• University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
Durham University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Teesside University Featured Masters Courses
"general" AND "engineerin…×
0 miles

Masters Degrees (General Engineering)

We have 710 Masters Degrees (General Engineering)

  • "general" AND "engineering" ×
  • clear all
Showing 1 to 15 of 710
Order by 
This programme enables graduates and engineers to develop their technical knowledge and skills to meet the future demands of the construction industry. Read more
This programme enables graduates and engineers to develop their technical knowledge and skills to meet the future demands of the construction industry. It will give you the opportunity to develop your professional, analytical and management skills to an advanced level. It provides a broad, subject-specific curriculum with the chance to specialise through a variety of course options and an individual project. Topics for the project cover a variety of industrial applications and are inspired by the consultancy and research activities of academic staff. The programme is run by a team of research-active staff and is supported by world-class experimental facilities, including the largest concrete slab testing rig in Europe, geotechnical and hydraulics laboratories, and one of the largest environmental chambers in the country. This environment will provide you with unique support and enable you to undertake course-related activities that involve analytical and experimental tasks as well as computer simulations. Our staff work hard to support learning and are committed to student satisfaction. In return, we have received very positive feedback: No.1 in the UK for student satisfaction with the quality of teaching for civil engineering from the Complete University Guide 2016.

The Department of Engineering Science, part of the Faculty of Engineering & Science, has built strong links with local and national employers. We enjoy the support of an industrial board, a forum which enables us to constantly revise our programmes to reflect the changing needs of industry. Our students leave equipped with the skills and practical experience that employers value. We have invested in the very latest facilities and industry-standard equipment, so you will graduate with hands-on experience of the technology being used in the workplace. Many of our programmes are accredited or recognised by relevant professional bodies, which can widen your career options and increase your opportunities for career progression. Our success has been widely acknowledged.

The aims of the programme are:

- To enhance specialist knowledge in selected areas of civil engineering which build upon studies at the undergraduate level

- To develop a broader insight into aspects of civil engineering design

- To develop critical insight into broader management issues relating to civil engineering in particular and construction in general.

Visit the website http://www2.gre.ac.uk/study/courses/pg/engciv/civeng

Engineering - Civil

Our programmes offer graduates and engineers an opportunity to update technical knowledge and enhance skills to serve the future demands of the construction industry, to participate in professional development and to achieve career progression. The School of Engineering seeks to make the postgraduate experience both challenging and rewarding, and, by working closely with industry, strive to uphold our tradition of the high level of industrial relevance of our programmes.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Computer Modelling of Civil Engineering Problems (15 credits)
Highway Engineering (15 credits)
Principles of Management for Civil Engineering. (15 credits)
Analysis and Management of Risk in Civil Engineering (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)
Dynamics of Structures (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Materials Engineering for Construction (15 credits)
Water and Wastewater Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

Analysis and Design for Seismic Action (15 credits)
Advanced Geotechnical Engineering (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Computer Modelling of Civil Engineering Problems (15 credits)
Highway Engineering (15 credits)
Analysis and Management of Risk in Civil Engineering (15 credits)
Dynamics of Structures (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Principles of Management for Civil Engineering. (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Materials Engineering for Construction (15 credits)
Water and Wastewater Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

Analysis and Design for Seismic Action (15 credits)
Advanced Geotechnical Engineering (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

You will be assessed through examinations, case studies, assignments, practical work and a dissertation.

Professional recognition

This programme is accredited by the Joint Board of Moderators (comprising the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers) as fully satisfying the further learning requirement for chartered engineer (CEng) registration. An individual holding an accredited MSc must also hold a CEng-accredited honours degree to have the full exemplifying qualifications for CEng status.

Career options

You may join world-class engineering consultants, contractors and clients with established, accredited training programmes and continuing professional development opportunities worldwide.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643911

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
What's the Master of Biomedical Engineering about? . The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering. Read more

What's the Master of Biomedical Engineering about? 

The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering:

  • Biomechanics
  • Biomaterials
  • Medical sensors and signal processing
  • Medical imaging
  • Tissue engineering

The teaching curriculum builds upon the top-class research conducted by the staff, most of whom are members of the Leuven Medical Technology Centre. This network facilitates industrial fellowships for our students and enables students to complete design projects and Master’s theses in collaboration with industry leaders and internationally recognized research labs.

