• Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
University of London International Programmes Featured Masters Courses
University of Cambridge Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Sheffield Featured Masters Courses
University of Leeds Featured Masters Courses
"genetic" AND "engineerin…×
0 miles

Masters Degrees (Genetic Engineering)

We have 50 Masters Degrees (Genetic Engineering)

  • "genetic" AND "engineering" ×
  • clear all
Showing 1 to 15 of 50
Order by 
The MSc in Genetic and Genomic Counselling is designed to give students a working knowledge of the principles and practice of Genetic Counselling which will qualify them to practice as Genetic and Genomic Counsellors. Read more
The MSc in Genetic and Genomic Counselling is designed to give students a working knowledge of the principles and practice of Genetic Counselling which will qualify them to practice as Genetic and Genomic Counsellors. The programme will be delivered by University of Glasgow staff in collaboration with NHS staff from the West of Scotland Genetics Service, so that a current perspective on both laboratory diagnostics and clinical services will be obtained. This programme is accredited by the UK Genetic Counsellor Registration Board.

Why this programme

-◾Teaching is based at the Queen Elizabeth University Hospital (QEUH), which includes adult services, children’s services and maternity services, as well as one of the largest diagnostic laboratories in Europe, and a new, purpose-built teaching and learning facility. The close collaboration between University and NHS staff ensures that the MSc in Genetic and Genomic Counselling provides a completely up-to-date representation of genetic services.
◾Counselling and psychology theoretical and research-focused courses are delivered by University staff trained in psychology, providing a firm foundation for the subsequent acquisition of knowledge and skills in genetic counselling facilitated by GCRB-registered Genetic Counsellors.
◾The University of Glasgow Medical Genetics Teaching Staff won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering), to recognise and reward excellence and good practice; they were also finalists in the 2013 awards and are finalists in the category of "Outstanding support for students" in The Herald Higher Education Awards for Scotland in association with UWS 2016.
◾You will develop your skills in problem solving, evaluation and interpretation of diagnostic data, communication of the results of genome testing to patients, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.

Programme structure

Component courses are as follows:

Genetic Disease in Clinical Practice

This course is designed in collaboration with the West of Scotland Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease, and explore the links between genotype and phenotype.

Case Investigations in Medical Genetics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Distress or disorder: reactions to a medical diagnosis

Note: this 10 credit course may be taken by visiting students, for example as professional development.

This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.

Patient empowerment: supporting decisions relating to new diagnoses

Note: this 10 credit course may be taken by visiting students, for example as professional development.

This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.

Effective listening and communication skills

Note: this 10 credit course may be taken by visiting students, for example as professional development.

With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.

Genetic counselling in clinical practice

This course is designed in collaboration with the West of Scotland Clinical Service, and will be delivered by NHS staff, to provide students with in depth understanding of the practical skills required in genetic counselling. The course will facilitate development of appropriate critical understanding, reflective practice and skills in relation to genetic counselling for providing accurate complex genetic information for patients and their families.

Social science research methods

The research methods course will focus on developing students’ research skills primarily in questionnaire-based qualitative and quantitative observational research methods and students will be introduced to ethics procedures for the college of MVLS.

Community placements 1 & 2

These placements, for 16 days and 20 days respectively, will each take place in one or more care settings for individuals with complex needs (adults or children or both) to enable students to gain insight into effects of complex needs on affected individuals and on their family.

Genetic counselling placement 1 & 2

These placements, for eight weeks and six weeks respectively, in different genetics centres will allow students to observe clinical practice in a variety of contexts, and to undertake relevant tasks under supervision within a clinical team that is delivering a genetic service, to enable the student to develop their own skills as a future genetic counsellor. Following each placement students will discuss and share experiences, facilitated by one of the NHS lead team and a counselling supervisor, to further develop their ability to deal with practical and emotional challenges in genetic counselling.

Clinical genomics

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussing the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Career prospects

The programme aims to provide students with skills to work as Genetic Counsellors. This programme is accredited by the Genetic Counsellor Registration Board (GCRB) producing graduates who are eligible for entry as a ‘trainee genetic counsellor’.

Read less
Are you a recent graduate, scientist, engineer or manager looking to develop your professional skills in multidisciplinary biotechnology and eager for a future in related sectors? The MSc in Biotechnology,. Read more
Are you a recent graduate, scientist, engineer or manager looking to develop your professional skills in multidisciplinary biotechnology and eager for a future in related sectors? The MSc in Biotechnology,
Bioprocessing and Business Management opens the door to these opportunities.

The course is delivered in partnership with our industry partners and Warwick Business School. During your studies you’ll develop a new sense of business acumen and gain in-depth knowledge of the underlying science and processing technologies. You’ll have access to specialised language classes, as well as a personal mentor who will help to improve your academic writing.

