• University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
Imperial College London Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Swansea University Featured Masters Courses
"genetic" AND "analysis"×
0 miles

Masters Degrees (Genetic Analysis)

We have 108 Masters Degrees (Genetic Analysis)

  • "genetic" AND "analysis" ×
  • clear all
Showing 1 to 15 of 108
Order by 
The MSc in Genetic and Genomic Counselling is designed to give students a working knowledge of the principles and practice of Genetic Counselling which will qualify them to practice as Genetic and Genomic Counsellors. Read more
The MSc in Genetic and Genomic Counselling is designed to give students a working knowledge of the principles and practice of Genetic Counselling which will qualify them to practice as Genetic and Genomic Counsellors. The programme will be delivered by University of Glasgow staff in collaboration with NHS staff from the West of Scotland Genetics Service, so that a current perspective on both laboratory diagnostics and clinical services will be obtained. This programme is accredited by the UK Genetic Counsellor Registration Board.

Why this programme

-◾Teaching is based at the Queen Elizabeth University Hospital (QEUH), which includes adult services, children’s services and maternity services, as well as one of the largest diagnostic laboratories in Europe, and a new, purpose-built teaching and learning facility. The close collaboration between University and NHS staff ensures that the MSc in Genetic and Genomic Counselling provides a completely up-to-date representation of genetic services.
◾Counselling and psychology theoretical and research-focused courses are delivered by University staff trained in psychology, providing a firm foundation for the subsequent acquisition of knowledge and skills in genetic counselling facilitated by GCRB-registered Genetic Counsellors.
◾The University of Glasgow Medical Genetics Teaching Staff won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering), to recognise and reward excellence and good practice; they were also finalists in the 2013 awards and are finalists in the category of "Outstanding support for students" in The Herald Higher Education Awards for Scotland in association with UWS 2016.
◾You will develop your skills in problem solving, evaluation and interpretation of diagnostic data, communication of the results of genome testing to patients, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.

Programme structure

Component courses are as follows:

Genetic Disease in Clinical Practice

This course is designed in collaboration with the West of Scotland Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease, and explore the links between genotype and phenotype.

Case Investigations in Medical Genetics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Distress or disorder: reactions to a medical diagnosis

Note: this 10 credit course may be taken by visiting students, for example as professional development.

This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.

Patient empowerment: supporting decisions relating to new diagnoses

Note: this 10 credit course may be taken by visiting students, for example as professional development.

This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.

Effective listening and communication skills

Note: this 10 credit course may be taken by visiting students, for example as professional development.

With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.

Genetic counselling in clinical practice

This course is designed in collaboration with the West of Scotland Clinical Service, and will be delivered by NHS staff, to provide students with in depth understanding of the practical skills required in genetic counselling. The course will facilitate development of appropriate critical understanding, reflective practice and skills in relation to genetic counselling for providing accurate complex genetic information for patients and their families.

Social science research methods

The research methods course will focus on developing students’ research skills primarily in questionnaire-based qualitative and quantitative observational research methods and students will be introduced to ethics procedures for the college of MVLS.

Community placements 1 & 2

These placements, for 16 days and 20 days respectively, will each take place in one or more care settings for individuals with complex needs (adults or children or both) to enable students to gain insight into effects of complex needs on affected individuals and on their family.

Genetic counselling placement 1 & 2

These placements, for eight weeks and six weeks respectively, in different genetics centres will allow students to observe clinical practice in a variety of contexts, and to undertake relevant tasks under supervision within a clinical team that is delivering a genetic service, to enable the student to develop their own skills as a future genetic counsellor. Following each placement students will discuss and share experiences, facilitated by one of the NHS lead team and a counselling supervisor, to further develop their ability to deal with practical and emotional challenges in genetic counselling.

Clinical genomics

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussing the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Career prospects

The programme aims to provide students with skills to work as Genetic Counsellors. This programme is accredited by the Genetic Counsellor Registration Board (GCRB) producing graduates who are eligible for entry as a ‘trainee genetic counsellor’.

Read less
The aim of this programme is to provide individuals with the skills to explore, analyse and interpret contemporary biological data. Read more
The aim of this programme is to provide individuals with the skills to explore, analyse and interpret contemporary biological data. This course offers Masters level instruction in Bioinformatics and Genetic Epidemiology.

You will develop key skills necessary to analyse genomics data for gene discovery, including genomewide association studies (GWAS) and post-GWAS applications such as gene-set and polygenic genetic epidemiology analysis.