Biomedical engineers are educated to integrate engineering and basic medical knowledge. This competence is obtained through coursework, practical exercises, interactive sessions, a design project and a Master’s thesis project.

Structure

Three courses provide students with basic medical knowledge on anatomy and functions of the human body. The core of the programme consists of biomedical engineering courses that cover the entire range of contemporary biomedical engineering: biomechanics, biomaterials, medical imaging, biosensors, biosignal processing, medical device design and regulatory affairs.

The elective courses have been grouped in four clusters: biomechanics and tissue engineering, medical devices, information acquisition systems, and Information processing software. These clusters allow the students to deepen their knowledge in one particular area of biomedical engineering by selecting courses from one cluster, while at the same time allowing other students to obtain a broad overview on the field of biomedical engineering by selecting courses from multiple clusters.

Students can opt for an internship which can take place in a Belgian company or in a medical technology centre abroad. 

Through the general interest courses, the student has the opportunity to broaden his/her views beyond biomedical engineering. These include courses on management, on communication (e.g. engineering vocabulary in foreign languages), and on the socio-economic and ethical aspects of medical technology.

A design project and a Master’s thesis familiarize the student with the daily practice of a biomedical engineer.

International

The Faculty of Engineering Science at KU Leuven is involved in several Erasmus exchange programmes. For the Master of Science in Biomedical Engineering, this means that the student can complete one or two semesters abroad, at a number of selected universities.

An industrial fellowship is possible for three or six credits either between the Bachelor’s and the Master’s programme, or between the two phases of the Master’s programme. Students are also encouraged to consider the fellowship and short courses offered by BEST (Board of European Students of Technology) or through the ATHENS programme.

You can find more information on this topic on the website of the Faculty.

Strengths

The programme responds to a societal need, which translates into an industrial opportunity.

Evaluation of the programme demonstrates that the objectives and goals are being achieved. The mix of mandatory and elective courses allows the student to become a generalist in Biomedical Engineering, but also to become a specialist in one topic; industry representatives report that graduates master a high level of skills, are flexible and integrate well in the companies.

Company visits expose all BME students to industry. Further industrial experience is available to all students.

Our international staff (mostly PhD students) actively supports the courses taught in English, contributing to the international exposure of the programme.

The Master’s programme is situated in a context of strong research groups in the field of biomedical engineering. All professors incorporate research topics in their courses.

Most alumni have found a job within three months after graduation.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Career perspectives

Biomedical engineering is a rapidly growing sector, evidenced by an increase in the number of jobs and businesses. The Master of Science in Biomedical Engineering was created to respond to increased needs for healthcare in our society. These needs stem from an ageing population and the systemic challenge to provide more and better care with less manpower and in a cost-effective way. Industry, government, hospitals and social insurance companies require engineers with specialised training in the multidisciplinary domain of biomedical engineering.

As a biomedical engineer, you'll play a role in the design and production of state-of-the-art biomedical devices and/or medical information technology processes and procedures. You will be able to understand medical needs and translate them into engineering requirements. In addition, you will be able to design medical devices and procedures that can effectively solve problems through their integration in clinical practice. For that purpose, you'll complete the programme with knowledge of anatomy, physiology and human biotechnology and mastery of biomedical technology in areas such as biomechanics, biomaterials, tissue engineering, bio-instrumentation and medical information systems. The programme will help strengthen your creativity, prepare you for life-long learning, and train you how to formalise your knowledge for efficient re-use.

Careers await you in the medical device industry R&D engineering, or as a production or certification specialist. Perhaps you'll end up with a hospital career (technical department), or one in government. The broad technological background that is essential in biomedical engineering also makes you attractive to conventional industrial sectors. Or you can continue your education by pursuing a PhD in biomedical engineering; each year, several places are available thanks to the rapid innovation taking place in biomedical engineering and the increasing portfolio of approved research projects in universities worldwide.



