• Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Southampton Featured Masters Courses
Middlesex University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Cranfield University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Pennsylvania Featured Masters Courses
"gas" AND "processing"×
0 miles

Masters Degrees (Gas Processing)

We have 55 Masters Degrees (Gas Processing)

  • "gas" AND "processing" ×
  • clear all
Showing 1 to 15 of 55
Order by 
Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. Read more

Course Description

Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. This course is designed for those seeking a career in the design, development, operations and maintenance of power and propulsion systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. The course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- S-duct aerodynamic shape multi-objective optimisation
- Performance modelling of evaporative gas turbine cycles for marine applications
- Mechanical integrity/stress analysis of the high pressure compressor of a new engine
- High pressure turbine blade life analysis for a civilian derivative aircraft conducting military operations
- Engine performance degradation due to foulants in the environment
- Effects of manufacturing tolerances on gas turbine performance and components
- Development of a transient combustion model
- Numerical fan modelling and aerodynamic analysis of a high bp ratio turbofan engine
- Combustor modelling
- Impact of water ingestion on large jet engine performance and emissions
- Windmilling compressor and fan aerodynamics
- Neural networks based sensor fault diagnostics for industrial gas turbine engines
- Boundary layer ingestion for novel aircraft
- Multidisciplinary design optimisation for axial compressors
- Non-linear off design performance adaptation for a twin spool turbofan engine
- Engine degradation analysis and washing effect on performance using measured data.

Modules

The taught programme for the Gas Turbine Technology masters consists of seven compulsory modules and up to seven optional modules. The modules are generally delivered from October to April.

Core -

Blade Cooling
Combustors
Engine Systems
Gas Turbine Theory and Performance
Mechanical Design of Turbomachinery
Gas Turbine Simulation and Diagnostics
Turbomachinery

Optional -

Computational Fluid Dynamics
Fatigue and Fracture
Gas Turbine Applications
Jet Engine Control (only October intake)
Management for Technology
Propulsion Systems Performance and Integration
Rotating Equipment Selection

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Gas-Turbine-Technology-option-Thermal-power

Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in E & I oil and gas engineering. Read more
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in E & I oil and gas engineering
- Tremendous boost to your E & I oil and gas career – no matter whether you are a new graduate or a technician
- Decades of real experience distilled into the course presentations and materials
- Guidance from real E & I oil and gas experts in the field
- Hands-on practical knowledge from the extensive experience of instructors, rather than the theoretical information from books and colleges
- Credibility as the local expert in E & I oil and gas
- Networking contacts in the oil and gas industry
- Improved career prospects and income
- An Advanced Diploma in Electrical & Instrumentation Engineering for Oil and Gas

Next intake is scheduled for September 26, 2017. Applications are now open; places are limited.

INTRODUCTION

There is a growing shortage, and hence opportunity, for Electrical and Instrumentation (E & I) technicians, technologists and engineers in the oil and gas industry. This is due to an increasing need for higher technology methods of obtaining and processing oil and gas as it is a finite declining resource. The technical challenges of extracting oil and gas are becoming ever more demanding, with increasing emphasis on more marginal fields and previously inaccessible zones such as deep oceans, Polar regions, Falkland Islands and Greenland. The aim of this 18-month e-learning program is to provide you with core E & I engineering skills so that these opportunities may be accessed, to enhance your career, and to benefit your firm.

This advanced diploma is presented by lecturers who are highly experienced engineers from industry, having 'worked in the trenches' in the various E & I engineering areas. When doing any course today, a mix of both extensive experience and teaching prowess is essential. All our lecturers have been carefully selected and are seasoned professionals.

This advanced diploma course provides a practical treatment of electrical power systems and instrumentation within the oil, gas, petrochemical and offshore industries. Whilst there is some theory this is used in a practical context giving you the necessary tools to ensure that the Electrical and Instrumentation hardware is delivering the results intended. No matter whether you are a new electrical, instrumentation or control technician/technologist/graduate engineer or indeed, even a practicing facilities engineer, you will find this course beneficial in improving your understanding, skills and knowledge of the whole spectrum of activities ranging from basic E & I engineering to advanced practice including hazardous areas, data communications along with a vast array of E & I equipment utilized in an oil and gas environment.

WHO SHOULD COMPLETE THIS PROGRAM?

This program would be ideal for you if you are seeking to get know-how and expertise in the oil and gas business and are an:

- Instrument and process control technician or technologist
- Instrument fitter
- Chemical or mechanical engineer
- Electrical engineer currently working in a different area to oil and gas
- Experienced electrician
- A recent graduate electrical, instrumentation or mechanical engineer

Even if you are highly experienced you will find this a great way to become familiar with the oil and gas technology as quickly as possible.