When you graduate, you’ll be ready to enter managerial and academic roles in several sectors, including the pharmaceutical industry, whether in large multinational companies or small to medium-sized enterprises.

Course structure

The course is a full time, twelve month taught programme with modular content, based around three strands:-
-Business Management
-Biotechnology & Molecular Biology
-Bioprocessing

The course programme focuses on:
-Manufacture of biochemicals, pharmaceuticals, devices and materials
-Genetic engineering and the fundamentals of biotechnology
-Business management, economics and finance
-Marketing management
-Commercialisation of products, IP
-Food, biotechnology and microbiological processing
-Fuels and energy
-Industries based on renewable and sustainable resources
-Production technologies
-Plant design and economic analysis

Students will be required to complete nine core modules. They must also select a further three elective modules. Teaching will be by interactive lectures, short question & answer sessions and small group interactive workshops/tutorials. Individual and team learning will be used for case study analysis.

All students will be required to undertake a project dissertation. Students will be encouraged to propose their own project title (selection subject to availability of an appropriate supervisor) although a range of potential titles will be offered. Projects will be non-laboratory based and generally undertaken at the University of Warwick under the supervision of an approved tutor.

Core Modules

-The fundamentals of biotechnology
-Molecular biology and genetic engineering
-Biochemical engineering
-Bioproduct plant design and economic analysis
-Business strategy
-Accounting and financial management
-Marketing management
-Entrepreneurship & commercialisation
-Biopharmaceutical product & clinical development
-Project

Elective Modules

(Availability dependent on demand)
-Microbiomics & metagenomics
-Environmental protection, risk assessment and safety
-Impact of biotechnology on the use of natural resources
-Fundamental principles of drug discovery
-E-business: Technology and management
-Chemotherapy of infectious disease
-Vaccines and gene therapy
-Laboratory Skills

Assessment

One third of the final mark will be derived from the project dissertation.

Two thirds of the final mark will be derived from assessments of the 9 core and 3 elective modules. Modules will be assessed by means of a combination of written course work, individual/group seminar presentations and a multi-choice or short answer examination. These assessments will take place during or shortly after completion of each module.

Read less
In this century, food security and the need to develop sustainable agriculture will become dominant issues affecting the whole world. Read more

In this century, food security and the need to develop sustainable agriculture will become dominant issues affecting the whole world. The global population is projected to increase dramatically from 7 to 9 billion in the next 30 years, causing an unprecedented demand for food and increased pressure on land. The aim of this Food Security Degree is to provide you with knowledge and skills relating to the broad topic of food security, incorporating socio-economic, animal and crop aspects. 

Why this programme

  • This exciting Food Security MSc is taught through collaboration between academics with world class expertise in diverse aspects of food security.
  • It discusses the demographic, social and economic issues, the challenges of achieving sustainable agriculture and presents the factors affecting food production from crops and animal sources.
  • The programme will include guest lectures on a range of topics and site visits.
  • Students will acquire knowledge of technology transfer and commercialisation.
  • Students will gain practical laboratory skills in molecular biology and in genetic modification.
  • Students will undertake a project that will develop their investigative skills and their ability to critically appraise and integrate information from different sources. 
  • A key feature of this Food Security degree is that it provides a very broad perspective on Food Security. 

Programme structure

We welcome students from diverse educational backgrounds and we anticipate that many will be unfamiliar with all the topics in this programme. We have therefore designed the programme so that it provides you with both a broad understanding of the major issues in food security and the opportunity to selectively focus on aspects of particular interest.

The programme is made up of courses totalling 180 credits. The programme starts with three compulsory courses (totalling 60 credits) that introduce fundamental issues in food security. You then choose from a range of optional courses (usually 10-credit) that expand on key topics, including production of food from animal sources and crop improvement. Some courses provide practical skills and there is an opportunity to learn about commercial issues relating to food production. Finally, you will undertake a 60-credit investigative project, which will allow you to focus on a selected topic.

The programme comprises the following courses:

Compulsory courses (totalling 60 credits)

  • Introduction to Food Security
  • Food Security Fundamentals: Food of Animal Origin
  • Food Security Fundamentals: Crops

Optional courses (totalling 60 credits*) selected from

  • Role of Insects in Food Security
  • Global Animal Production
  • Hygienic Production of Food
  • Animal Ethics
  • Policies for Sustainability and Development
  • Technology Transfer and Commercialisation
  • Plant Genetic Engineering
  • Crop Biotechnology Applications
  • Molecular Lab Skills
  • Omic Technologies
  • Production of Food from Animals
  • Quantitative Methods

*Most of the optional courses are 10 credit courses

Food security project (60 credits)

Teaching methods

Most courses are taught through lectures and tutorials, in which there will be discussion of key concepts, and training in the critical appraisal of published information. In addition, some courses include guest lectures and site visits. The course on Technology Transfer and Commercialisation of Bioscience Research will include workshop sessions. Two courses provide training in laboratory skills: Molecular Lab Skills and Plant Genetic Engineering. The project will involve an independent investigation of a selected topic in food security under supervision from an expert in the field.