Read less
Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management. Read more

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules

Structural Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering and Management Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for bridge analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
  • The ability to design bridge structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
  • The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
  • A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
  • A knowledge and understanding of the common and less common materials used in bridge engineering
  • A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
  • The ability to critically evaluate bridge engineering concepts
  • The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
  • The ability to understand the limitations of bridge analysis methods
  • A knowledge and understanding to work with information that may be uncertain or incomplete
  • A Knowledge and understanding of sustainable development related to bridges
  • The awareness of the commercial, social and environmental impacts associated with bridges
  • An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
  • A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills

  • The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
  • The ability to generate innovative bridge designs (B)
  • The ability to use theory or experimental research to improve design and/or analysis
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • Synthesis and critical appraisal of the thoughts of others;

Professional practical skills

  • The awareness of professional and ethical conduct
  • A Knowledge and understanding of bridge engineering in a commercial/business context
  • Ability to use computer software to assist towards bridge analysis
  • Ability to produce a high quality report
  • Ability of carry out technical oral presentations

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner
  • Collect and analyse research data
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more

The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

Why this programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
  • The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
  • This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
  • The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
  • You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

  • Applications of biomedical engineering
  • Biological fluid mechanics
  • Cellular biophysics
  • Energy in biological systems
  • Medical imaging
  • Statistics for biomedical engineering
  • MSc project.

Optional courses

  • Advanced imaging and therapy
  • Applied engineering mechanics
  • Bioinformatics and systems biology
  • Biomechanics
  • Biosensors and diagnostics
  • Microscopy and optics
  • Nanofabrication
  • Rehabilitation engineering
  • Scaffolds and tissues
  • Signal processing of bio-signatures
  • Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.



Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more

The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

Why This Programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
  • The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
  • This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
  • The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
  • You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

  • Applications of biomedical engineering
  • Biological fluid mechanics
  • Cellular biophysics
  • Energy in biological systems
  • Medical imaging
  • Statistics for biomedical engineering
  • MSc project.

Optional courses

  • Advanced imaging and therapy
  • Applied engineering mechanics
  • Bioinformatics and systems biology
  • Biomechanics
  • Biosensors and diagnostics
  • Microscopy and optics
  • Nanofabrication
  • Rehabilitation engineering
  • Scaffolds and tissues
  • Signal processing of bio-signatures
  • Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.



Read less
IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN. - Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces. Read more
IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN:

- Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces
- The essential underpinning knowledge that guides a range of projects, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures
- Practical skills in the design and drafting of engineering plans to international standards
- Skills in engineering management

KEY BENEFITS OF THIS PROGRAM:

- Receive practical guidance from civil and structural engineering experts with real world industry skills
- Gain credibility in your firm
- Develop new contacts in the industry
- Improve career prospects and income

Due to extraordinary demand we have scheduled another intake this year.

Start date: September 04, 2017. Applications now open; places are limited.

There are limited placed available so contact us now to speak to a Course Advisor.

INTRODUCTION

Join the next generation of senior civil and structural engineering experts. Embrace a well paid, intensive yet enjoyable career by taking this comprehensive and practical course. It is delivered over 24 months by live distance learning and presented by some of the leading civil and structural engineering instructors in the world today.

Civil and structural engineering encompasses a range of disciplines, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures. Civil and structural designers and drafters plan, design, develop and manage construction and repair projects.

This qualification develops your skills and knowledge in the design and drafting of engineering plans to recognised standards. You will learn about different areas of civil engineering, including construction, project management, design and testing. You will also learn about the design and drafting of concrete, steelwork, roads and pipes, as well as hydrology, stormwater drainage and foundations.

While it is essential that those who work in the supervisory or management levels of this discipline have a firm understanding of drafting and planning principles, this qualification goes much further. To be effective on the job, you will need to know how to apply knowledge of fundamental civil and structural engineering concepts, including geotechnical engineering, hydraulic engineering, engineering maths, and properties of materials. Throughout the program this subject matter will be placed into the context of engineering management. Our aim is to ensure that you are an effective, knowledgeable and skilled supervisor or manager, someone who can work beyond a “plan and design” brief to ensure that a project is delivered effectively.
This qualification aims to provide theoretical and practical education and training such that graduates may gain employment at the engineering associate (“paraprofessional”) level within the building and construction industry.