COURSE CONTENT

The valuable oil and gas program has five main streams:

- Electrical engineering
- Instrumentation and Control engineering
- General Oil and Gas engineering
- Subsea Instrumentation and Control
- Floating Production, Storage and Offloading (FPSO) Facilities

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
This course aims to equip you with sector specific oil and gas engineering, technology and operational skills to succeed in this competitive environment. Read more
This course aims to equip you with sector specific oil and gas engineering, technology and operational skills to succeed in this competitive environment.

WHY CHOOSE THIS COURSE?

The oil and gas industry is continuously developing and is therefore both recognised and expected to remain as a major contributor to the economy of many developed and developing regions as it continues to be driven not only by new oil and gas discoveries, but by a constant demand to find newer, safer, more efficient and cost-effective ways of extracting resources. Whilst exploration continues to identify major oil and gas finds across the world, these are increasingly less accessible and require complex engineering solutions to deliver effective operations and supply. Additionally, the significant and rising operating costs of existing installations are driving the sector to seek suitably qualified engineers are able to support operations and initiate improvements within the four main strands of oil and gas facilities: offshore, onshore, sub-sea and pipelines.

This course will provide you with specialist education in oil and gas engineering and help to equip you with the theoretical and practical knowledge and skills required by the industry to solve and manage oil and gas engineering problems and complexities and to optimise existing processes to deliver increased efficiencies.

The global nature of the industry offers significant scope for graduates to have an incredibly varied career spanning international borders. This course is designed to allow you to develop the knowledge and skills for a wide range of professional opportunities in national and multinational oil and gas companies and consultancies.

WHAT WILL I LEARN?

A wide range of subjects are available, giving you a multidisciplinary approach to oil and gas engineering.

Modules
-Durability, Reliability and Sustainability
-Engineering Materials for the Oil and Gas Sector
-Fluid Flow Systems including Distribution and Transmission
-Control Systems and Instrumentation for the Oil and Gas Industry
-Petroleum Processing and Gas Technologies
-Drilling and Production Technology
-Health, Safety and Environmental Management in the Oil and Gas Industry
-Project Management
-Study Skills and Research Methods
-Research or Industry Sponsored Project

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

This course has been developed with industry experts and aims to provide you with technical capability alongside analytical and creative skills to have a successful career in the oil and gas industries. Throughout the course you will find yourself working on current industry-based problems, providing you with the opportunity to gain additional skills and experience. The course will keep you up to date with current events and the latest, leading-edge industry thinking through opportunities to visit facilities and hear from leading industry figures. These visits are a great way to network with potential employers.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. Read more
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. The programme was a result of emerging research from the Centre for Process Integration, initially focused on energy efficiency, but expanded to include efficient use of raw materials and emissions reduction. Much of the content of the course stems from research related to energy production, including oil and gas processing.

The MSc in Advanced Process Integration and Design aims to enable students with a prior qualification in chemical engineering to acquire a deep and systematic conceptual understanding of the principles of process design and integration in relation to the petroleum, gas and chemicals sectors of the process industries.

Overview of course structure and content
In the first trimester, all students take course units on energy systems, utility systems and computer aided process design. Energy Systems develops systematic methods for designing heat recovery systems, while Utility Systems focuses on provision of heat and power in the process industries. Computer Aided Process Design develops skills for modelling and optimisation of chemical processes.

In the second trimester, the students choose three elective units from a range covering reaction systems, distillation systems, distributed and renewable energy systems, biorefining, and oil and gas processing. These units focus on design, optimisation and integration of process technologies and their associated heat and power supply systems.

In two research-related units, students develop their research skills and prepare a proposal for their research project. These units develop students skills in critical assessment of research literature, group work, written and oral communication, time management and research planning.

Students then carry out the research project during the third trimester. In these projects, students apply their knowledge and skills in process design and integration to investigate a wide range of process technologies and design methodologies. Recent projects have addressed modelling, assessment and optimisation of petroleum refinery hydrotreating processes, crude oil distillation systems, power plants, waste heat recovery systems, refrigeration cycles with mixed refrigerants, heat recovery steam generators, biorefining and biocatalytic processes and waste-to-energy technologies.

The course also aims to develop students' skills in implementing engineering models, optimisation and process simulation, in the context of chemical processes, using bespoke and commercially available software.

Industrial relevance of the course
A key feature of the course is the applicability and relevance of the learning to the process industries. The programme is underpinned by research activities in the Centre for Process Integration within the School. This research focuses on energy efficiency, the efficient use of raw materials, the reduction of emissions reduction and operability in the process industries. Much of this research has been supported financially by the Process Integration Research Consortium for over 30 years. Course units are updated regularly to reflect emerging research and design technologies developed at the University of Manchester and also from other research groups worldwide contributing to the field.