This programme has been designed for biomedical scientists and informaticians looking to undertake a career in academic research, the biotechnology, pharmaceutical or health care industries.

Distinctive features

• This course was first established over a decade ago as a response to the emerging informatics needs of the genetics and genomics communities following the completion of the first drafts of the human genome project. Subsequent advances in research technologies and analytic approaches have dictated the continuing evolution of this programme to provide contemporary instruction in these new essential skills

• Providing a strong platform for students entering from the biological, mathematical or computational sciences, this course provides modules in core complementary areas such as in computation/scripting, statistics and molecular biology; the fundamental building blocks necessary to succeed in bioinformatic analysis and interpretation

• As an introduction – you will be taught essential organisational and coding skills required for effective bioinformatics and biostatistical analysis.

• One of the unique components of this course is the extended instruction in statistics provided by the Statistics for Bioinformatics and Genetic Epidemiology module.

• You will also be introduced to the molecular and cellular biology behind the data within the Introduction to Bioinformatics Module. This is invaluable if you are entering from non-life sciences backgrounds to make informed decisions around data interpretation.

• You will extend your bioinformatics and biostatistics studies by focusing on the genetic epidemiology and gene discovery approaches including GWAS and copy-number variation (CNV) analysis, and post-GWAS approached such as pathway/network, gene-set and polygenic epidemiological methods.

• We are committed to developing transferable skills and to improving graduate employability. We want highly capable graduate informaticians who can fulfil the growing bioinformatics needs of local, national and international employers.   

Structure

The course can be completed in one year with full-time study or in three years by part-time study.

Both full-time and part-time students register initially for the MSc Bioinformatics and Genetic Epidemiology.

A Postgraduate Certificate exit point is available for students successfully completing 60 credits of the taught element (module restrictions apply).

A Postgraduate Diploma exit point is available for students successfully completing 120 credits of the taught element (module restrictions apply).

Core modules:

Computing for Bioinformatics and Genetic Epidemiology
Statistics for Bioinformatics and Genetic Epidemiology
Introduction to Bioinformatics
Case Studies in Bioinformatics and Biostatistics
Genetic Epidemiology - Association and Linkage
Post-GWAS Genetic Epidemiology
Dissertation in Genetic Epidemiology

Teaching

The programme is delivered as face-2-face learning. Students will find course materials, links to related materials and assessments via Cardiff University’s Virtual Learning Environment (VLE) ‘Learning Central'

Career Prospects

This programme has been designed with the needs of academic research, the biotechnology, pharmaceutical and health care industries in mind. Instruction in computational and statistical biosciences will enable individuals to work effectively within a multidisciplinary bioinformatics and genetic epidemiology arena.

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Collaboration between staff from the University of Glasgow and the NHS West of Scotland Genetics Service enables the MSc in Medical Genetics and Genomics to provide a state-of-the-art view of the application of modern genetic and genomic technologies in medical genetics research and diagnostics, and in delivery of a high quality genetics service to patients, as well as in design of targeted therapies.

Why this programme

◾This is a fully up-to-date Medical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
◾The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
◾The MSc Medical Genetics Course is based on the south side of the River Clyde in the brand new (2015) purpose built Teaching & Learning Centre, at the Queen Elizabeth University Hospitals (we are located 4 miles from the main University Campus). The Centre also houses state of the art educational resources, including a purpose built teaching laboratory, computing facilities and a well equipped library. The West of Scotland Genetic Services are also based here at the Queen Elizabeth Campus allowing students to learn directly from NHS staff about the latest developments to this service.
◾The Medical Genetics MSc Teaching Staff have won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
◾The close collaboration between university and hospital staff ensures that the Medical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics and visit the diagnostic laboratories at the new Southern General Hospital laboratory medicine building.
◾The Medical Genetics degree explores the effects of mutations and variants as well as the current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
◾New developments in medical genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
◾You will develop your skills in problem solving, experimental design, evaluation and interpretation of experimental data, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾This MSc programme will lay the academic foundations on which some students may build in pursuing research at PhD level in genetics or related areas of biomedical science or by moving into related careers in diagnostic services.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
◾For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Medical Genetics and Genomics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.
◾The Medical Council of Hong Kong recognises the MSc in Medical Genetics and Genomics from University of Glasgow in it's list of Quotable Qualifications.

Programme structure

Genetic Disease: from the Laboratory to the Clinic

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Medical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

Students will take this course OR Omic Technologies for Biomedical Sciences OR Frontiers in Cancer Science.

