may suit those who wish to continue working while studying, or who are unable to come to Edinburgh.

You will gain an understanding of how different scientific disciplines can be used to investigate and then develop the best professional practice in epidemiology, public health and social science, ethics and health.

This programme is affiliated with the University's Global Health Academy.

Programme structure

The year is divided into two semesters of taught courses, followed by completion of a dissertation between May and August.

Teaching is by lectures, seminars and workshops. Course assessments are mainly essay-based, with a few examinations and presentations.

Your dissertation can involve either a review of existing research or analysis of data from a secondary source or data collected especially for your dissertation.

Compulsory courses:

Introduction to Epidemiology
Introduction to Qualitative Research
Introduction to Research Ethics
Introduction to Statistics
Introduction to Systematic Reviews

Optional courses:

Advanced Protocol Development
Clinical Trials
Communicable Disease Control and Environmental Health
Developing and Evaluating Complex Public Health Interventions
Epidemiology of Chronic Diseases
Epidemiology for Public Health
Further Statistics
Genetic Epidemiology
Global Health Epidemiology
Health Promotion
Introduction to Global Health
Investing in Global Health and Development
Public Health Ethics
Qualitative Research in Health
Resource Allocation & Health Economics
Sociology of Health & Illness
Statistical Modelling

Career opportunities

The programme will prepare you for a career in research or academia, professional public-health service, clinical epidemiology, health technology assessment, public-health protection and a wide range of national and international organisations concerned with preventing disease and improving the health of populations.

Read less
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments. Read more
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments.

You’ll study how to apply molecular approaches to the diagnosis, prevention and treatment of a range of cancers, chronic, autoimmune and genetic diseases. You’ll also carry out a research project in one of these areas within a research group at the forefront of the field. Project supervision is assured by outstanding academics and clinicians working on cutting-edge research.

This flexible programme allows you to develop core scientific skills and follow your professional interests with a choice of optional modules. You'll be part of a world-renowned School and will be taught by internationally recognised scholars.

Throughout the programme you will:

- gain an in-depth knowledge and understanding of the principles, application and potential of molecular medicine
- learn techniques in the field of molecular biology, immunology, cell biology and chemistry
- develop the ability to carry out molecular, biological and bioinformatics research for investigation of human diseases
- be able to engage in research projects using the latest technologies that generate results with scientific impact and the potential for improving patient health
- learn to critically evaluate current issues in molecular medicine, translate research findings into clinical applications, and recognise commercial opportunities

Programme structure

Starting in September, the MSc in Molecular Medicine is a full time, twelve months programme which combines a seven month research project with some taught modules.

The MSc programme comprises of a 180 credits, consisting of:

A research project: 75 credits
Scientific core skills: 45 credits including Bioinformatics and Research Methods

A choice of student-selected modules: 60 credits

• Human Molecular Genetics
• Immunity and Disease
• Animal Models of Disease
• Stem Cell Biology
• Cancer Biology
• Genetic Epidemiology

Career Prospects

This exciting programme provides excellent training for:

- science graduates looking for an opportunity to go on to do doctoral research, enter academic medicine or pursue a career in industry, clinical service or a related discipline;
- clinicians interested in an clinical academic career.

Many of our past students are now doing PhDs across the UK or internationally. Some are working in NGOs or in the industry. Talented graduates from the MSc will be strongly supported to join PhD programmes in the institutes here at the University.

We anticipate that an MSc Molecular Medicine will be ideal preparation for those intending to secure clinical fellowships.

Why study at the University of Leeds?

The University of Leeds has been named University of the Year 2017 by The Times and The Sunday Times’ Good University Guide.

Teaching is stimulating and delivered by active scientists and clinicians, many of whom are world-leading in their research fields. You will benefit from small group teaching including lectures, workshops, laboratory practicals, seminars and tutorials.

Your research will be based in one of the internationally-renowned Institutes of the School of Medicine. You will be able to choose from a wide range of research opportunities in Biomedical and Clinical Sciences, Cancer and Pathology or Rheumatology.

Read less
This programme will help you develop professionally in the theory and practice of statistics and operational research (OR), providing the foundations for a successful career. Read more

Programme description

This programme will help you develop professionally in the theory and practice of statistics and operational research (OR), providing the foundations for a successful career.

This programme will prepare you for work in areas such as the medical and health industry, government, the financial sector and any other area where modern statistical tools and OR techniques are used. You will also develop the wider skills required for solving problems, working in teams and time management.