Career prospects

Food security is a major challenge of this century and hence there will be opportunities to develop careers in several areas. Career prospects include working in Agri-industry, research institutes, government advisory, international advisory, media and research positions.

The breadth of knowledge, understanding and skills you will acquire in this Masters programme will help you obtain employment or undertake research in the food security sector.



Read less
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. Read more
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. The course curriculum consists of six months of lectures, laboratory practical sessions, career service workshops, industry-based seminars and a six-month research project. The curriculum has been developed with input from staff in local biotechnology and biopharmaceutical industries, to provide you with the necessary skills required by employers. Students have the choice to complete the six-month research project in a national or international industry or university environment.

Visit the website: http://www.ucc.ie/en/ckr01/

Course Details

This is the most established MSc in Biotechnology course in Ireland and is the most popular MSc course in UCC. The international success of this course is attributed to the industry-led curriculum offered to students and the opportunity to complete a six-month placement in industry or an academic research lab. The global recognition of the course is also evident from our international alumni and receipt of several industry-sponsored scholarships available to students entering and on completion of the course.

The course will:

- introduce you to the theory and practice of bioanalytical chemistry?
- introduce you to molecular biotechnology, eukaryotic-, prokaryotic- and plant-biotechnologies, recombinant DNA technologies and their - application in the biotechnology and biopharmaceutical industries
- introduce you to the principles of process and biochemical engineering?
- introduce you to the role of process validation and quality assurance in the pharmaceutical industry, and give you an awareness of the - - latest trends in good manufacturing, laboratory and validation practices
- introduce you to the principles of food and industrial microbiology
- provide you with the opportunity to conduct and complete a body of independent research in a biotechnology-related area and present your research findings in a minor dissertation.

Format

The curriculum consists of approximately 250 contact hours over two academic terms (October to December and January to March), consisting of eight course modules, set practical sessions, career service workshops and an industry lecture series.

During the third academic term (April to September), students complete a six-month research project on a topic related to biotechnology, biopharmaceutical or biomedical research. Industry-based projects in these areas are managed by a dedicated placement officer who facilitates career workshops during which you prepare for and are interviewed by staff from companies interested in hosting students. For students interested in a career in biomedical research or PhD, projects are offered in a broad range of research areas utilising modern research techniques. All research projects are undertaken in consultation with an academic supervisor and examiner.

The MSc in Biotechnology degree course consists of eight course modules, set practical sessions, career service workshops, an industry lecture series and a six-month research project.

Students study the following eight modules and complete a research project:

- Advanced Molecular Microbial Biotechnology
- Biopharmaceuticals: formulation design, secondary processing and regulatory compliance
- Bioprocess Engineering
- Cell and Molecular Biology
- Functional Foods for Health
- Genetic Engineering
- Modern Methods in Analytical Chemistry
- Plant Genetic Engineering

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in biomedical research and future careers as PhD researchers, research projects are offered across a broad range of topics including but not limited to; cancer biology, neuroscience, immunology, microbiology and plant biotechnology.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#4%20

Assessment

The MSc in Biotechnology is awarded after passing written examinations across taught course units, the continuous assessment of practical work and completion of a six-month research project, which has to be written up in the form of a dissertation and approved by an external examiner. All students must complete written examinations (typically held over a two week period in March) and submit a research project. Full details and regulations governing examinations for each course will be contained in the Marks and Standards 2013 Book and for each module in the Book of Modules, 2015/2016 - http://www.ucc.ie/modules/

Careers

The course is suitable for students wishing to extend their specific undergraduate degree knowledge in biotechnology, and for those wishing to bridge their undergraduate degree and gain more specialised knowledge and training in biotechnology. The course allows you to follow a number of career pathways. Each year, over 70 per cent of our students gain employment while approximately 20 per cent of graduates progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Collaboration between staff from the University of Glasgow and the NHS West of Scotland Genetics Service enables the MSc in Medical Genetics and Genomics to provide a state-of-the-art view of the application of modern genetic and genomic technologies in medical genetics research and diagnostics, and in delivery of a high quality genetics service to patients, as well as in design of targeted therapies.