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Omic technologies for the Biomedical Sciences: from Genomics to Metabolomics

Students will take this course OR Clinical Genomics OR Frontiers in Cancer Science.

Visit the website for further information

Career prospects

Research: About half of our graduates enter a research career and most of these graduates undertake and complete PhDs; the MSc in Medical Genetics and Genomics facilitates acquisition of skills relevant to a career in research in many different bio-molecular disciplines.

Diagnostics: Some of our graduates enter careers with clinical genetic diagnostic services, particularly in molecular genetics and cytogenetics.

Clinical genetics: Those of our graduates with a prior medical / nursing training often utilise their new skills in careers as clinical geneticists or genetic counsellors.

Other: Although the focus of teaching is on using the available technologies for the purpose of genetic diagnostics, many of these technologies are used in diverse areas of biomedical science research and in forensic DNA analysis. Some of our numerous graduates, who are now employed in many countries around the world, have entered careers in industry, scientific publishing, education and medicine.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology.

Quantitative Genetics & Genome Analysis is part of a suite of programmes offering specialist routes in Animal Breeding & Genetics, Evolutionary Genetics, or Human Complex Trait Genetics.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

Applicants who wish to select their area of specialisation during the programme should apply for this umbrella programme. Applicants with a preferred programme option should apply via the following links:

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Compulsory courses

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Statistics and Data Analysis
  • Linkage and Association in Genome Analysis
  • Research Proposal
  • Dissertation

Option courses (selected according to degree specialisation):

  • Quantitative Genetic Models
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Animal Genetic Improvement
  • Functional Genomic Technologies
  • Molecular Phylogenetics
  • Bioinformatics
  • Evolutionary Quantitative Genetics

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. Read more

The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. The Clinical Genetics MSc has a specific focus on delivery of the clinical service to patients including risk analysis and application of modern genetic and genomic technologies in medical genetics research and in diagnostics and population screening.

Why This Programme

  • This is a fully up-to-date Clinical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
  • The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
  • The Clinical Genetics MSc Teaching Staff won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education. 
  • The close collaboration between university and hospital staff ensures that the Clinical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics at the new Queen Elizabeth University Hospital laboratory medicine building.
  • The Clinical Genetics degree explores the effects of mutations and variants as well as the theoretically basis of current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
  • New developments in genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
  • You will develop your skills in problem solving, evaluation and interpretation of genetic data, literature searches, scientific writing, oral presentations, poster presentations and team working.
  • This MSc programme will lay the academic foundations on which some students with prior MBChB or MBBS may build in pursuing careers in Clinical Genetics.
  • The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
  • For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Clinical Genetics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.

Programme Structure

Genetic Disease and Clinical Practice

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Distress or Disorder: Reactions to a medical diagnosis

This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.

Patient Empowerment: Supporting decisions relating to new diagnoses

This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.

Effective listening and communication skills

With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Disease Screening in Populations

This course will cover the rationale for, and requirements of, population screening programmes to detect individuals at high risk of particular conditions, who can then be offered diagnostic investigations. Students will work in groups to investigate and report on, a screening programme of their choice from any country.

Dissertation

The course will provide students with the opportunity to carry out an independent investigative project in the field of Medical Genetics and Genomics.

Teaching and Learning Methods

A variety of methods are used, including problem-based learning, case-based learning, lectures and tutorials. These are supplemented by a wide range of course-specific electronic resources for additional learning and self-assessment. As a result, you will develop a wide range of skills relevant to careers in clinical genetics. These skills include team-working and data interpretation. You will use the primary scientific literature as an information resource, although textbooks such as our own Essential Medical Genetics will also be useful. You will have the options of: attending genetic counselling clinics and gaining hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenicity of DNA sequence variants.

Career Prospects

This programme would be beneficial for anyone with a previous MBChB or similar degree, and would facilitate a career as a Clinical Geneticist.



Read less
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Read more
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

We offer supervision for MPhil in the following research areas:

Cancer genetics and genome instability

Our research includes:
-A major clinical trial for chemoprevention of colon cancer
-Genetic analyses of neuroblastoma susceptibility
-Research into Wilms Tumour (a childhood kidney cancer)
-Studies on cell cycle regulation and genome instability

Cardiovascular genetics and development

We use techniques of high-throughput genetic analyses to identify mechanisms where genetic variability between individuals contributes to the risk of developing cardiovascular disease. We also use mouse, zebrafish and stem cell models to understand the ways in which particular gene families' genetic and environmental factors are involved in the normal and abnormal development of the heart and blood vessels.

