• University of Derby Online Learning Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Bradford Featured Masters Courses
Ulster University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Bath Spa University Featured Masters Courses
"functional" AND "program…×
0 miles

Masters Degrees (Functional Programming)

  • "functional" AND "programming" ×
  • clear all
Showing 1 to 15 of 53
Order by 
The Computer Science MSc provides a balance between computer science theory and practical software engineering skills, including teamwork for industrial or research clients. Read more
The Computer Science MSc provides a balance between computer science theory and practical software engineering skills, including teamwork for industrial or research clients. Graduates find employment in the IT industry, or complement their first degree subject with computer science knowledge, leading to interdisciplinary industrial positions and PhD research.

Degree information

You will learn fundamental aspects on how computers work by taking modules in computer architecture, operating systems, compilers, data structures and algorithms. You will also gain practical knowledge in areas such as human-computer interaction, App design, databases and software engineering. You will develop programming skills in modern languages, such as object-oriented Java for Android development.

Team working, project planning and communication skills are developed by working in small groups developing software for real industrial and research clients. Optional modules allow specialisation in subjects such as functional programming, computer music, entrepreneurship and artificial intelligence.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research project (60 credits).

Core modules
-Introductory Programming
-Apps Design
-Architecture and Hardware
-Systems Infrastructure
-Algorithmics

Optional modules
-Artificial Intelligence and Neural Networks
-Computer Music
-Database Systems
-Entrepreneurship: Theory and Practice
-Functional Programming
-Interaction Design
-Software Engineering
-Project Management

Dissertation/report
All students undertake an independent computer-based science project which culminates in a dissertation in the form of a project report.

Teaching and learning
The programme is delivered through a combination of lectures and tutorials. Lectures are often supported by laboratory work with help from demonstrators. Student performance is assessed by unseen written examinations, coursework and a substantial individual project.

Careers

Graduates from UCL are keenly sought by the world's leading organisations, and many progress in their careers to secure senior and influential positions. UCL Computer Science graduates are particularly valued as a result of the department's strong international reputation, strong links with industry, and ideal location close to the City of London. Our graduates secure careers in a wide variety of organisations; for example with global IT consultancies, as IT analysts with City banks, or as IT specialists within manufacturing industries.

Top career destinations for this degree:
-IT Consultant, BAE Systems
-Software Developer, Arts Alliance Media
-User Experience Designer / User Interface Developer, Retechnica
-Senior Consultant, EY
-Software Developer, Tryzens

Employability
This degree opens up many different career routes. Recent graduates have been employed by some of the world's leading IT companies such as Accenture, Barclays Capital and Credit Suisse. The entrepreneurial spirit is ignited in other students and they may either start their own companies or join the excitement of dynamic start-ups. Other graduates have gone on to PhD study to conduct cutting-edge research in areas that interest them.

Why study this degree at UCL?

UCL Computer Science is recognised as a world leader in teaching and research, and was one of the top-rated departments in the country according to the UK government's recent Research Excellence Framework.

Our Master's programmes have some of the highest employment rates and starting salaries, with graduates entering a wide variety of industries from entertainment to finance.

We take an experimental approach to our subject, enjoy the challenge and opportunity of entrepreneurial partnerships and place a high value on our extensive range of industrial collaborations.

Read less
The impact of Information Systems on everyday life continually expands at a monumental rate. Computing is increasingly embedded in everything we use from; transport, financial and telecommunications systems to everyday personal items such as toothbrushes and running shoes. Read more
The impact of Information Systems on everyday life continually expands at a monumental rate. Computing is increasingly embedded in everything we use from; transport, financial and telecommunications systems to everyday personal items such as toothbrushes and running shoes. The pervasive nature of computing coupled with the ever increasing demand for improved products and services drives the discovery of innovative solutions through the use of information systems. This has led to a critical dependence emerging between computing and practically all industries.

Graduates and engineers who are able to fully exploit the potential that computing and information systems offer within a range industries including, Retail, Manufacturing, Health, and Communications; are highly sought after. If you are looking to further your employment options in your current industry, but have little or no technical experience, then this programme is for you.