Why this programme

◾This is a fully up-to-date Medical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
◾The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
◾The MSc Medical Genetics Course is based on the south side of the River Clyde in the brand new (2015) purpose built Teaching & Learning Centre, at the Queen Elizabeth University Hospitals (we are located 4 miles from the main University Campus). The Centre also houses state of the art educational resources, including a purpose built teaching laboratory, computing facilities and a well equipped library. The West of Scotland Genetic Services are also based here at the Queen Elizabeth Campus allowing students to learn directly from NHS staff about the latest developments to this service.
◾The Medical Genetics MSc Teaching Staff have won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
◾The close collaboration between university and hospital staff ensures that the Medical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics and visit the diagnostic laboratories at the new Southern General Hospital laboratory medicine building.
◾The Medical Genetics degree explores the effects of mutations and variants as well as the current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
◾New developments in medical genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
◾You will develop your skills in problem solving, experimental design, evaluation and interpretation of experimental data, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾This MSc programme will lay the academic foundations on which some students may build in pursuing research at PhD level in genetics or related areas of biomedical science or by moving into related careers in diagnostic services.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
◾For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Medical Genetics and Genomics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.
◾The Medical Council of Hong Kong recognises the MSc in Medical Genetics and Genomics from University of Glasgow in it's list of Quotable Qualifications.

Programme structure

Genetic Disease: from the Laboratory to the Clinic

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Medical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

Students will take this course OR Omic Technologies for Biomedical Sciences OR Frontiers in Cancer Science.

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Omic technologies for the Biomedical Sciences: from Genomics to Metabolomics

Students will take this course OR Clinical Genomics OR Frontiers in Cancer Science.

Visit the website for further information

Career prospects

Research: About half of our graduates enter a research career and most of these graduates undertake and complete PhDs; the MSc in Medical Genetics and Genomics facilitates acquisition of skills relevant to a career in research in many different bio-molecular disciplines.

Diagnostics: Some of our graduates enter careers with clinical genetic diagnostic services, particularly in molecular genetics and cytogenetics.

Clinical genetics: Those of our graduates with a prior medical / nursing training often utilise their new skills in careers as clinical geneticists or genetic counsellors.

Other: Although the focus of teaching is on using the available technologies for the purpose of genetic diagnostics, many of these technologies are used in diverse areas of biomedical science research and in forensic DNA analysis. Some of our numerous graduates, who are now employed in many countries around the world, have entered careers in industry, scientific publishing, education and medicine.

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. Read more

The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. The Clinical Genetics MSc has a specific focus on delivery of the clinical service to patients including risk analysis and application of modern genetic and genomic technologies in medical genetics research and in diagnostics and population screening.

Why This Programme

  • This is a fully up-to-date Clinical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
  • The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
  • The Clinical Genetics MSc Teaching Staff won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education. 
  • The close collaboration between university and hospital staff ensures that the Clinical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics at the new Queen Elizabeth University Hospital laboratory medicine building.
  • The Clinical Genetics degree explores the effects of mutations and variants as well as the theoretically basis of current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
  • New developments in genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
  • You will develop your skills in problem solving, evaluation and interpretation of genetic data, literature searches, scientific writing, oral presentations, poster presentations and team working.
  • This MSc programme will lay the academic foundations on which some students with prior MBChB or MBBS may build in pursuing careers in Clinical Genetics.
  • The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
  • For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Clinical Genetics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.

Programme Structure

Genetic Disease and Clinical Practice

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Distress or Disorder: Reactions to a medical diagnosis

This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.

Patient Empowerment: Supporting decisions relating to new diagnoses

This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.

Effective listening and communication skills

With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Disease Screening in Populations

This course will cover the rationale for, and requirements of, population screening programmes to detect individuals at high risk of particular conditions, who can then be offered diagnostic investigations. Students will work in groups to investigate and report on, a screening programme of their choice from any country.

Dissertation

The course will provide students with the opportunity to carry out an independent investigative project in the field of Medical Genetics and Genomics.

Teaching and Learning Methods

A variety of methods are used, including problem-based learning, case-based learning, lectures and tutorials. These are supplemented by a wide range of course-specific electronic resources for additional learning and self-assessment. As a result, you will develop a wide range of skills relevant to careers in clinical genetics. These skills include team-working and data interpretation. You will use the primary scientific literature as an information resource, although textbooks such as our own Essential Medical Genetics will also be useful. You will have the options of: attending genetic counselling clinics and gaining hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenicity of DNA sequence variants.

Career Prospects

This programme would be beneficial for anyone with a previous MBChB or similar degree, and would facilitate a career as a Clinical Geneticist.



Read less
The backbone of the MRes in Molecular Plant and Microbial Sciences is a 12-month period of research starting in the first week of October. Read more
The backbone of the MRes in Molecular Plant and Microbial Sciences is a 12-month period of research starting in the first week of October.