Complex disease and quantitative genetics

We work on large-scale studies into the genetic basis of common diseases with complex genetic causes, for example autoimmune disease, complex cardiovascular traits and renal disorders. We are also developing novel statistical methods and tools for analysing this genetic data.

Developmental genetics

We study genes known (or suspected to be) involved in malformations found in newborn babies. These include genes involved in normal and abnormal development of the face, brain, heart, muscle and kidney system. Our research includes the use of knockout mice and zebrafish as laboratory models.

Gene expression and regulation in normal development and disease

We research how gene expression is controlled during development and misregulated in diseases, including the roles of transcription factors, RNA binding proteins and the signalling pathways that control these. We conduct studies of early human brain development, including gene expression analysis, primary cell culture models, and 3D visualisation and modelling.

Genetics of neurological disorders

Our research includes:
-The identification of genes that in isolation can cause neurological disorders
-Molecular mechanisms and treatment of neurometabolic disease
-Complex genetics of common neurological disorders including Parkinson's disease and Alzheimer's disease
-The genetics of epilepsy

Kidney genetics and development

Kidney research focuses on:
-Atypical haemolytic uraemic syndrome (aHUS)
-Vesicoureteric reflux (VUR)
-Cystic renal disease
-Nephrolithiasis to study renal genetics

The discovery that aHUS is a disease of complement dysregulation has led to a specific interest in complement genetics.

Mitochondrial disease

Our research includes:
-Investigation of the role of mitochondria in human disease
-Nuclear-mitochondrial interactions in disease
-The inheritance of mitochondrial DNA heteroplasmy
-Mitochondrial function in stem cells

Neuromuscular genetics

The Neuromuscular Research Group has a series of basic research programmes looking at the function of novel muscle proteins and their roles in pathogenesis. Recently developed translational research programmes are seeking therapeutic targets for various muscle diseases.

Stem cell biology

We research human embryonic stem (ES) cells, germline stem cells and somatic stem cells. ES cell research is aimed at understanding stem cell pluripotency, self-renewal, survival and epigenetic control of differentiation and development. This includes the functional analysis of genes involved in germline stem cell proliferation and differentiation. Somatic stem cell projects include programmes on umbilical cord blood stem cells, haematopoietic progenitors, and limbal stem cells.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which include Animal Breeding & Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Linkage and Association in Genome Analysis
  • Genetics of Human Complex Traits
  • Quantitative Genetic Models
  • Statistics and Data Analysis
  • Research Project Proposal
  • Dissertation.

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Quantitative Genetic Models
  • Functional Genomic Technologies
  • Animal Genetic Improvement
  • Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to practical problems in the biomedical industry, and to undertake research in quantitative and population genetics and genome analysis.

  • A thorough understanding of general concepts in population and quantitative genetics and genomics
  • In-depth knowledge of complex trait genetics in humans
  • A solid grounding in the statistical methods required for quantitative biology
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
Accredited by the Institute of Biomedical Science, this programme is an ideal option if you wish to build a career as an NHS biomedical scientist or within bioscience research. Read more
Accredited by the Institute of Biomedical Science, this programme is an ideal option if you wish to build a career as an NHS biomedical scientist or within bioscience research.

About the programme

UWS has an established reputation for delivering advanced biomedical sciences education – utilising our successful links with local NHS and industry laboratories, we provide discipline-specific experts to complement the skills of the University’s School of Science and Sport teaching staff.

The programme aims to give you a balance of theory, practical skills and application of a range of techniques relevant to the biomedical sciences such as medical genetics, immunobiology, and disease pathology. Two optional modules are offered, which allow you to specialise in either blood sciences, infection or pathology. The research-orientated nature of the programme will also offer an additional option for those wishing to retrain for a career in the pharmaceutical and healthcare industries.

Practical experience

Work-based learning modules are available to part-time students completing the IBMS specialist portfolio as an alternative to the discipline-specific modules.

Your learning

The exit award of MSc is dependent on successful completion of 180 credits. Full-time students study three 20 credit modules in both Trimester 1 and 2 and a 60 credit research project in Trimester 3.

Core modules include:
• Genetic Analysis and Cancer
• Clinical Immunology
• Research Advances in BMS
• Disease, Detection, Monitoring and Therapy
• Research Design

You will also study a module in your chosen specialist discipline from:
• Blood Sciences
• Cell & Tissue Pathology

A taught module in the chosen discipline offers advanced understanding of the major systems and diseases with particular emphasis on laboratory diagnosis and research advances.