The research results have been transferred to industry via research communications, training and software leading to successful industrial application of the new methodologies. The Research Consortium continues to support research in process integration and design in Manchester, identifying industrial needs and challenges requiring further research and investigation and providing valuable feedback on practical application of the methodologies. In addition, the Centre for Process Integration has long history of delivering material in the form of continuing professional development courses, for example in Japan, China, Malaysia, Australia, India, Saudi Arabia, Libya, Europe, the United States, Brazil and Colombia.

Career opportunities

The MSc course in Advanced Process Design and Integration typically attracts 40 students; our graduates have found employment with major international oil and petrochemical companies (e.g. Shell, BP, Reliance and Petrobras and Saudi Aramco), chemical and process companies (e.g. Air Products), engineering, consultancy and software companies (e.g. Jacobs and Aspen Tech) and academia.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).

Read less
The future exploration and development of Oil and Gas will increasingly move towards offshore drilling and production. This will involve drilling and production rigs, vessels and infrastructure. Read more
The future exploration and development of Oil and Gas will increasingly move towards offshore drilling and production. This will involve drilling and production rigs, vessels and infrastructure.

Offshore Oil and Gas Engineering activity is increasing all around the world and graduates from this course will have a particular focus on operations in the ocean, processing, pipelines, subsea systems, materials and corrosion. This course is particularly designed for those wishing to move into the Oil and Gas Industry who may not have previous detailed oil and gas knowledge or industry experience.

Another related complementary course is our MSc Oil and Gas Engineering which has more focus in stage 2 on well completions, project management, risk and the environment. An advantage of these two courses is that they are designed to have the same first four stage 1 modules introducing the Oil and Gas industry so that students, having gained more understanding of the industry, can compare the courses and swap between courses during stage 1, as they decide which course they would prefer to follow in stage 2. This flexible approach offers students the advantage of more choice during their study.

Each module comprises up to 52 hours of lectures and tutorials. Significant additional private study is expected during each module.

Visit the website https://www.rgu.ac.uk/engineering/study-options/postgraduate/offshore-oil-and-gas-engineering-masters

Stage 1

• Subsurface
• Wells
• Facilities
• Business Essentials

Exit award: PgCert Oil and Gas Engineering

Stage 2

• Materials and Corrosion
• Processing and Pipelines
• Oceans, Operability & Humans in the Ocean
• Subsea Systems

Exit award: PgDip Offshore Oil and Gas Engineering

Stage 3

• Individual Project Report

Award: MSc Offshore Oil and Gas Engineering

Placements and accreditations

This course is not yet accredited with any Institute. However, we will be seeking accreditation from the Energy Institute once a full cohort of students has completed the course.

Careers

This course provides the knowledge required for a range of professional careers within the offshore oil and gas industry.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
The skills and competencies of the global oil and gas manager are key to ensuring a safe and effective workforce and to provide safe and reliable oil and gas extraction. Read more
The skills and competencies of the global oil and gas manager are key to ensuring a safe and effective workforce and to provide safe and reliable oil and gas extraction. In global exploration and production networks there is a clear need for managers who are trained in the latest techniques and practices in the field of the global oil and gas environment. The needs of the industry, technology and work practices are ever-changing. Consequently, it is vital that all their training reflects the changes in the business.

This postgraduate degree programme provides a global perspective on these issues and also a high quality of delivery from subject matter experts, from both industry and academia. The programme also features software products and computer-based training from market leaders in the relevant subject areas.

The aims of the programme are:

- To provide students with an enhanced base of knowledge of current and reflective practices necessary to initiate or further a career in global oil and gas management

- To develop an advanced insight into global oil and gas management commercial environment and requirements

- To develop critical insight into management issues relating to the global oil and gas business.

Visit the website http://www2.gre.ac.uk/study/courses/pg/enggen/oil-mgt

What you'll study

Compulsory modules:

Strategy and management
Research methodology
Individual project

Programme specific modules

Processing, storage & transportation of oil and gas; alternative sources of energy
Energy and commodities trading: practice and legal frameworks
Maritime economics and global business management
Economics, accounting and finance for the energy sector
Environmental engineering
Supply chain management

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Assessment methods include examinations, coursework and a project.

Specialist equipment/facilities

Students will have access to existing online resources such as Moodle, emails, library online resources, IEEEXplore, databases, Web of Knowledge, and Scopus.

Professional recognition

Accreditation will be sought for the programme. It is strongly anticipated that this programme will have a minimum of 2 accrediting professional bodies.

Career options

The oil and gas industries provide a wide range of career opportunities across the globe. Some are offshore, working directly out on the rigs drilling for oil and gas and on fixed installation oil and gas production platforms as part of the extraction process. Other roles are in commercial activities working onshore, such as in buying and selling oil and gas or as part of the legal teams setting up contracts.