* This programme is suited to students from a non-IT background or with little prior technical experience who want to further enhance or or change career focus, to widen employment opportunities in a vast selection of computing related industries and sectors.
* Designed for non-IT professionals who want to develop a firm technical foundation in the latest industry relevant programming languages and software development techniqus (agile, which can open up more technical and senior level positions in their current industry.
* Guided by academics with an extensive spectrum of industrial experience, the programme introduces you to the core aspects of computing and allows you to choose from a variety of optional specialist modules, such as Mobile Devices and Social Networks, Business Technology Strategy and Graphical User Interface design, developing both your practical and theoretical skills.
* The core modules introduce aspects of computing, including a double module in object-oriented programming (using Java) and a double module in information systems.
* These core modules are supplemented by optional specialist modules covering a broad range of subjects relevant to the software industry, such as Network Planning, Finance and Management, Entrepreneurship in Information Technology and Decision and Risk.
* Your project work will typically involve the design and implementation of a significant piece of software within your chosen specialism. Projects undertaken for external organisations focusing on an industrial or commercial application encouraged.
* You will learn about and develop extensive technical knowledge of the latest developments in new languages and tools for web systems (XML, Advanced databases, Semantic web).
* This intensive one year programme is aimed at students without a background in Computer Science � it is a conversion course for those who want a career in computing.

Why study with us?

Queen Mary has a prestigious history in computing and electronic engineering, we had one of the first Computer Science Departments in the country, and The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering.

The best things I have found about the course have been the breadth of content available and the quality of teaching.
Anuruddha Jaithirtha

* This programme is available part-time
* It permits students to follow a technical or business focus
* There is a wide range of employment-relevant module choices
* Early coverage of Networks in core modules
* There are lectures and laboratories specific to students on this programme, a number of modules have invited talks from commercial and other organisations
* Up-to-date modules in real-time and critical systems, functional programming and security, intelligent and multi-agent systems (such as Siri), and web-based document databases

Read less
You will take eight Assessed Modules plus an Individual Project carried out in the department. Six of the modules cover core Software Engineering methods, practices and tools, and are compulsory. Read more
You will take eight Assessed Modules plus an Individual Project carried out in the department. Six of the modules cover core Software Engineering methods, practices and tools, and are compulsory. For the remaining two modules, you will be able to choose from Natural Language Processing, Topics in Privacy & Security, Evolutionary Computation, Concurrent & Real-Time Programming, and Functional Programming Technology.

Software Engineering has become a crucial discipline in the functioning of the modern world. Information systems, communications, transport, manufacturing and services all require well-engineered and reliable software. The focus of our MSc in Software Engineering is automated and large-scale software engineering, so the course will equip you to deal with the types of systems widely found in industry.

The MSc is a full-time, one-year course for those with some experience or background in Software Engineering. You will learn up-to-date theory and practice in the core areas of Software Engineering, and the main methods and tools used in industry. The course also covers model-driven engineering, service-oriented architectures, software architectures and user-centred design. You will gain a thorough understanding of techniques and practices of software management, including measurement and testing. This in-depth understanding of the role of software in commercial organisations will enable you to develop and maintain large-scale software systems.

You will gain a thorough understanding of techniques and practices of software management, including measurement and testing. These techniques will allow you to understand the role of software in commercial organisations and you will be able to develop and maintain these large scale systems.

Course Aims
When you graduate, you will be able to apply advanced Software Engineering techniques to analyse systems and design solutions, particularly in a commercial context. You will have experience of using state-of-the-art Software Engineering tool suites (e.g., Eclipse and Epsilon). You will also understand the human factors in Software Engineering, and will be able to design systems taking into account the needs of users.

Your individual project gives you the chance to specialise in a specific area of Software Engineering, as you will undertake independent research and apply your results to develop a real solution – an application, tool or technique.

On graduation, you will be equipped to design and maintain large systems in a wide range of industries, or to pursue an academic research career in Software Engineering.

Learning Outcomes
A thorough grounding and practical experience in the use of state-of-the-art techniques for developing software-based systems.
An in-depth understanding of the principles underpinning these techniques, so as to make sound judgements throughout the systems and software engineering life cycle.

Project

Team Project
You are taught a broad range of project management skills, which you will directly apply to a medium-sized software project that is conducted in small student teams.

Individual Project
The course concludes with your individual project. You may choose a topic among the many offered by the academic staff, or you may propose your own topic. Some recent topics were:
-Air Traffic Control application using PostgreSQL
-Automated Development of Graphical Editors built atop Graphiti
-Multi-Agent Reinforcement Learning: Conquest of Mars
-Natural Disaster Planning - A System of Systems Analysis
-Reinforcement Learning for Mobile Cognitive Radio Agents
-Simulation-based Hazard Analysis for Autonomous Robots
-Study of Business Processes in a Complex Enterprise System
-Using heuristics for Monte Carlo Tree Search

Careers

Here at York, we're really proud of the fact that more than 97% of our postgraduate students go on to employment or further study within six months of graduating from York. We think the reason for this is that our courses prepare our students for life in the workplace through our collaboration with industry to ensure that what we are teaching is useful for employers.