You will be able to identify appropriate statistical or operational techniques, which can be applied to practical problems, and will acquire extensive skills in modelling using the packages R for Statistics and Arena for simulation. In addition, you will acquire the ability to use high-level applications in Excel.

Programme structure

This MSc consists of lecture-based courses and practical, lab-based courses. You will be assessed by exams, written reports, programming assignments and a dissertation project.

Compulsory courses

Computing for Statistics
Fundamentals of Operational Research
Fundamentals of Optimization
Likelihood and Generalised Linear Models
Methodology, Modelling and Consulting Skills
Simulation
Statistical Regression Models
Statistical Theory
Stochastic Modelling

Option courses:

The Analysis of Survival Data
Categorical Data Analysis
Clinical Trials
Computing for Operational Research and Finance
Credit Scoring
Data Analysis
Genetic Epidemiology
Large Scale Optimization for Data Science
Machine Learning & Pattern Recognition
Multivariate Data Analysis
Nonparametric Regression
Operational Research in the Airline Industry
Operational Research in Telecommunications
Risk Analysis
Stochastic Models in Biology
Stochastic Optimization
Time Series Analysis and Forecasting

Career opportunities

This programme is ideal for students who wish to apply their statistics and operational research knowledge within a wide range of sectors including the medical and health sector, government and finance. The advanced problem-solving skills you will develop will be highly prized by many employers.

Industry-based dissertation projects

The dissertation projects of approximately half the students on this programme take place in public and private sector organisations. Other students choose a University-based project.

Read less
This degree offers people the opportunity to move into a wide range of health-related industries. Read more

Introduction

This degree offers people the opportunity to move into a wide range of health-related industries.

Course description, features and facilities

The Master of Public Health provides a foundation in the research disciplines of epidemiology, biostatistics, health economics and health promotion, as well as the broader social context in which public health programs are planned, delivered and evaluated.

Structure

Key to availability of units:
S1 = Semester 1; S2 = Semester 2; S3 = summer teaching period; N/A = not available in 2015;
NS = non-standard teaching period; OS = offshore teaching period; * = to be advised

All units have a value of six points unless otherwise stated.

Note: Units that are indicated as N/A may be available in 2016 or 2017.

Students in the course by coursework and dissertation take units to the value of 24 points from Group A and units to the value of 18 points from Group C.

Students in the course by coursework take:
(a) units to the value of 12 points from Group B and units to the value of 30 points from Group C; or
(b) units to the value of 42 points from Group C.

Take all units (30 points):

S1, S2 PUBH4401 Biostatistics I
S1 PUBH4403 Epidemiology I
S2 PUBH5749 Foundations of Public Health
S2 PUBH5752 Health Systems and Economics
S1 PUBH5754 Health Promotion I

Group A

S1, S2 PUBH5712 Dissertation (full-time) (24 points)
S1, S2 PUBH5714 Dissertation (part-time) (24 points)

Group B

S1, S2 PUBH5701 Public Health Project (full-time) (12 points)
S1, S2 PUBH5703 Public Health Project (part-time) (12 points)

Group C

NS AHEA5755 Aboriginal Health
N/A PUBH5742 Fundamentals of Genetic Epidemiology
S1 PUBH5751 Disease Prevention in Population Health
NS PUBH5757 Clinical Epidemiology
NS PUBH5761 Epidemiology and Control of Communicable Diseases
S1 PUBH5763 Leadership and Management of Health Services
N/A PUBH5765 Health Promotion II
N/A PUBH5766 Health Survey Research Methods
S2 PUBH5769 Biostatistics II
S1 PUBH5783 Health in an Era of Environmental Change
N/A PUBH5784 Special Topics in Public Health
NS PUBH5785 Introductory Analysis of Linked Health Data
NS PUBH5801 Economic Evaluation of Health Care
NS PUBH5802 Advanced Analysis of Linked Health Data
NS PUBH5804 Food and Nutrition in Population Health
N/A PUBH5805 Qualitative Research Methods in Health
NS RMED4403 Health Program Evaluation

Read less
RESEARCH STRENGTHS AND FACILITIES. The Department of Medical Genetics Graduate Program is a leading program that attracts students from all over Canada and the world. Read more

Graduate Program

RESEARCH STRENGTHS AND FACILITIES
The Department of Medical Genetics Graduate Program is a leading program that attracts students from all over Canada and the world. The Program offers Master’s and Doctoral programs that take place in Vancouver, one of the world’s most livable cities, at locations affiliated with the University of British Columbia, an institution which is consistently ranked among the world’s best universities.