Careers and employability

FACULTY OF ENGINEERING & SCIENCE
We work with employers to ensure our degrees provide students with the skills and knowledge they need to succeed in the world of work. They also provide a range of work experience opportunities for undergraduates in areas such as civil engineering, manufacturing and business information technology.

Students also benefit from the services provided by the university’s Guidance and Employability Team, including ‘JobShop’, mentoring, volunteering and the student ambassador scheme.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The Placement Course for Professional Engineers in the Construction Infrastructure and Oil & Gas sectors aims to train engineers to become managers in Construction and Oil & Gas Companies who are able to manage business processes and construction site procedures. Read more
The Placement Course for Professional Engineers in the Construction Infrastructure and Oil & Gas sectors aims to train engineers to become managers in Construction and Oil & Gas Companies who are able to manage business processes and construction site procedures.

The Placement Course for Professional Engineers Construction and Oil & Gas Sectors is accredited by CPD Certification Service in London. Accredited CPD training means the learning activity has reached the required Professional Development standards and benchmarks. The learning value has been scrutinised to ensure integrity and quality. The CPD Certification Service provides recognised independent CPD accreditation compatible with global CPD requirements.

The Course is delivered with the support of Multinational Companies operating worldwide

Dirextra has more than 2,300 alumni engineers who have worked on the construction of major infrastructures around the world. There is no growth without engineers.

6 months (1000 hours) of training on a Construction or Oil & Gas Site. Accommodation will be provided by the host company. (not applicable to positions in the office headquarters).

Kick-start your career with a programme in Construction and Oil & Gas. Dirextra is a leader in the field of Construction Infrastructure, Oil & Gas and Engineering education.

EMPLOYMENT OPPORTUNITIES
The programme is supported by large Oil & Gas and Construction Infrastructure Companies operating all over the world aiming to hire young engineers.
100% successful placement in previous cohorts.

Next editions
27th cohort will start in Rome on 26 Sep 2017
28th cohort will start in Manchester on 26 Feb 2018

Fees and Financing
Tuition fees £ 12,000. (pounds).
Payment can be made in the following ways:
-in total at the time of registration (discount of £ 1,000 (pounds)
-in 4 installments
The Construction and Oil & Gas Companies sponsoring our Programme grant Scholarships to cover part of Tuition Fees.
6 scholarship up to 40% and 4 scholarship up to 30%.

Scholarships are limited students who register in advance will receive a higher amount based on selection performance.
Selection will be determined by qualifications and psychometric tests and interviews.

Programme and Certification acquired
Organization of Construction Companies and Strategies;Organization of Oil&Gas Companies and Strategies;Administration, Management Control and Finance;Tenders Department;Contract Management: from signature to testing;Standard Contract Forms and Claims;Procurement and Risk Management;Construction Project Management;Planner Primavera P6;Managerial Accounting;Cost Control;Technical Management of Construction Site;Management Control and Budget;Quality Management System of Construction Sites;Environmental Management of Construction Sites;Health and Safety Management of Construction Sites;Management of Claims, Litigation and Arbitration;Drilling Engineering of Wells;People Management;Plant Production and Processing of Hydrocarbons;Excavated Rocks and Fluids in the Subsurface.
Certification Acquired:
1. Master’s Degree in Professional Engineers Construction and Oil&Gas Sector
2. Mini Master Construction Planner: Oracle Primavera P6 EPPM. 24 PMI Contacts Hours (24h)
3. Mini Master Construction Cost Control. 16 PMI Contacts Hours (16h)
4. Construction Business English Course (40h).
5. Construction CAPM Course. 40 PMI Contacts Hours (40h)

Read less
This course is ideal if you are intending to pursue a management career in the oil and gas industry, or if you are already working in the sector and would like to develop management skills and knowledge at master’s level. Read more
This course is ideal if you are intending to pursue a management career in the oil and gas industry, or if you are already working in the sector and would like to develop management skills and knowledge at master’s level. Graduates from a range of technical, non-technical and commercial backgrounds are eligible to apply.

Course details

These courses broaden your technical skills in essential areas directly relevant to the oil and gas sector. It has several optional themes to direct you into specialist areas of knowledge such as project management, economics and finance, international human resources management, and environmental management. The 60-credit dissertation module allows you to conduct a supervised research project developing original knowledge in a specific area of oil and gas management. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location to study this field. The oil and gas industry is well represented with a range of internationally recognised companies operating in the region.

The programme structure is divided into a combination of 10 and 20-credit taught modules delivered over two semesters. Following successful completion of these modules, you proceed to a 60-credit research project.

This course is currently subject to University approval.