Our postgraduate taught courses are specifically designed to meet the needs of industry, and the thorough grounding we provide, alongside the skills you learn from undertaking a Masters degree, will stand you in good stead in the workplace.

Read less
The Masters in Computing Science provides you with a thorough grounding in advanced computing science, together with experience of conducting a development project, preparing you for responsible positions in the IT industry. Read more
The Masters in Computing Science provides you with a thorough grounding in advanced computing science, together with experience of conducting a development project, preparing you for responsible positions in the IT industry.

Why this programme

◾The School of Computing Science is consistently highly ranked achieving 2nd in Scotland and 10th in the UK (Complete University Guide 2017)
◾The School is a member of the Scottish Informatics and Computer Science Alliance: SICSA. This collaboration of Scottish universities aims to develop Scotland's place as a world leader in Informatics and Computer Science research and education.
◾You will have opportunities to meet employers who come to make recruitment presentations, and often seek to recruit our graduates during the programme.
◾You will benefit from having 24-hour access to a computer laboratory equipped with state-of-the-art hardware and software.
◾With a 92% overall student satisfaction in the National Student Survey 2015, computing at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Computing Science include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses
◾Research methods and techniques
◾Masters team project

Optional courses
◾Advanced networking and communications
◾Advanced operating systems
◾Algorithmics
◾Artificial intelligence
◾Big data: systems, programming and management
◾Computer architecture
◾Computer vision methods and applications
◾Cryptography and secure development
◾Cyber security forensics
◾Cyber security fundamentals
◾Distributed algorithms and systems
◾Enterprise cyber security
◾Functional programming
◾Human computer interaction
◾Human computer interaction: design and evaluation
◾Human-centred security
◾Information retrieval
◾Internet technology
◾IT architecture
◾Machine learning
◾Mobile human computer interaction
◾Modelling reactive systems
◾Safety critical systems.
◾Software project management
◾Theory of Computation
◾Web Science

Depending on staff availability, the optional courses listed here may change.

If you wish to engage in part-time study, please be aware that dependent upon your optional taught courses, you may still be expected to be on campus on most week days.

Accreditation

MSc Computing Science is accredited by the British Computer Society (BCS) and the Institution of Engineering & Technology (IET)

Our specialist MSc graduates in Computing Science, Software Engineering and Information Security are recognised by the British Computer Society (BCS), The Chartered Institute for IT, for the purposes of fully meeting the further learning academic requirement for registration as a Chartered IT Professional (CITP Further Learning) and partially meeting the academic requirement for registration as a Chartered Scientist (CSci). These programmes have also been awarded the Euro-Info Master Label.

[[Industry links and employability ]]

◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors include representatives from IBM, J.P. Morgan, Amazon, Adobe and Red Hat.
◾Employers are interested in graduates who have a combination of good technical skills and well-developed personal skills, and in this respect graduates of the MSc in Computing Science from the University of Glasgow are particularly well placed.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the IT industry.

Read less
The Masters in Information Security provides you with a thorough grounding in professional software development, together with experience of conducting a development project, preparing you for responsible positions in the IT industry. Read more
The Masters in Information Security provides you with a thorough grounding in professional software development, together with experience of conducting a development project, preparing you for responsible positions in the IT industry.

Why this programme

◾The School of Computing Science is consistently highly ranked achieving 2nd in Scotland and 10th in the UK (Complete University Guide 2017)
◾The School is a member of the Scottish Informatics and Computer Science Alliance: SICSA. This collaboration of Scottish universities aims to develop Scotland's place as a world leader in Informatics and Computer Science research and education.
◾You will have opportunities to meet employers who come to make recruitment presentations, and often seek to recruit our graduates during the programme.
◾You will benefit from having 24-hour access to a computer laboratory equipped with state-of-the-art hardware and software.

Programme structure

Modes of delivery of the MSc in Information Security include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

◾Crytography and secure development
◾Cyber security fundamentals
◾Cyber security forensics
◾Enterprise cyber security
◾Human-centred security
◾Research methods and techniques
◾Safety critical systems
◾Masters team project

Optional courses

◾Advanced networking and communications
◾Advanced operating systems
◾Algorithmics
◾Artificial intelligence
◾Big data: systems, programming and management
◾Computer architecture
◾Computer vision methods and applications
◾Distributed algorithms and systems
◾Enterprise computing
◾Functional programming
◾Human computer interaction
◾Human computer interaction: design and evaluation
◾Information retrieval
◾Internet technology
◾IT architecture
◾Machine learning
◾Mobile human computer interaction
◾Modelling reactive systems
◾Software project management
◾Theory of computation
◾Web science

Depending on staff availability, the optional courses listed here may change.