MSc

Upon successful completion of the taught modules you will undertake the MSc research project.

Professional recognition

Accredited by the Institute of Biomedical Science.

Our Careers Adviser says

The MSc is a good qualification for careers in bioscience research, or for those wishing to progress to further study (PhD). However, it is primarily aimed at those wishing to work or already working as biomedical scientists in the NHS, where an accredited MSc is integral to career progression.

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

Please note a February intake is available for students studying on a part-time basis

First-class facilities

Get the hands on experience you need to succeed. We have excellent specialist facilities which support our research students and staff. These include an advanced chemical analysis lab: with state-of-theart chemical analysis for isotopic and elemental analysis at trace concentrations using ICPMS/OES and the identification of organic compounds using LCMS; and the Spatial and Pattern Analysis (SPAR) lab: providing high specification workstations, geographical information system (GIS) software, geochemical and image processing facilities to support data management in science research.

Read less
The primary aim of this course is to train graduates interested in the clinical application of advances in human genetics and genomics so that they can provide and critically evaluate genetic and genomic counselling services. Read more
The primary aim of this course is to train graduates interested in the clinical application of advances in human genetics and genomics so that they can provide and critically evaluate genetic and genomic counselling services.

You will be given a thorough grounding in human genomics, genetics, genetic analysis and bioinformatics, in communication and counselling skills, and in the skills required for you to work as part of a multi-disciplinary team providing genetic and genomic counselling for families. 

The course is particularly suitable for students interested in pursuing a career as a genetic counsellor. It is designed to meet the UK Genetic Counsellor Registration Board (GCRB) Set ‘A’ educational requirement to submit a Notification of Intention to Register with the GCRB (see http://www.gcrb.org.uk/), as well as the European Board of Medical Genetics (EBMG Genetic Counsellors division) educational requirement to submit a Notification of Intention to Register with the EBMG.

Distinctive features:

The MSc in Genetic and Genomic Counselling is an innovative part-time, largely distance learning course.  Being a ‘blended learning’ course, this opens up our well established genetic counsellor training expertise to a European and international audience, as it removes the need for you to relocate to Cardiff for full time study to train as a genetic counsellor.  Instead, you will attend short intensive teaching blocks in Wales (UK) and engage in the online learning components throughout the remainder of each year.  Approved placement learning in your own location is also undertaken in year 2. 

We are committed to developing your practice in evidence-based genetic and genomic counselling, with a strong emphasis on preparing you to contribute to clinical and health services research in genetic and genomic counselling.  The programme team includes world-class researchers in genetic and genomic counselling and counselling skills are taught by an expert counsellor.

Structure

The MSc programme consists of two stages: The taught stage which lasts for a total of 24 months and the dissertation stage R which lasts for a further 12 months, following completion of the taught stages.  The total normal duration to complete the full MSc programme is three academic years, from the date of initial registration on the programme.

A placement module runs throughout Year 2 of the course.  This is supported by significant patient interaction.  Access to and concrete plans for your genetic counselling placement is a criterion for selection at interview. 

Core modules:

Introduction to Healthcare
Introduction to Genetic and Genomic Counselling
Counselling and Communication Skills
Research Methods
Introduction to Genetics, Genomics, Molecular Science and Bioinformatics
Applied Genetics and Bioinformatics in Clinical Care
Advanced Genetic and Genomic Counselling
Placement: Genetic and Genomic Counselling
Dissertation: Genetic and Genomic Counselling

Teaching

You will be taught through a combination of face-to-face and online lectures, tutorials, seminars, self-directed study and experiential learning on placement.

Lectures take a range of forms but generally they aim to provide a broad structure for each subject, to introduce key concepts, and to convey relevant up-to-date information.  In tutorials and seminars, you’ll have the opportunity to discuss particular genetic counselling and genomic counselling topics, to consolidate and receive feedback on your individual learning and to develop skills in oral presentation.  Tutorials will enable you to make individual contributions to group study, for example by summarising a particular genetic condition or your dissertation project for the group.

You will have the opportunity to practise and develop counselling, intellectual, team-working and presentational skills by participating in diverse learning activities, such as solving clinical problems, small-group discussions, debates, oral presentations, independent research tasks and written assignments as well as your practical placement activities in year 2. 

Assessment

You will be assessed through a combination of means including written work (blogs, essays), presentations, reflective pieces, video skills assessment and a dissertation.