What you study

For the postgraduate diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Core modules
-Global Oil and Gas Industry
-Oil and Gas Economics and Contracts
-Practical Health and Safety Skills
-Project Management and Enterprise
-Quality Health Safety and Environment
-Research and Study Skills

Project management options
-Quality and Supply Chain Management
-Risk Management in Projects

Economics and finance options
-Global Environment and Strategy
-Managing Operations and Finance

International HR management options
-Managing Change
-Managing People in Organisations

Energy and environment options
-Economics of Climate Change
-Global Energy Policy

MSc only
-Research Project

Modules offered may vary.

Teaching

The course is delivered through a series of lectures, tutorials and computer laboratory sessions. The course is jointly delivered by the School of Science & Engineering and the School of Social Sciences, Business & Law.

Lectures convey substantial elements of the subject content, provide explanations of complex concepts, and set the scene for your independent learning.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth.

Some of the modules require specialised technical software and practical computer-based sessions are timetabled. You are supported in technical modules by excellent laboratory and computing facilities.

Coursework may include technical reports, analysis and design calculations, essays, project and design exercises and verbal presentations. Some of the modules are assessed by formal examinations.

Employability

The course equips you with the relevant technical skills to pursue a career as technical manager in the oil and gas sector in consultancies, contracting companies and government organisations.

Read less
Oil and gas remains one of our major energy resources and the recovery of these resources is increasingly important, just as it was in the last century. Read more

Overview

Oil and gas remains one of our major energy resources and the recovery of these resources is increasingly important, just as it was in the last century. What has changed with time is the need to recover more of the reservoir, operating in harsher environments both physically and economically. Equally there are challenges due to changes in knowledge and the relative lack of experience from engineers in the market. Traditionally in the UK, the vast majority of engineers entering the industry do so through two routes; first as facilities or surface engineers - chemical and process, mechanical and electrical engineering working on the processing systems to stabilise fluid from the reservoir. The second route is through the petroleum engineering or sub-surface engineering route which sees engineers develop knowledge and skills necessary to locate, drill and extract oil and gas reserves.

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-oilandgas-technology/ ) was been designed with the help of the industry to provide a cross over between surface and sub-surface engineering functions with the intent that future oil and gas operations can be better optimised to enhance recovery of the reserves. In order to maximise recovery, surface engineers in an operating company must communicate effectively with the reservoir and production engineers within their own company as well as develop relationships with and assess the work of contractors and vendors when designing and constructing facilities. Therefore, surface engineers need to be competent not only in the areas of process design, pipeline engineering, but also be familiar with reservoir engineering, production technology and a variety of other engineering and management subjects, such as safety and control, management of projects, economics and planning, etc.

The programme contains 8 taught courses covering key topics in surface and sub-surface engineering. Two projects towards the end of the programme provide opportunities for participants to demonstrate their knowledge in the design of a surface facility, and to study a specific topic of interest.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Oil and Gas Technology. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

For the MSc and PGDip degrees, students are required to take eight taught courses. MSc students then complete the programme by undertaking two 30 credit projects.

Find more information on programme content here http://www.postgraduate.hw.ac.uk/prog/msc-oilandgas-technology/

English language requirements

If you are not from a UKBA recognised English speaking country, we will need to see evidence of your English language ability. If your first degree was taught in English a letter from them confirming this will be sufficient. Otherwise the minimum requirement for English language is IELTS 6.5 or equivalent, with a minimum of 5.5 in each skill.

The University offers a range English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)
- 3 weeks English refreshers course (for students who meet the English condition for the MSc but wish to refresh their English skills prior to starting).

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-oilandgas-technology/

Read less
IN BRIEF. Flexible but rigorous period of study for graduates working in, or intending to work in, the natural gas/oil industry. Accredited by the Institution of Gas Engineers and Managers (IGEM). Read more

IN BRIEF:

  • Flexible but rigorous period of study for graduates working in, or intending to work in, the natural gas/oil industry
  • Accredited by the Institution of Gas Engineers and Managers (IGEM)
  • Excellent employment prospects
  • Part-time study option
  • International students can apply

COURSE SUMMARY

A comprehensive range of subjects is studied covering the whole spectrum of natural gas engineering, providing a sound base from which to select an area of specialised study.

You may also be eligible for membership of the Gas Engineering and Management Institute and subsequently become a Chartered Engineer. Alternatively you may wish to continue your studies to PhD level, researching gas engineering or other related subjects available within the School of Computing, Science & Engineering.

COURSE STRUCTURE

Duration:

September intake

MSc (one year full-time or two years part-time)

PgDip (nine months full-time or one year and six months part-time)

January intake

MSc (one year and four months full-time or two years and eight months part-time)

PgDip (one year full-time or two years part-time)

TEACHING

Teaching will take the form of traditional lectures in a class room, with PowerPoint presentations and videos and reference to laboratory work, demonstrations, workshops and tutorials and use of specialised software as applicable.