The Department is composed of dozens of faculty members at the forefront of their fields who use cutting edge genetic, epigenetic, genomic, and bioinformatic methodologies to gain insight into diseases such as cancer, diabetes, obesity, neurodegenerative and neurological disorders, and other genetic diseases. Research is highly interactive and often involves local, national, and international collaborations which further enrich the research experience.

Individual labs conduct clinical and/or translational research and basic experimental research engaging a wide variety of approaches including the use of model organisms such as mice, flies (D. melanogaster), worms (C. elegans), and yeast (S. cerevisiae). Prospective students with interests in the investigative areas below have an opportunity to pursue world class research in labs affiliated with the Medical Genetics Graduate Program.

Areas of Research

- Developmental genetics and birth defects
- Epigenetics and chromosome transmission
- Genomics and bioinformatics
- Genetic epidemiology and human gene mapping
- Neurogenetics and immunogenetics
- Stem cells and gene therapy
- Pharmacogenomics
- Clinical genetics, genetic counselling, ethics and policy

Quick Facts

- Degree: Master of Science
- Specialization: Medical Genetics
- Subject: Life Sciences
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Medicine

Read less
This course has run since 2011, previously being integrated with the MPhil TMAT courses and taken part-time over two years. It is being re-launched in 2015 as a full-time one year course, based in the Cambridge Institute of Public Health’s Department of Public Health and Primary Care. Read more
This course has run since 2011, previously being integrated with the MPhil TMAT courses and taken part-time over two years. It is being re-launched in 2015 as a full-time one year course, based in the Cambridge Institute of Public Health’s Department of Public Health and Primary Care. More than half of the curriculum is shared with the MPhils in Public Health and Epidemiology. The aim of the course is to provide students with theoretical knowledge and skills as well as practical research experience to launch an academic clinical career in primary care.

The course draws on local strengths in working with large databases, primary care-based clinical trials and a wide range of other appropriate methods of quantitative and qualitative data collection and analyses. Throughout the course students are able to draw on the research expertise within the Institute of Public Health and wider expertise in the University.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/cvphmppcr

Course detail

The aim of the course is to provide students with theoretical knowledge and skills as well as practical research experience to launch an academic clinical career in primary care. Specifically, the course aims to:

1. Contribute to the commitment of the Cambridge University Hospital’s NHS Foundation Trust (CUHNHSFT), Cambridgeshire Primary Care Trust/ Clinical Commissioning Group and the National Institute for Health Research (NIHR) to continuing professional development of NHS staff in an integrated academic and clinical environment;
2. Develop a cadre of primary care clinical research leaders who will pursue clinical Academic careers within academia, the NHS and industry;
3. Contribute to the commitment of the Health Education East of England to continuing professional development of GP Specialty Trainees in an integrated academic and clinical environment;
4. Expand critical and current knowledge of research methodologies through an academically vigorous education programme offered in a world-leading primary care clinical research environment;
5. Equip clinical researchers with knowledge about the complex issues associated with conducting sound translational research in general practice and community settings.

Learning Outcomes

Students who complete this programme successfully will have gained an understanding of the primary care research context, including the distinctive nature and contribution of primary care research, and the contribution of key underpinning methods. Specifically, graduates will possess a grounding in primary care-relevant epidemiological, psychological, sociological and health services research methods, statistical methods and data analyses including surveys, trials and evidence synthesis. Upon successful completion each student will be able to apply contemporary research tools to clinically relevant areas of investigation in primary care.

Successful completion of the MPhil will also equip students with the skills and knowledge defined by the Academy of Medical Sciences’ Supplementary Guidelines for the Annual Review of Competence Progression (ARCP) for Specialty Registrars undertaking joint clinical and academic training programmes (September 2011).

Michaelmas Term

This term focuses on epidemiological and biostatistical principles and procedures. Teaching sessions during this term will be shared with students from the MPhils in Epidemiology and Public Health course. The teaching in this term also includes training in basic data handling and analysis using the statistical package Stata.

The three modules are:

- Epidemiology
- Biostatistics
- Data handling and appraisal

During this term you will also complete an essay on the epidemiology of a chosen condition in a primary care population. This essay is a formal part of the MPhil examination and will contribute to your final mark. You should also begin to research an appropriate topic for your MPhil thesis. You should discuss this proposal with you Course Supervisor to assess the suitability of the topic and the availability of relevant data.

There will also be an assessment based on the epidemiological component of the first term. This assessment is informal and does not count towards your degree. The assessment provides your Course Supervisor and Course Directors with a guide to your progress. A guideline answer sheet will be provided at the end of the assessment.