Career Prospects

Career prospects for graduates with an appropriately accredited MSc in Genetic and Genomic Counselling are excellent.  In the UK and in the US, the demand for genetic counsellors has increased in recent years.  The US has seen, over the past 2—3 years, a rise in job postings from about 300/year (mirroring US graduate numbers) to over 600 in 2015.  Proportionately similar increases in job postings are being seen in the UK.  Graduates from existing UK MSc in Genetic (and Genomic) courses will be insufficient to meet the needs of the UK NHS over the next few years, as many UK genetic counsellors are approaching retirement.  The Transnational Alliance of Genetic Counsellors (a partnership of genetic counsellor educators from eighteen countries) have strongly emphasized the need for training more genetic counsellors to practice internationally, specifically across the EU, Asia and South America.

Read less
Have an impact on conservation. Learn how to address conservation management problems that are relevant to the world today. Find out more about the . Read more

Have an impact on conservation

Learn how to address conservation management problems that are relevant to the world today.

Find out more about the Master of Science parent structure.

With Massey’s Master of Science (Conservation Biology) you will learn to address real conservation management problems. You will work in a small-group setting and engage with staff of conservation agencies who are working, on the ground, to save our endangered native species.

The conservation biology programme has a strong emphasis on integrating theory with practice and teaching state-of-the-art analytical techniques, providing a good stepping-stone to PhD research as well as employment opportunities.

Work on real projects

You will have the opportunity to take part in multiple field projects - you will experience the reality of conservation work in New Zealand, all before you graduate. This gives you an advantage with potential employers.

Or you may choose to work on primarily analytical projects as part of your study, such as modelling population dynamics or ecosystems. Or you can focus on lab projects, involving genetic analysis, physiology, or post-mortem work.

Take advantage of our globally-renowned expertise

Let our experts help you develop your own expertise. You will learn from, and research with, highly-skilled internationally-recognised and active researchers in conservation and related areas, with a huge depth of knowledge and experience. Massey has strong research programmes in wildlife management, conservation genetics, and freshwater ecosystem management.

You will also be able to take advantage of Massey’s expertise across the sciences. We have a wide and relevant group of expertise within the university, from fundamental sciences like microbiology and biochemistry, to agriculture, ecology, zoology and environmental management. 

This means no matter what your research interest you will have access to a broad range of experts to assist you develop your own research.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.

Complete in 1.5 years

Massey University’s Master of Science is primarily a 180 credit master qualification. This is made up of 90 credits of taught courses and a 90 credit research project.

A 240 credit MSc is also available if you want to do more in-depth research.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
The practice of medicine, especially in the disciplines of Pathology and Genetics is increasingly reliant on Genomic technology. Read more

The practice of medicine, especially in the disciplines of Pathology and Genetics is increasingly reliant on Genomic technology. The aim of this programme is to increase the knowledge and capability of scientific and clinical staff using genetic data in their daily work allowing them to engage confidently with the scientific concepts of Molecular Pathology and Genomic Medicine, and to use their skills to improve patient care. The programme could also provide a foundation for those students interested in developing a clinical academic career.

The University of Edinburgh is at the forefront of Genomic Technology. To adequately realise the potential of these technologies in a diagnostic setting this programme will cover the scientific underpinning and clinical application of genomic technology to enable clinicians and scientists to provide maximum benefit to patients.

The programme will provide a structured environment for students wishing to develop cutting edge knowledge and practical skills in Clinical Genomics and Molecular Pathology. The programme structure is designed around three central themes: scientific foundation, diagnostics, and patient management and treatment.

Programme structure

The PG Cert is comprised of four compulsory courses, totalling 60 credits.

Students will learn via a mixture of guided online activities, in-person tutorials, and in course four, an extended project. In addition to structured learning, students are expected to conduct independent study and read around the subject area.

Students will develop their critical analysis skills through evaluation of primary research articles and reviews. Students will learn how to perform variant analysis and next generation sequencing data analysis using relevant bioinformatics tools. Students can also expect to develop the communication skills required for interacting with the major stakeholders of genomic information: clinical scientists, doctors and patients.

Teaching is performed by a variety of staff who are leaders in their field, as well as experienced educators. The core teaching team is comprised of staff from the NHS Lothian Clinical Genetics Service and Pathology departments. Additional teaching is performed by clinical and scientific staff from across Edinburgh University and the UK. In addition, the programme has a dedicated teaching teaching fellow, who will provide academic and pastoral support throughout all courses.