ASSESSMENT

Coursework and labs – 30%

Examinations – 70%

Plus Dissertation

EMPLOYABILITY

Graduates pursue a variety of careers in the natural gas/oil industry. The programme covers all aspects of gas technology and associated gas business management and will enable students to increase their skills and technical knowledge.

FURTHER STUDY

You may want to go on to further study with our Engineering 2050 Research Centre as part of the Spray Research Group.

The Spray Research Group is specialised in the production of sprays, atomiser design and turbulent spray structures. The group has a wide variety of experience in applying experimental and computational modelling techniques, utilising state-of-the-art facilities to fundamental and industrial and commercial applications of sprays, the design of atomisation devices and Petroleum Technology. We have a wide variety of experience in applying experimental and simulation modelling techniques, utilising state-of-the-art facilities to fundamental and industrial and commercial applications of Petroleum Technology.

Our expertise also extends to fluid mechanical and instrumentation related research and devoplment in the covers the production of sprays, the structures of sprays and interaction with fluid/boundary interactions, mixing, vaporization and combustion.

Research areas include: 

  • Reservoir simulation modelling
  • Smart well technology
  • Drilling technologies
  • Enhanced oil recovery (EOR)
  • Internal and external fluid flow modelling of production facilities
  • Gas processing and transportation (GTL)


Read less
Chemical engineering now extends beyond its traditional roots in oil and gas processing. In this course you will learn about the aspects of chemical engineering that deal with the design and development of formulated products such as food and pharmaceuticals. Read more
Chemical engineering now extends beyond its traditional roots in oil and gas processing. In this course you will learn about the aspects of chemical engineering that deal with the design and development of formulated products such as food and pharmaceuticals.

This programme comprises 12 short-course taught modules (six core and six optional) and a research project carried out with one of the department's research teams (MSc only).The programme has options in Food Processing, Pharmaceutical Technology and Business Studies.

Programme content:

Core modules

Multidisciplinary core modules cover the fundamental science and engineering underpinning the design of sophisticated formulated products. Depending upon your academic background, you will begin by studying the fundamental principles of either chemical engineering or the relevant biological science.

Further core modules deal with topics such as:

Modern molecular biology
Advanced techniques for material characterisation
Interfacial physics and chemistry
Structured fluids
Molecular delivery
Optional modules

A wide range of optional modules enables you to gain specific knowledge relating to food and/or pharmaceutical product development. You may also choose to study business and management modules, or develop mathematical modelling skills.

The programme can be studied full-time over one year, or part-time over two or three years. Modules are also available individually to fulfil continuing professional development needs.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Modern chemical engineering is a vast subject extending far beyond its traditional roots in oil and gas processing. Read more
Modern chemical engineering is a vast subject extending far beyond its traditional roots in oil and gas processing. As well as dealing with chemical reactors, distillation and the numerous processes that take place in a chemical or petrochemical plant, there is an increasing need for chemical engineers able to design and develop formulated products and to have knowledge of biotechnology and environmental issues.
-If you already have a first degree in chemical engineering you can study the discipline in greater depth as well as learning about broader issues through the choice of elective subjects.
-If you are already working in industry or are planning to work in a particular area, then this course can be tailored to focus on issues related to those of direct concern to you.

Who will benefit from the course?
-Those who already have a background in chemical engineering but who wish to obtain a higher level qualification from a top-ranking British university.
-Those who wish to enhance their career prospects in a chemical industry.

What are the benefits to students?
-Our graduates get great jobs and chemical engineers are the highest paid professionals in the engineering field
-Courses are designed to meet the needs of employers and you develop many skills for a successful career - design, problem solving, numeracy, analysis, communication and teamwork
-The University of Manchester has an excellent international reputation and a qualification from us will significantly increase your chances of getting a job anywhere in the world
-Specialist subjects are all taught by experts in the field
-Entry requirements are flexible - relevant experience is considered alongside your formal qualifications

Teaching and learning

We use modern, innovative teaching and learning methods which have proved extremely successful and are enjoyed by our students. Much of the source materials and study aids are available through Blackboard (the University's web learning package) which has the advantage of enabling you to carry out much of your study when and where you want. You take part in face-to-face lectures, seminars and laboratory classes.

The Dissertation Project forms a major part of the MSc course and provides useful practice in carrying out academic research and writing in an area that you are interested in. You have the opportunity to study a chosen topic in depth - you can choose one of the challenging topical projects available through the University or if you are employed can base your project on an aspect of your current job or employer's business.

The course helps you to develop valuable transferable skills such as report writing, data analysis and presentation skills - these are all invaluable for your career development.

Coursework and assessment

Assessment is a combination of examinations and written coursework assignments. For the MSc a major part of the assessment is through an in-depth project which is written up as a formal dissertation report.

Career opportunities

For those with a chemical engineering background, a masters level qualification in Advanced Chemical Engineering from a top UK University will provide a boost to your career prospects.