There are eight threads in the course to give you maximum, practical coverage. These threads comprise environmental issues, engineering technologies, drawing, 2D and 3D CAD design, building materials, civil and structural sub-disciplines (roads, steel, concrete, pavement, drainage, soil, water supply, sewerage), construction sites and engineering management.

This program avoids too much emphasis on theory. This is rarely needed in the real world of industry where time is short and immediate results, with hard-hitting and useful know-how, are required as a minimal requirement. The instructors presenting this advanced diploma are highly experienced engineers from industry who have done the hard yards and worked in the civil and structural areas. The format of presentation — live, interactive distance learning with the use of remote learning technologies — means that you can hit the ground running and be of immediate benefit to your company or future employer.

WHO SHOULD ATTEND?

Anyone who wants to gain a solid working knowledge of the key elements of civil and structural engineering that can be applied at the supervisory and paraprofessional level. See “Entrance Requirements”

This program is particularly well suited to students for who on-campus attendance is less desirable than the flexibility offered by online delivery. When work, family and general lifestyle priorities need to be juggled this world class program becomes an attractive option to many students world-wide.

- Site Supervisors
- Senior Trades Managers
- Trades Workers
- Construction Managers
- Maintenance Engineers or Supervisors
- Leading hands
- Consulting Engineers

Even those who are highly qualified in civil and structural engineering may find it useful to attend to gain practical know-how.

COURSE

This program is composed of 4 stages, delivered over 24 months. It is possible to achieve the advanced diploma qualification within the time period because the study mode is part-time intensive.

There are 8 threads around which the program is structured:

- Environmental issues
- Engineering technologies
- Drawing
- 2D and 3D CAD design
- Building materials
- Roads, steel, concrete, pavement, drainage, soil, water supply, sewerage
- Construction sites
- Engineering management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials

Polymer Processing

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Simulation Based Product Design

Aerospace Materials Engineering

Structural Integrity of Aerospace Metals

Ceramics

Environmental Analysis and Legislation

Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail. Read more

About the course

Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail.

Electronic Engineering provides a broad master’s-level study of some of the most important aspects of electronic engineering today. It builds on your undergraduate knowledge of core aspects of electronics, supported by a module in Engineering Business Environment and Energy Policies, which provides you with an understanding of the context of engineering in the early 21st Century.

The course embraces a number of themes in areas identified as being generally under-represented in many other courses, such as power electronics and electromagnetic compatibility, providing you with as wide a range of employment opportunities as possible – whether this is in industry or continuing in research at university.

The course has achieved accreditation by the Institution of Engineering and Technology (IET) to CEng level for the full five year period.

Reasons to study

• Accredited by the Institution of Engineering and Technology (IET) to CEng level
offering a streamlined route to professional registration

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Graduate employability
Our graduates have gone on to work in a variety of specialist roles in diverse industries, including; embedded systems, electronic design and biomedical monitoring

• Access to superb professional facilities
such as general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering

• Study a wide range of specialist modules
course content is regularly reviewed and modules have been specifically developed to address skills gaps in the industry

• Academic and research expertise
benefit from teaching by experienced academic and research-based staff, including those from DMU’s dedicated Centre for Electronic and Communications Engineering, who are actively involved in international leadership roles in the sector.Programme

Course Structure

First semester (September to January)

• Digital Signal Processing
• Physics of Semiconductor Devices
• Engineering Business Environment and Energy Policies
• Control and Instrumentation

Second semester (February to May)

• Embedded Systems
• Research Methods
• Electromagnetic Compatibility and Signal Integrity
• Power Electronics

Third semester (June to September)

This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and Assessment

Modules are delivered through a mixture of lectures, tutorials and laboratories. The methodology ensures a good balance between theory and practice so that real engineering problems are better understood, using strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend 4 hours of timetabled taught sessions each week for each module undertaken during term time, for full time study this would be 16 hours per week during term time. You are expected to undertake around 212 further hours of independent study per 30 credit modules. Alternate study modes and entry points may change the timetabled session available, please contact us for details.

Industry Accreditation

he course is fully accredited by the Institution of Engineering and Technology (IET) which is one of the world’s leading professional societies for the engineering and technology community, with more than 150,000 members in 127 countries.