If you wish to engage in part-time study, please be aware that dependent upon your optional taught courses, you may still be expected to be on campus on most week days.

Accreditation

MSc Information Security is accredited by the British Computer Society (BCS).

Our specialist MSc graduates in Computing Science, Software Engineering and Information Security are recognised by the British Computer Society (BCS), The Chartered Institute for IT, for the purposes of fully meeting the further learning academic requirement for registration as a Chartered IT Professional (CITP Further Learning) and partially meeting the academic requirement for registration as a Chartered Scientist (CSci). These programmes have also been awarded the Euro-Info Master Label.

Industry links and employability

◾Computer systems are frequently compromised by the efforts of opportunistic hackers. In many countries, legislation is forcing companies to take information security more seriously. Information security requires a clear understanding of relevant technological, social, and organizational issues, as well as the relationships between them.
◾The programme includes a thorough grounding in professional software development, together with experience of conducting a development project. The programme will prepare you for a responsible position in the IT industry.
◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors include representatives from IBM, J.P. Morgan, Amazon, Adobe and Red Hat.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the IT industry.

Read less
This MSc programme focuses on advanced theoretical and practical techniques in program design, and the management of software project risk. Read more
This MSc programme focuses on advanced theoretical and practical techniques in program design, and the management of software project risk. It includes training in vital areas such as security, specification, risk management, usability, and design integrity.

You will learn advanced techniques in program design (including software patterns and component technologies) and information handling (structured information, databases). You can study key issues of interactive system design, leading to the ability to identify issues and trade-offs in the design of human-computer interaction, and to invent and evaluate alternative solutions to design problems. You will gain knowledge in the mathematical foundations of software and the practical application of these techniques. You will develop skills to manage software project risks and learn about the development of tools to support decision-making.

The programme will enable you to become competitive in the most technically oriented branches of software engineering. Typical jobs after graduation include software risk analyst, system designer, software quality assurance, software engineer, programmer, usability consultant, systems analyst, and software architect.
Programme outline

Central modules can include:
Design for Human Interaction
Functional Programming
Program Specifications
Real Time & Critical Systems
Software Analysis and Verification
Software Risk Assessment
MSc Project

Further options can include:
Machine Learning
XML and Structured Documents
Advanced Program Design
Advanced Database Systems & Technology
Distributed Systems and Security
Mobile Services
Security and Authentication
Business Technology Strategy
Interactive Systems Design
The Semantic Web
High Performance Computing

Please note that module availability is subject to change.

Read less
Developments in cloud computing technology are transforming the way we live and work. This programme will equip you with specialist knowledge in this fast-growing field and allow you to explore a range of advanced topics in computer science. Read more
Developments in cloud computing technology are transforming the way we live and work. This programme will equip you with specialist knowledge in this fast-growing field and allow you to explore a range of advanced topics in computer science.

You’ll gain a foundation in topics like systems programming and algorithms, as well as specialist modules in advanced distributed systems – especially cloud techniques, technologies and applications.

Building on your existing knowledge of computer science, you’ll also choose from optional modules in topics across computer science. You could look at emerging approaches to human interaction with computational systems, data mining and functional programming among others.

The programme will give you the theoretical and practical skills required to design and implement larger, more complex systems using state-of-the-art technologies. You’ll even have the chance to work as an integral member of one of our research groups when you develop your main project.

Read less
Research in Computer Science at York is carried out at the frontiers of knowledge in the discipline. This course gives you the chance to study a range of advanced topics in Computer Science, taught by researchers active in that area. Read more
Research in Computer Science at York is carried out at the frontiers of knowledge in the discipline. This course gives you the chance to study a range of advanced topics in Computer Science, taught by researchers active in that area. This means you will be learning current research results, keeping you at the forefront of these areas. You will also learn a range of theories, principles and practical methods.

The MSc in Advanced Computer Science is a full time, one year taught course, intended for students who already have a good first degree in Computer Science, and would like to develop a level of understanding and technical skill at the leading edge of Computer Science.

You can choose modules on a range of topics, including Cryptography, Functional Programming, Interactive Technologies, Natural Language Processing, Quantum Computation and Model-Driven Engineering.

Course aims
You will gain an in-depth knowledge of topics on the frontiers of Computer Science in order to engage in research or development and application of leading-edge research findings.

By undertaking an individual project, you will become a specialist in your selected area. You will be encouraged to produce research results of your own. This will prepare you to undertake a PhD in Computer Science should you wish to continue studying within the subject.