Lent Term

This term includes modular-based lectures and seminars in more advanced aspects of epidemiological research and public health which are shared with students from the MPhils in Epidemiology and Public Health, and specific modules on Primary Care Research not shared with other MPhil students.

Modules shared with the MPhils in Epidemiology and Public Health:

- Health Policy
- Social Science
- Chronic disease epidemiology
- Genetic epidemiology and Public health genomics
- Health Promotion

Primary Care Research modules:

- Introduction to Primary Care Research
- Use of routine data in Primary Care
- Designing, delivering and analysing surveys in primary care
- Qualitative research

Please note some modules may move from term to term.

During this term you will also complete a second essay which should take the form of a protocol for your thesis research. This essay is a formal part of the MPhil examination and will contribute to your final mark. Before starting your protocol, the title of your thesis should be agreed with you Course and Thesis Supervisor. Both you Course and Thesis Supervisor should sign the thesis title form confirming the title. All students must have a designated Thesis Supervisor (in some cases this individual may also be the Course Supervisor).

Easter Term

This term includes a small number of modular-based lectures and seminars again shared with students from the MPhils in Epidemiology and Publich Health.

- Clinical Trials
- Health Economics
- Ethics and Law

The remainder of the term is dedicated to revision for the written examinations in June and thesis work. The term ends on the last business day of July 2016 with the hand-in of the thesis. If you leave the UK, you must be prepared to travel back to Cambridge for an oral examination, if required.

Assessment

A thesis not exceeding 20,000 words in length, including footnotes, but excluding tables, appendices, and bibliography, on a subject approved by the Degree Committee for the Faculties of Clinical Medicine and Veterinary Medicine.

Two essays, each not exceeding 3,000 words in length, on subjects approved by the Degree Committee

Two written papers, each of which may cover all the areas of study prescribed in the syllabus.

The course components are completed by the end of July. However, to complete the course, students will be required to attend a viva in person on a date (to be announced) in late August or early September.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The MSc Global Health Science is a one-year full-time degree that provides core training in the basic skills of epidemiology and statistics, followed by detailed lectures on the global burden and determinants of disease. Read more
The MSc Global Health Science is a one-year full-time degree that provides core training in the basic skills of epidemiology and statistics, followed by detailed lectures on the global burden and determinants of disease.

The course is open to graduates in medicine, biomedical science and other numerate disciplines. 25 places will be available for entry in October 2017.

For further details about eligibility and the application process, please contact our Graduate Studies Office via .

The January 2017 deadline has now passed; applications are still open for entry in October 2017 but will be considered only if places remain available, and cannot be considered for competitive funding.

Course structure

The course will provide advanced training in epidemiological principles and procedures and the statistical analysis of epidemiological data, critical appraisal, study design and protocol development together with advanced knowledge and understanding of the global burden of disease and its determinants. This is an intensive course with 15-20 hours of contact time per week throughout the taught component of the course.

The curriculum consists of thirteen compulsory modules:
• Introduction to Global Health Science
• Principles of Epidemiology
• Principles of Statistics
• Non-communicable Diseases
• Communicable Diseases
• Maternal and Child Health
• Health Economics
• Clinical Trials and Meta-analysis
• Nutritional Epidemiology
• Implementation Strategies
• Genetic Epidemiology
• Record Linkage and Bio-informatics
• International Research Ethics

In addition a series of weekly 'masterclasses' is scheduled in which internationally-recognised senior scientists in population health from Oxford, and elsewhere, will give seminars on selected topics. These sessions will be outside of the structure of the core modules, and are intended to provide the students with stimulating materials to integrate population health thinking and perspectives.

Pattern of teaching, learning and supervision

The teaching is delivered through a range of methods, including lectures, seminars, workshops, student presentations, self-directed learning and study.

During the first two terms there are a series of formative assessments designed to enable teaching staff to monitor student progress. These marks do not contribute to the final marks. All students are provided with detailed feedback that will enable them to improve their learning by helping them identify their strengths and weaknesses.

There are four summative assessments in total. At the end of the Easter break this includes the submission of a data set analysis and report, and an extended essay. At the beginning of the third term there are two examinations involving two written papers comprising multi-component questions.

Following the written examinations students will undertake a research placement, leading to a dissertation. The purpose of the research placement and dissertation is to develop and deepen an appreciation and understanding of epidemiological concepts and skills learned during the course and to apply to a real world situation through independent study.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X