The National Signposts to Employability Survey 2000 (Performance Indicator Project) found that employers preferred to employ University of Manchester engineering graduates above any others.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).

Read less
Technical specialists with environmental skills and competencies are increasingly valued by the global oil and gas industry in the 21st century. Read more
Technical specialists with environmental skills and competencies are increasingly valued by the global oil and gas industry in the 21st century. Developed in consultation with the industry and delivered by the largest group of oil and gas specialists at Coventry University, Petroleum and Environmental Technology MSc offers a unique, comprehensive and advanced level introduction to the technical operation of the petroleum industry linked to an assessment of the most important emerging environmental issues of concern to the sector. This course is professionally accredited by the Energy Institute: the leading chartered professional body for the global energy industry.

WHY CHOOSE THIS COURSE?

Uniquely at Coventry University, this course will give you the opportunity to study all major components of the upstream petroleum operation including reservoir technology and simulation, enhanced oil recovery, drilling and well completion, and petroleum processing and gas technology. It also combines this with the development of complementary expertise in key environmental issues such as oil spills trajectory simulation and remediation, environmental impacts of oil and gas, climate change, renewable energies and water/wastewater treatment. Particular highlights include training in industry standard PETREL and ECLIPSE reservoir simulation software (used by multinational oil companies like Shell, BP and ExxonMobil and kindly donated by Schlumberger to support your learning), and the opportunity to obtain a NEBOSH accredited Managing Safely Certificate. MSc PET students can also participate in a vibrant Student Chapter of the Society of Petroleum Engineers (SPE).

Upon successful completion of the course you should be recognised as a rounded and highly competent upstream technical oil and gas professional, with a distinctive and marketable environmental bias.

The course is professionally accredited by the Energy Institute. Obtaining Energy Institute accreditation involves a rigorous assessment, by a specialist visiting panel, of the quality of the course, the School, its facilities and its staff and students. On successful completion of this course, students will have met the entry requirement for working towards MEI chartered professional status for the Energy Institute. In summary, MSc Petroleum and Environmental Technology:
-Can prepare you for a rewarding career in the fast growing energy and hydrocarbon industry
-Will build your skills in all major technical components of the upstream petroleum industry linked to a distinctive and marketable understanding of the nature and management of relevant environmental issues;
-Is professionally accredited by the Energy Institute and offers the opportunity to obtain a NEBOSH accredited health and safety certificate on successful completion of the course

WHAT WILL I LEARN?

A wide range of subjects are available giving you a multidisciplinary approach to understanding the petroleum industries.

Mandatory subjects
-Drilling and Well Completion
-Reservoir Technology
-Oil and Gas Processing Technology
-HSE Management in the Oil and Gas Industry
-Oil Spill Science, Response and Remediation
-Petroleum Contracts and Economics
-Research Project

Optional subjects (choose two)
-Environmental Monitoring
-Water and Wastewater Treatment
-Impacts of Petroleum Exploration Production and Transportation
-Project and Quality Management in the Energy Industry
-Reservoir Simulation
-Clean Energy, Climate and Carbon

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

PET Equipment - TexasThe Petroleum and Environmental Technology MSc aims to equip graduates with the expertise required to confront the technological and environmental challenges confronting the oil and gas industry in the 21st century. The course is accredited by the Energy Institute and all students benefit from free membership of the Institute for the duration of their studies. The Energy Institute is the leading chartered professional membership body for the energy industry, supporting over 20,000 individuals working or studying within the energy sector worldwide. Membership of the EI provides access to extensive learning and networking opportunities to support professional, management, technical and scientific career development within the industry. On successful completion of the course, students will also have the opportunity to obtain a highly marketable NEBOSH accredited health and safety certificate.

Successful graduates could find employment in areas within the upstream technical oil and gas industry, and related fields in the chemical, environmental and energy sector.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Read more
This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Our strategic links with industry ensures that all the materials taught on the course are relevant, timely and meets the needs of organisations competing within the sector. This industry-led education makes our graduates some of the most desirable the world for energy companies to recruit.

In the foreseeable future, hydrocarbon (oil and gas) will still be the major energy source irrespective of the developments in renewable and nuclear energy. The term ‘flow assurance’ was coined by Petrobras in the early 1990s meaning literally “guarantee of flow.” It covers all methods to ensure the safe and efficient delivery of hydrocarbons from the well to the collection facilities. It is a multi-disciplinary activity involving a number of engineering disciplines including mechanical, chemical, process, control, instrumentation and software engineering.

Previously uneconomical fields are now being exploited - oil and gas are produced in hostile environments from deep water to the Arctic. As conventional oil reserves decline, companies are developing unconventional oil fields with complex fluid properties. All of these factors mean that flow assurance plays an increasingly important role in the oil and gas industry.