IET accreditation recognises the high standard of the course and confirms the relevance of its content. In order to achieve IET accreditation the course has had to reach a certain standard in areas such as the course structure, staffing, resourcing, quality assurance, student support and technical depth.

The benefits of an IET accredited course include increased opportunities, being looked on favourably by employers and completing the first step in your journey to achieving professional Chartered Engineer (CEng) status which can be applied for following a period of suitable industrial experience after graduation.

This degree has been accredited by IET under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

You will have flexible access to our laboratories and workshops which include: electrical and electronic experimental facilities in general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering. Each area is equipped with the latest experimental equipment appropriate to the corresponding areas of study and research. An additional CAD design suite provides access to computing facilities with specialist electronics CAD tools including OrCAD and PSpice. A specialised area incorporating a spacious radio frequency reverberation chamber and Faraday cage allows for experimentation in radio frequency engineering and electromagnetics, while our digital design suite is equipped with the latest 8 and 32-bit embedded microprocessor platforms together with high-speed programmable logic development environments. Power generation and conversion, industrial process control and embedded drives are provided while our communications laboratory is additionally equipped for RF engineering.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
The environment has an increasingly significant impact on the way we produce materials, structures and generally, how we live. Our course aims to extend your understanding of the core disciplines of civil engineering with the added perspective of environmental factors. Read more

Why take this course?

The environment has an increasingly significant impact on the way we produce materials, structures and generally, how we live.

Our course aims to extend your understanding of the core disciplines of civil engineering with the added perspective of environmental factors. It takes into account the importance of issues such as pollution, public health and resource management which can affect the engineering process.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Gain experience of environmental assessment techniques plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Government agencies
Environmental organisations
Consultancy
Project management

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to social, economic and environmental issues.

Here are the units you will study:

Environmental Management for Civil Engineering: This unit introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study the integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Environmental Engineering Design Project: This unit gives you an opportunity to simulate the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: In this unit you will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

This course is designed to equip you with knowledge and skills that employers in the construction industry expect. Alongside the technical topics, you will develop commercial and interpersonal skills required of construction industry professionals.

This course will also equip you for the real-world challenges within the specialist field of environmental engineering. You will have a specific understanding of environmental considerations within civil engineering projects enabling you to propose and implement environmentally sustainable solutions. You can expect to find roles within areas such as environmental and sustainability assessment, waste management, regulation and consultancy to name a few.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
This course is suited to those with an eye for materials, material structure and material mechanics. Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. Read more

Why take this course?

This course is suited to those with an eye for materials, material structure and material mechanics.

Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. From ground investigations to soil structure testing, you will gain the analytical and technical skills required to make informed decisions when faced with the complex geotechnical problems of construction projects.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Gain experience of environmental assessment techniques plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Mining companies
Petroleum companies
The military
Consultancy

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to related geotechnical factors.

Here are the units you will study:

Environmental Management for Civil Engineering: This unit introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Geotechnical Engineering Design Project: This unit gives you an opportunity to simulate the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: You will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

This course is designed to equip you with knowledge, skills and competencies that employers in the construction industry expect. Alongside the technical topics, you will develop commercial and interpersonal skills required of construction industry professionals.

There is currently a huge demand for geotechnical engineering specialists within the civil engineering sector. This fact, combined with the vocational nature of this course and the extensive training you will receive, means that you are likely to quickly find employment in the industry. Potential roles will include geotechnical engineers, mining engineers and tunnelling engineers for major mining companies, as well as environmental and geotechnical consultancies.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
As large structures dominate our skylines and our infrastructure is of utmost necessity, it is important that we have professionals who are equipped to manage and develop the modern world that we live in. Read more

Why take this course?

As large structures dominate our skylines and our infrastructure is of utmost necessity, it is important that we have professionals who are equipped to manage and develop the modern world that we live in.

Our course aims to extend your understanding of the core disciplines of civil engineering and provides an in-depth insight into the current design and construction practices for structural engineering works.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Apply your skills to real-life practical problems as part of our partnership schemes with local and global organisations
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might ti lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Structural engineering
Construction
Consultancy
Project management

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to the reliability and safety of structural designs.