It consists of two research projects performed in research groups focusing on plant genetic engineering, plant development, plant molecular biology, proteomics, plant biochemistry, plant-microbe interactions, transcriptomics and bioinformatics.

In parallel with your research project, you may also attend lectures from relevant advanced courses delivered at Imperial, such as Advanced Topics in Plant Molecular Biology.

You will also attend seminars organised either by individual research groups or collectively by the plant and microbial sciences academics.

Read less
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. Read more
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. The course will provide you with a truly interdisciplinary educational experience by combining advanced discipline-specific training with core scientific research, technical expertise and business skills.

Visit the website: http://www.ucc.ie/en/ckr44/

Course Details

A distinctive feature of the MSc in Molecular Cell Biology with Bioinnovation is that you will receive formal innovation and technology commercialisation training through modules from the College of Business and Law at UCC.

With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will select projects with internationally-renowned research groups from the Schools of Biochemistry, Microbiology and Department of Anatomy/Neuroscience, following the completion of discipline-specific modules.

You will not only possess excellent research and technical skills on graduation but also the necessary business development and commercialisation skills for life science innovation.

Format

The course will consist of lectures, tutorials, hands-on workshops and a research dissertation based on individual research.

Core Scientific Modules (25 credits)

- Cell and Molecular Biology
- Human Molecular Genetics and Genetic Engineering Techniques
- Biological and Clinical Perspectives of Human Disease

Scientific Skills-Development Modules (10 credits)

- Biotechniques
- Scientific Communication of Current Topics in Molecular Cell Biology Core Business Modules (10 credits)
- Marketing for High Technology Entrepreneurs
- Technology and Business Planning

Elective modules (5 credits)

- Creativity and Opportunity Recognition
- Innovation Finance
- Intellectual Property Law for High-Tech Entrepreneurs

Research Project (40 credits)

You will select a project offered by internationally-renowned research groups from the Schools of Biochemistry and Cell Biology, Microbiology and Anatomy/Neuroscience. With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will complete a six month project based on individual research in one of these themes and compile the results into an MSc dissertation on completion.

You will gain invaluable hands-on, practical experience in experimental design, implementation and data interpretation and develop a wide array of transferable skills, including written and verbal communication; data recording, analysis and presentation; critical evaluation of published material; learning to work collaboratively and independently as well as project and time-management.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page04.html#molecular

Assessment

Taught modules are examined by formal written examination and continuous assessment. The research dissertation for the six-month research project must be submitted by the end of the first academic year of registration for examination by internal and external examiners.

Careers

You will be ideally positioned to enter into a PhD after graduation, but could also pursue a number of career paths including: technology transfer officer within higher education institutions and national agencies, R&D project manager, commercialisation manager within a life science start-up, or development manager within the pharmaceutical sector. The course will also equip you with the skills required to develop your own start-up venture.

A first destination surveys from 2012 - 2014 have revealed that 100% of our graduates are in employment or further education within one-year of completing the MSc in Molecular Cell Biology with Bioinnovation.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This is a multidisciplinary degree that brings together aspects of chemistry, biology and cell biology. The modules are carefully tailored to cover the knowledge in key fields such as. Read more

This is a multidisciplinary degree that brings together aspects of chemistry, biology and cell biology. The modules are carefully tailored to cover the knowledge in key fields such as:

  • Gene therapy
  • Drug design
  • Genomics
  • Proteomics
  • Genetic engineering for plants
  • Animals and micro-organisms
  • Bioinformatics.

This degree produces graduates with a critical, analytical and flexible approach to problem solving, enhancing laboratory and professional competence and enabling students to work independently and use their initiative in solving the diverse problems they encounter.

The programme helps you to obtain a creative attitude to the development and manufacture of biotechnology products. The intention is that skills and knowledge can be more readily transferred to professional activities.

The aims of the programme are:

  • To provide students with subject-specific knowledge, as well as a critical, analytical and flexible approach to problem solving in the field of biotechnology
  • To provide students with enhanced practical and professional skills and thus prepare them effectively for professional employment or doctoral studies in the field of biotechnology
  • To enable students to work independently and use initiative to solve the diverse problems they may encounter
  • To instil a critical awareness of advances at the forefront of biotechnology.

Science - General

We offer a range of sciences programmes from biotechnology to formulation science. Whatever you choose to study you will be taught by experienced staff in state-of-the-art laboratories and gain the skills you need to succeed in your chosen field. Employability is central to all our programmes and you will benefit from our strong links with employers, industry work placements and professional accreditations.

What you'll study

Full time

- Year 1

Students are required to study the following compulsory courses.

Biotechnology Research Projects (60 credits)

Bioinformatics (30 credits)

Research Methods and Data management (30 credits)

English Language Support (for Postgraduate students in the Faculty of Engineering and Science)

Applied Molecular Biology (30 credits)

Students are required to choose 1 course from this list of options.