Course overview

The MSc in Flow Assurance for Oil and Gas Production is made up of nine compulsory taught modules (eight compulsory and one optional from a selection of three), a group project and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Develop a professional ability to undertake a critical appraisal of technical and/or commercial literature.
- Demonstrate an ability to manage research studies, and plan and execute projects in the area of oil and gas production technology and flow assurance.
- Use of the techniques appropriate for the management of a oil and gas production and transport systems.
- Gain an in-depth understanding of the technical, economic and environmental issues involved in the design and operation of oil and gas production and transport systems.

Group project

The group project runs between February and April and is designed to give students invaluable experience of delivering a project within an industry structured team. The project is sponsored by industrial partners who provide particular problems linked to their plant operations. Projects generally require the group to provide a solution to the operational problem. This group project is shared across the Process Systems Engineering MSc, Flow Assurance MSc and Carbon Capture and Transport MSc, giving the added benefit of gaining new insights, ways of thinking, experience and skills from students with other backgrounds.

During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. All groups submit a written report and deliver a presentation to the industry partner. Part-time students will take an additional elective module instead of the group project.

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Recent Group Projects include:

- Waste water treatment process design
- A new operation mode design for a gas processing plant.

Individual Project

The individual research project allows students to delve deeper into a specific area of interest. Our industrial partners often put forward practical problems or areas of development as potential research topics. For part-time students, their research project is usually undertaken in collaboration with their place of work. The individual project takes place from April/May to August.

Recent Individual Research Projects include:

- Separation – from Subsea to Topside
- Evaluation of Multiphase Flow Metering
- Multiphase Jet Pumps
- Sand Transport in Undulating Terrains.

Modules

The taught programme for the Flow Assurance masters is generally delivered from October to March and is comprised of eight compulsory modules, and one optional module to select from a choice of four. The modules are delivered over one to two weeks of intensive delivery with the later part of the module being free from structured teaching to allow time for more independent learning and reflection. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Assessment

Taught modules: 40%; Group project: 20% (dissertation for part-time students); Individual Research Project: 40%.
The taught modules are assessed by an examination and/or assignment. The Group Project is assessed by a written technical report and oral presentations. The Individual Research Project is assessed by a written thesis and oral presentation.

Funding

Bursaries are available; please contact the Course Director for more information.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

There is considerable global demand in the oil and gas industry for flow assurance specialists with in-depth technical knowledge and practical skills. The industry led education makes our graduates some of the most desirable for recruitment in this sector. The depth and breadth of the course equips graduates with knowledge and skills to tackle one of the most demanding challenges to secure our energy resource. Graduates of the course can also be recruited in other upstream and downstream positions. Their knowledge can additionally be applied to the petrochemical, process and power industries.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/flow-assurance-for-oil-and-gas-production.html

Read less
Your programme of study. Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. Read more

Your programme of study

Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. It often informs other industries in terms of best practise knowledge which can provide useful learning to other industries.The knowledge gained in the North Sea has also been transferred to other sites globally to ensure risks are minimised when extracting energy. There are numerous risks associated with energy extraction such as the environment in which operators work in, failure in facilities and machinery, human factors which need process and safety factors designing in, and a very large ignition source. The energy industry can be one of the most hazardous industries to work in but due to the risks involved it can often provide a highly safe environment to work in due to the amount of measures in place to protect everything on site and that is where the discipline of Process Safety can ensure a very high level of safety in which to extract minerals.

If you want to become qualified in Process Safety Engineering and are from a Chemical Engineering background, or a Petroleum or Mechanical Engineering background but with good chemical/chemistry knowledge and you are interested in safety and process in this industry the programme will develop advanced skills in assessing risk, processes and analysis to continuously improve safety in the industry. The programme is offered in Aberdeen city in the heart of the oil and gas industry within Europe and often worldwide and it is informed by close links and support from the industry to ensure it is robust and relevant. Aberdeen has offered advanced knowledge and learning in this area since the inception of the oil and gas industry which cover the entire physical and business supply chain.

Courses listed for the programme

Semester 1

Process Risk Identification and Management

Upstream Oil and Gas Processing

Loss of Containment

Computational Fluid Dynamics

Semester 2

Applied Risk Analysis and Management

Process, Plant, Equipment and Operations

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Process Safety Individual Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/

Why study at Aberdeen?

  • You can study this programme full time or part time to fit around your life
  • The programme offers one of the few opportunities to study this area of oil and gas production with direct links to industry
  • You study in the oil and gas capital of Europe and often the world in Aberdeen City
  • Graduates move into senior industry roles globally

Where you study

  • University of Aberdeen
  • Full Time and Part Time
  • 12 Months or 24 Months
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less

Show 10 15 30 per page



Cookie Policy    X