Postgraduate Professional Development (PPD)

Aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on the Postgraduate Certificate programme. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Postgraduate Certificate programme.

Learning outcomes

  1. Explain how genetic variation is involved in human disease and the development of cancer
  2. Critically evaluate molecular pathology diagnostics and select the appropriate diagnostic for disease stratification to determine patient treatment
  3. Analyse next generation sequence data in the context of germline mutations that cause human genetic disease, and somatic mutations involved in cancer
  4. Understand how genetic variation can be a major determinant of patient treatment and apply this knowledge to clinical scenarios in Genomic Medicine and Molecular Pathology

The programme will adopt a blended learning format, with teaching delivered via online as a eLectures and interviews, in-person tutorials, and online interactive content.

Programme materials and resources will all be available in the virtual learning environment, Learn. Learn provides an interactive forum for students to engage with other learners and the programme teaching staff. Multiple feedback opportunities will be integrated within each course and will comprise of weekly interactive online quizzes, discussion boards and office hours. In-person tutorials will also represent an important feedback opportunity for students. Assessment will vary slightly with each course, common assessment modalities include structured written assignments, presentations and data analysis reports.

Career opportunities

The programme is aimed primarily at NHS laboratory and clinical staff. It is designed for anyone wishing to expand their understanding of molecular pathology and how it applies to clinical diagnostics. The PG Cert will be of use to a wide range of individuals as it can be used to support FRC Path, Clinical Scientist Development and Genetic Technologist Registration. It can be used as a component of STP and could potentially contribute the first 60 credits of MSc. It will also provide the scientific underpinning for Genetic Counselling.



Read less
Within conservation science there is increasing recognition of the value of genetic data to support management decisions, however scientists and managers with the skills and knowledge to apply population genetic theory to conservation practice are lacking. Read more

Within conservation science there is increasing recognition of the value of genetic data to support management decisions, however scientists and managers with the skills and knowledge to apply population genetic theory to conservation practice are lacking. Within this arena, wildlife forensics is an exciting new field that is attracting increasing global attention in the fight against the illegal wildlife trade.

The Cert/Dip/MSc in Applied Conservation Genetics with Wildlife Forensics aims to provide a blend of theoretical and practical education in the application of genetic data to wildlife management and conservation law enforcement. The programme will cover all essential aspects, from population genetic theory, through data analysis, to the considerations involved in the interpretation and transfer of scientific findings to management, policy and criminal investigation.

Students will have the choice to specialise in either applied conservation genetics or wildlife forensics, with both options providing transferable scientific skills relating to knowledge acquisition and application, problem solving, science communication and decision making. The overall aim of the programme is to equip current and future wildlife professionals with the knowledge, skills and global networks to address modern challenges in conservation management and law enforcement.

The programme is designed as an institutional collaboration between the University of Edinburgh and SASA (Science and Advice for Scottish Agriculture), a government facility which houses the UK wildlife DNA forensics laboratory. Students will have a unique opportunity to learn from internationally recognised specialists in the application of genetic analysis to conservation management and wildlife forensics.

In addition, individual courses will engage a number of external tutors from local and international organisations with specific expertise in the subject matter. Course materials will based on actual examples from wildlife management projects and forensic casework.

Suitable participants include wildlife professionals interested in learning how DNA analysis can be applied to conservation management, from captive breeding programmes to reintroductions and natural population management.

The programme will also be appropriate for those working in wildlife law enforcement or wildlife policy sectors who want to understand how genetic data is now relied upon to inform conservation decision-making, trade regulation and criminal investigations.

As a comprehensive introduction to the fields of conservation genetics and wildlife forensics, the programme is will also provide a valuable stepping stone to students seeking to pursue an advanced scientific career in these fields.

Online learning

Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace.

Our online students not only have access to Edinburgh's excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Learning outcomes

Beyond gaining factual knowledge of the immediate subject matter, programme participation is designed to achieve a series of key learning outcomes:

Knowledge and Understanding

The student will be able to demonstrate a critical understanding of practical and ethical issues relating to the application of conservation genetics and wildlife forensics.

Practice: applied knowledge, skills and understanding

The student will be able to demonstrate how to plan, apply and interpret the outputs of appropriate research and forensic techniques.

Generic cognitive skills

The student will be able to analyse complex issues and identify solutions, even in the absence of complete or consistent information.

Communication, ICT, Numeracy Skills

The student will be able to communicate relevant scientific concepts and results, using appropriate methods, to a range of audiences with different levels of knowledge and expertise.