Biotechnology and Transgenic Crops (30 credits)

Pharmaceutical Biotechnology (30 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:

- Postgraduate finance pages (https://www.gre.ac.uk/study/finance/postgraduate)

- International students' finance pages (http://www2.gre.ac.uk/students/international/international-students/finance)

Assessment

Students are assessed through:

  • Coursework
  • Examinations
  • Presentations
  • Thesis
  • Online assessment.

Teaching and learning

This programme involves a series of lectures, seminars and workshops. Case studies will provide you with exposure to up-to-date problems and enhance your problem solving and team-work in a way that simulates an industrial setting. A research project in a well equipped department led by staff with a diversity of research experience will give you the opportunity to carry out novel research and enhance your practical skills, analytical thinking and independence.

Career options

Biotechnology and pharmaceutical industries, intellectual property industry (IP), academics, bio-informatics/IT, health services, research and higher degrees (PhD).

Find out how to apply here - https://www2.gre.ac.uk/study/apply



Read less
If you’re looking to pursue a career in medical biotechnology, this course will give you an extensive and valuable base of knowledge. Read more
If you’re looking to pursue a career in medical biotechnology, this course will give you an extensive and valuable base of knowledge. It’s especially relevant if you come from a biomedical background.

By developing your understanding of key technical, business and societal issues, you’ll broaden your existing experience and emerge as an informed medical biotechnology professional. You’ll enjoy a multidisciplinary learning experience, benefiting from the expertise of industrial experts as well as academics within the School of Life Sciences and Warwick Business School. The 10 core modules (Fundamentals of Biotechnology; Molecular Biology & Genetic Engineering; Regenerative Medicine; Biopharmaceutical Product & Clinical Development; Entrepreneurship & Commercialisation; Medical Diagnostics; Essentials of Medical Genomics; Business Strategy; Marketing Management; Accounting & Finance) and two optional modules are delivered through a mixture of lectures, case studies and group work. You’ll also complete a dissertation.

Our graduates leave well prepared to pursue a role in project management, business development or general management within the field of medical biotechnology.

Read less
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions. Read more
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions.

Specific areas of specialization include:
- Plant-microbe interaction, bacterial and fungal diseases, plant virology, biological control of pests and diseases, insect physiology, natural insecticides, insect ecology and behaviour, and weed biology, ecology and control;
- Seed physiology, plant nutrition, plant growth analysis, plant-plant interaction, biotic and abiotic stressor resistance, and environmental plant physiology;
- Vegetable culture, ornamental horticulture, plant breeding, and post-harvest physiology;
- Plant biochemistry, tissue culture, genetic engineering, and plant, fungal, and viral molecular genetics;
- Rangeland ecology, and wildlife habitat studies.

Quick Facts

- Degree: Master of Science
- Specialization: Plant Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Read less
This programme offers an expansion of our already successful MSc Biotechnology into industrial biotechnology and business management. Read more

This programme offers an expansion of our already successful MSc Biotechnology into industrial biotechnology and business management. It is jointly run with Adam Smith Business School.

Why this programme

  • Ranked world top 100 for biological sciences.
  • If you wish to improve your knowledge of modern molecular, biochemical, cell biological and genetic techniques for biotechnological applications, this programme is designed for you.
  • You will gain a sound understanding of the nature of business based on bioscience knowledge and research, opportunities for innovation and regulatory requirement constraints, intellectual property and ethical issues.
  • You will learn how to assess the current literature, be encouraged to form opinions based on scientific merit, and implement these ideas in future research planning.
  • You will be taught by experts in the field of biotechnology who run active, internationally recognised, research groups here at Glasgow.
  • The course involves extensive interaction with industry, through site visits, guest lectures and an 'Industrial Networking Symposium' where representatives from the European biotechnology and pharmaceutical industry will discuss their companies and answer your questions on working in the industrial sector.
  • This course has a strong laboratory component, with courses that run throughout the year, giving you hands on experience of diverse biotechnological research skills.
  • The flexible independent research project provides valuable training for students wishing to proceed to a PhD or into an industrial career; this may also be completed as a business based project.
  • Additional programme components include industrial networking sessions and a dedicated career workshop on progression planning.
  • This Masters in biotechnology & management provides an advanced practical knowledge of how research and industry are being applied to solve real world problems.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with biotechnology courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary Issues in Human Resource Management 
  • Managing Creativity and Innovation 
  • Managing Innovative Change 
  • Marketing Management 
  • Operations Management 
  • Project Management

Semester 2

You will study biotechnology courses, which aim to enhance your understanding of using biological processes, organisms, or systems to manufacture products intended to improve the quality of human life. These courses will provide training in state-of-the-art biotechnology applications what have resulted in ground-breaking developments in the areas of medicine, pharmaceuticals, agriculture and food production, environmental clean-up and protection and industrial processes.