Here are the units you will study:

Environmental Management for Civil Engineering: This introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Structural Engineering Design Project: This unit gives you an opportunity for simulating the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: You will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

In an uncertain and increasingly competitive environment, the civil engineer is required to develop a wide range of skills and abilities to stay abreast of current industrial needs. Therefore, this course is designed to equip you with knowledge, skills and competencies that employers in the construction industry expect. Alongside the technical topics, we will introduce you to commercial and interpersonal skills that illustrate the employment context of construction industry professionals.

From roads and bridges to skyscrapers and airports, as a qualified civil engineer with specialist expertise in the area of structural engineering, your knowledge and skills will be in high demand for a huge variety of large-scale building projects.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
The University of British Columbia Geological Engineering programme is a postgraduate course awarding a research-based Master of Applied Science or a taught Master of Engineering. Read more

The University of British Columbia Geological Engineering programme is a postgraduate course awarding a research-based Master of Applied Science or a taught Master of Engineering.

Students complete training and research projects according to their qualification pathway.

Program Overview

The Geological Engineering Program is intended for students interested in the application of earth sciences principles to engineering problems. While most geological engineering degree programs are based in the Department of Earth, Ocean and Atmospheric Sciences, students may also base their studies in allied Applied Science departments such as Civil or Mining Engineering. The program is highly interdisciplinary and draws upon courses, laboratories, and faculty members from the departments of Earth, Ocean and Atmospheric Sciences, Civil Engineering, Mining Engineering, Forestry, Geography, and others. Graduate students are often co-supervised by faculty members from different departments.

Geological engineering faculty members in the Department of Earth, Ocean and Atmospheric Sciences have research interests in the following general areas:

- landslides, debris flows, engineering geology, slope stability

- groundwater hydrology, groundwater contamination and remediation, reactive transport modeling, environmental geochemistry

- rock engineering, rock slopes, and tunneling

Other research areas include geotechnical engineering, environmental geology, engineering geology, economic geology, and applied geophysics. The specific fields of study may involve geomorphology and terrain analysis, groundwater hydrology, natural hazards, slope stability, petroleum and coal geology, coalbed methane, mineral prospecting and valuation, and other similar subjects. Students are encouraged to consult individual faculty members for information about current research areas.

Admission to graduate studies in geological engineering is open only to students with an undergraduate degree in engineering or, at the discretion of the program director, to students with sufficient engineering work experience.

Quick Facts

- Degree: Master of Applied Science (research-based), Master of Engineering (course-based, 1 year)

- Specialization: Geological Engineering

- Subject: Engineering

- Mode of delivery: On campus

- Faculty: Faculty of Science

Funding

The following postgraduate funding may be available to study Geological Engineering at the University of British Columbia.

Canadian postgraduate funding

Funding from FindAMasters:



Read less
This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. Read more

This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. The programme combines traditional lectures with group projects and an individual research project in the student's chosen specialist field. The Civil Engineering MSc at UCL now offers six additional routes.

About this degree

Students develop advanced knowledge of civil engineering and associated engineering and scientific disciplines (structure dynamics, sustainable building design, transport, fluids, geotechnics, water and drainage, environmental and coastal engineering, planning and construction). They gain awareness of the context in which engineering operates, in terms of design, construction and the environment, alongside transferable skills, which leads to careers in industry and research.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits), and a research project (60 credits).

Core modules

  • Advanced Soil Mechanics
  • Advanced Structures
  • Roads and Underground Infrastructure
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project, which culminates in a dissertation of approximately 12,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering MSc

Careers

There are excellent employment prospects for our graduates. Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting multidisciplinary department with a tradition of excellence in teaching and research, situated within the heart of London.

This MSc reflects the broad range of expertise available within the department and its strong links with the engineering industry and places emphasis on developing skills within a teamwork environment. The programme provides a clear route to a professional career in civil engineering.

In addition, students wishing to combine the general MSc in Civil Engineering can now apply to one of six specialist pathways in related disciplines (Seismic Design, Environmental Systems, GIS, Surveying, Integrated Design and Infrastructure Planning).

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of integrated design.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of integrated design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of one core module, (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, one core module (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Integrated Design Project

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Integrated Design) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of seismic design.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of seismic design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Seismic Design of Structures
  • Structural Dynamics
  • Seismic Loss Mitigation
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Seismic Design) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X