Autonomy, accountability and working with others

The student will be able to manage complex wildlife conservation and law enforcement issues and make or contribute to informed judgements that address current challenges in these fields.



Read less
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. Read more
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. It seeks to create, advance and apply computer/software-based solutions to solve formal and practical problems arising from the management and analysis of very large biological data sets. Applications include genome sequence analysis such as the human genome, the human microbiome, analysis of genetic variation within populations and analysis of gene expression patterns.

As part of the MSc course, you will carry out a three month research project in a research group in UCC or in an external university, research institute or industry. The programming and data handling skills that you will develop, along with your exposure to an interdisciplinary research environment, will be very attractive to employers. Graduates from the MSc will have a variety of career options including working in a research group in a university or research institute, industrial research, or pursuing a PhD.

Visit the website: http://www.ucc.ie/en/ckr33/

Course Detail

This MSc course will provide theoretical education along with practical training to students who already have a BSc in a biological/life science, computer science, mathematics, statistics, engineering or a related degree.

The course has four different streams for biology, mathematics, statistics and computer science graduates. Graduates of related disciplines, such as engineering, physics, medicine, will be enrolled in the most appropriate stream. This allows graduates from different backgrounds to increase their knowledge and skills in areas in which they have not previously studied, with particular emphasis on hands-on expertise relevant to bioinformatics:

- Data analysis: basic statistical concepts, probability, multivariate analysis methods
- Programming/computing: hands-on Linux skills, basic computing skills and databases, computer system organisation, analysis of simple data structures and algorithms, programming concepts and practice, web applications programming
- Bioinformatics: homology searches, sequence alignment, motifs, phylogenetics, protein folding and structure prediction
- Systems biology: genome sequencing projects and genome analysis, functional genomics, metabolome modelling, regulatory networks, interactome, enzymes and pathways
- Mathematical modelling and simulation: use of discrete mathematics for bioinformatics such as graphs and trees, simulation of biosystems
- Research skills: individual research project, involving a placement within the university or in external research institutes, universities or industry.

Format

Full-time students must complete 12 taught modules and undertake a research project. Part-time students complete about six taught modules in each academic year and undertake the project in the second academic year. Each taught module consists of approximately 20 one-hour lectures (roughly two lectures per week over one academic term), as well as approximately 10 hours of practicals or tutorials (roughly one one-hour practical or tutorial per week over one academic term), although the exact amount of lectures, practicals and tutorials varies between individual modules.

Assessment

There are exams for most of the taught modules in May of each of the two academic years, while certain modules may also have a continuous assessment element. The research project starts in June and finishes towards the end of September. Part-time students will carry out their research project during the summer of their second academic year.

Careers

Graduates of this course offer a unique set of interdisciplinary skills making them highly attractive to employers at universities, research centres and in industry. Many research institutes have dedicated bioinformatics groups, while many 'wet biology' research groups employ bioinformaticians to help with data analyses and other bioinformatics problems. Industries employing bioinformaticians include the pharmaceutical industry, agricultural and biotechnology companies. For biology graduates returning to 'wet lab' biology after completing the MSc course, your newly acquired skills will be extremely useful. Non-biology graduates seeking non-biology positions will also find that having acquired interdisciplinary skills is of great benefit in getting a job.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Genomics and Experimental Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics. This programme forms part of the quantitative genetics and genome analysis suite of programmes offering three specialist routes, which also include Human Complex Trait Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Statistics and Data Analysis
  • Linkage and Association in Genome Analysis
  • Animal Genetic Improvement
  • Quantitative Genetic Models
  • Research Proposal
  • Dissertation

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Functional Genomic Technologies
  • Evolutionary Quantitative Genetics

Learning outcomes

  • An understanding of general concepts in population and quantitative genetics and genomics
  • A solid grounding in the statistical methods required
  • In-depth knowledge of animal improvement and complex trait analysis
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which also include Animal Breeding & Genetics and Human Complex Trait Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Linkage and Association in Genome Analysis
  • Statistics and Data Analysis
  • Research Proposal
  • Dissertation

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Quantitative Genetic Models
  • Functional Genomic Technologies
  • Animal Genetic Improvement
  • Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to undertake research in evolutionary and quantitative genetics, population genetics and evolutionary genomics.

  • A thorough understanding of general concepts in population and quantitative genetics and genomics
  • In-depth knowledge of evolutionary genetics
  • A solid grounding in the statistical methods required for quantitative biology
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less

Show 10 15 30 per page



Cookie Policy    X