Core course

  • Biotechnology Applications

Optional courses

  • Omic Technologies for the Biomedical Sciences
  • Synthetic Biology: Concepts and Applications
  • Bioimaging
  • Biosensors and Diagnostics
  • Plant Genetic Engineering
  • Crop Biotechnology

Project or dissertation

If you are studying for an MSc you will undertake individual project in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project options are closely linked to staff research interests.

The aims of the courses are to

  • enable students to study state-of-the-art biotechnology topics in depth.
  • allow students to benefit from leading-edge research-led teaching.
  • provide a critical appreciation of relevant theoretical, methodological and technical literature from the central business disciplines.
  • develop students’ ability to critically appraise published research related to biotechnology.
  • cultivate analytical and interpretive abilities and enable students to integrate these with essential managerial and business skills.
  • develop students laboratory skills relevant to biotechnology.
  • enhance students’ conceptual, analytical and presentation skills and to apply them to biotechnology problems.
  • prepare students for management positions in the biotechnology industry or entry into PhD programmes.

Career prospects

This programme will prepare you for a career in the pharmaceutical or biotechnology industrial sectors or for entry into PhD programmes.



Read less
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. Read more
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. As well as undertaking your research, you will attend courses and lectures on some of the following: instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations. Termly reports are provided on your work.

The course enables students to initiate careers in a wide range of disciplines including plant genetic engineering, plant development, plant molecular biology, plant biophysics, plant biochemistry, plant-microbe interactions, algal microbiology, plant ecology, crop biology, plant virology, plant epigenetics, epidemiology, plant taxonomy, plant physiology, eco physiology and bioinformatics.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blpsmpbsc

Course detail

For students wishing to continue on to the PhD the MPhil provides suitable foundations. For students not wishing to continue the MPhil provides specialist training in scientific methodology relevant to the project subject area and based on the expertise of the supervisor and research group. This training also enables students from other scientific areas to proceed in a career in Plant Sciences and other allied areas. General training is also available and includes courses and lectures in instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations.

Format

The Department has the overriding aim to provide all its Graduate Students with every opportunity for a broad education and a compatible environment in which they may complete a PhD or MPhil successfully. The Department will aim to provide guidance and, where appropriate, the facilities to allow Graduate Students to develop a number of different skills including:

- Research methodologies and the process of research including quantitative and qualitative methods and data analysis; project planning and management
- The effective use of learning resources including library and information technology
- Personal skills including oral and written communication, time management and team work skills, professional development and the preparation of curriculum vitae and employment applications
- A broad knowledge of the discipline in which the Student is working
- Technical training to enable the Student to undertake their research work effectively and efficiently
- Professional presentations

After the end of each term, the Graduate Education Committee will ask for a brief report on your progress from your Supervisor. This information will be made available to you and you will be invited to respond to comments made in a termly self-assessment. This will allow you to review your own progress and to highlight any difficulties you feel you are facing.

Assessment

A submission of a Masters dissertation, with a word limit of 20,000 words, is required within 12 months from a student's registration date.

A viva voce examination of the dissertation will normally then take place.

Continuing

On successfully passing their MPhil, students are welcome to apply to continue to a PhD. Continuation is dependent on the approval of the receiving Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Individual supervisors may hold grant linked or CASE studentships. It is best to contact supervisors directly to inquiry into availability.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
About the course. The biotechnological applications of molecular biology underpin major industries in the medical and agricultural sectors. Read more

About the course

The biotechnological applications of molecular biology underpin major industries in the medical and agricultural sectors. Insights from the study of genetic material are already benefitting the development of new diagnostic tests, therapeutic agents, bioenergy production systems, improved crops and more. The range and value of these developments is rapidly increasing.

This exciting MSc Molecular Biology and Biotechnology program provides training for bioscience graduates to develop confidence and independence in their practical skills and knowledge relevant to careers in this area. Successful graduates will be ready to undertake further study at PhD level or to enter employment in the biotechnology sector.

You’ll learn essential practical skills; study the relevant theory in the Departments of Molecular Biology and Biotechnology (MBB) and Chemical and Biological Engineering (CBE); and carry out an individual research project, in which you’ll learn how to design and conduct research, keep records and present the research in different styles.

Where your masters can take you

Our graduates work in health care, pharmaceuticals, food safety and production, brewing and agrochemicals. Many of our masters students go on to do a PhD then pursue a career in research; others have gained entry to the prestigious NHS Scientist Training Programme (STP).

An international reputation

The 2014 Research Excellence Framework (REF) ranks Sheffield No 1 for biomedical research and in the UK top five for biological sciences generally. We have regular seminars from distinguished experts, and our motivated staff undertake collaborative research ranging from biotechnology to medicine.

Teaching and assessment

Our masters courses give you a solid grounding in experimental science, with personal supervision and tutorials by experienced scientists, based in modern and well-equipped labs, leading on to a research project in which you design and conduct your own research.

You will learn cutting edge science from research leaders, and gain practice in reading the scientific literature and writing reports.

Assessment is based on a combination of coursework, project work, formal examinations and a dissertation.

Core modules

  • Laboratory Skills in Molecular Bioscience
  • Cells as Factories
  • Advanced Research Topics
  • Literature Review, and Research Project (typical research areas include plant genetic engineering, proteins engineering, environmental microbiology or genetic studies by mutagenesis)

Examples of optional modules

Choose any three from:

  • The RNA World
  • Plant Biotechnology
  • Microbiology of Extreme Environments
  • Advanced Biochemical Engineering
  • Advanced Bioprocess Design Project


Read less
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students must talk to their proposed supervisor about possible project areas (see below) and have a project approved by interview with the supervisor and Head of Discipline prior to application via http://www.pac.ie (PAC code: CKS81).

Visit the website: https://www.ucc.ie/en/bees/courses/postgrad/

Course detail

Students undertake a total workload equivalent to 90 credits over the 12 month programme, the principal element of which is the completion of a major research thesis of approximately 25,000 words. In parallel, students must take and pass taught modules to the value of 20 credits.

Modules

Students take 20 credits from the following available modules:

BL6010 Characteristics of the Marine Environment (5 credits)
BL6012 Marine Megafauna (10 credits)
BL6016 Marine Ecology and Conservation (10 credits)
BL6019 Ecological Applications of Geographical Information Systems (5 credits)
BL6020 Genetics and the Marine Environment (5 credits)
BL4004 Frontiers in Biology (5 credits)
BL4005 Research Skills in Biology (5 credits)
BL4006 Food Production (5 credits)
PS6001 Plant Genetic Engineering (5 credits)
PS4024 Crop Physiology and Climate Change (5 credits)
PS4021 Environmentally Protective Management of Plant Pests and Pathogens (5 credits)
ZY4021 Evolutionary Ecology (5 credits)

Students may elect to take other, relevant modules (subject to availability) that are offered by the University that are not listed above to fulfil the elective requirement with approval from the MRes coordinator, research supervisor and Head of School of Biological, Earth and Environmental Science.

Students will also undertake independent research towards completion of a research thesis to a student workload equivalent of 70 credits on a selected topic in Animal or Plant Science.

Current projects:

- The effect of lactation housing on the behaviour and welfare of pigs
- Understanding viral pathways in marine environments
- Distribution and diet of otters in a rural/urban streamscape
- Novel approaches in the use of freshwater macroinvertebrates for biomonitoring
- The ecology of Sika/Red/Fallow deer in Ireland
- Catching prey; the role of Ultraviolet radiation in attracting insects by carnivorous plants
- Birds as dispersers of plant propagules
- Does the phytotoxicity of nanoparticles depend on environmental parameters?
- The role of biochar as a sustainable soil amendment
- Effects of Eutrophication in shallow subtidal marine systems
- Use of Brachypodium sylvaticum as a model for growth regulation in perennial forage grasses
- Effect of temperature on spring growth of perennial ryegrass cultivars

Programme Learning Outcomes

On successful completion of this programme, students should be able to:

- Carry out an independent and original research project to address an emerging question in Animal or Plant Science.
- Prepare and write a dissertation of their research project in a critical, logical and systematic manner, in keeping with the standards of postgraduate research.
- Display advanced theoretical knowledge and practical understanding within a research area of Animal or Plant Science.
- Understand the basis and application of field and laboratory methods used in Animal and Plant Science and a knowledge of their limitations
- Avail of relevant workshops or modules to increase scientific technical skills (e. g. biostatistics).
- Source, review, critically assess and evaluate relevant primary literature and summarize material for presentation to peers and for inclusion within the research dissertation.
- Design, write and defend a scientific research proposal based on their current research topic or a proposed topic.
- Evaluate their skill set and identify skills that should be acquired.
- Develop professional practice skills including team-work, negotiation, time-management, scientific writing and oral communication

How to apply

Students should consult the MRes Animal and Plant Science Brochure: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinAnimalandPlantScience.pdf

Prospective students should also consult the following guide to procedures realting to applying for the MRes Animal and Plant Science: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinANimalandplantscience-Studentguidetoproceduresbeforeandafterentrytotheprogramme24March2016.pdf

Read less

Show 10 15 30 per page



Cookie Policy    X