Learning outcomes
-A knowledge of several difference topics in Computer Science at an advanced level.
-An understanding of a body of research literature in Computer Science in your chosen topic, and the underlying principles and techniques of research in this area.
-An ability to engage in independent study at an advanced level, and develop skills in self-motivation and organisation.

Research Project

You will undertake your individual research project over the Summer term and Summer vacation. This will be a culmination of the taught modules you have taken during the course, which will allow you to focus on a specialist area of interest.

You will be allocated a personal supervisor, who will be an expert in your chosen area of research. You will be hosted by the research group of your supervisor, and you will benefit from the knowledge and resources of the whole group. Being attached to a research group also allows you to take part in their informal research seminars, and receive feedback and help from other members of the group.

You can choose from projects suggested by members of our academic staff. You also have the option of formulating your own project proposal, with the assistance from your personal supervisor.

All project proposals are rigorously vetted and must meet a number of requirements before these are made available to the students. The department uses an automated project allocation system for assigning projects to students that takes into account supervisor and student preferences.

The project aims to give you an introduction to independent research, as well as giving you the context of a research group working on topics that will be allied to your own. You will develop the skills and understanding in the methods and techniques of research in Computer Science.

As part of the assessment of the project, as well as your dissertation, you will give a talk about your work and submit a concise paper which we will encourage you to publish.

Information for Students

The MSc in Advanced Computer Science exposes you to several topics in Computer Science that are under active research at York. The material taught is preparatory to helping to continue that research, and perhaps continuing to a PhD. What we require from you are enthusiasm, hard work and enough background knowledge to take your chosen modules.

The modules on the MSc in Advanced Computer Science are mostly shared with our Stage 4 (Masters level) undergraduates. Your technical background will be different, and we acknowledge this.

During August we will send entrants a document describing the background knowledge needed for each module and, in many cases, references to where this knowledge is available (for example, widely available text books and web pages).

More generally, many of the modules expect a high level of mathematical sophistication. While the kind of mathematics used varies from module to module, you will find it useful to revise discrete mathematics (predicate and propositional calculi, set theory, relational and functional calculi, and some knowledge of formal logic), statistics and formal language theory. You should also be able to follow and produce proofs.

Careers

Here at York, we're really proud of the fact that more than 97% of our postgraduate students go on to employment or further study within six months of graduating from York. We think the reason for this is that our courses prepare our students for life in the workplace through our collaboration with industry to ensure that what we are teaching is useful for employers.

Read less
Computer Science influences every aspect of modern life and is one of the fastest-moving academic disciplines. It contributes to everything from the efficiency of financial markets to film and TV graphics and has a huge impact on both economic competitiveness and human wellbeing. Read more
Computer Science influences every aspect of modern life and is one of the fastest-moving academic disciplines. It contributes to everything from the efficiency of financial markets to film and TV graphics and has a huge impact on both economic competitiveness and human wellbeing.


Why study MSc Computer Science at Middlesex?

Our course not only offers a balance between advanced computer science theory and practical experience, but has a very strong focus on contemporary research. Practical work is an important part of every module and the School of Science and Technology has strong links with industry, including companies such as Microsoft and Siemens. The university is very active in the exploration of a number of areas, including computer graphics,mobile development, human-computer interaction, robotics, artificial intelligence, ethics, ubiquitous computing, functional programming, algorithmic biology, image and video analysis, quantum computing, computational biology and visual analytics, and this research influences the course very strongly.

Our course is aimed at students who've studied computing for their first degree, and wish to make themselves stand out further by developing an advanced mastery of the subject.

Course highlights:

The university is home to the Human Interactive Systems Laboratory, acentre of research into haptic technology, and leads the UK Visual Analytics Consortium.

Our specialist multimedia laboratories are well-equipped with industry-standard software and hardware, including both PCs and Macs.

Many of the teaching staff are the authors of widely-used textbooks and learning materials. They include:

Dr Kai Xu, a former senior research scientist with CSIRO, Australia's national science agency;
Dr Elke Duncker-Gassen, aformer systems and software engineer at GEI Gesytec;
Dr Chris Huyck, a former software engineer at Microsoft.
You'll also improve your communication, teamwork, time-management, problem-solving and critical skills.

Read less
The Masters in Data Science provides you with a thorough grounding in the analysis and use of large data sets, together with experience of conducting a development project, preparing you for responsible positions in the Big Data and IT industries. Read more
The Masters in Data Science provides you with a thorough grounding in the analysis and use of large data sets, together with experience of conducting a development project, preparing you for responsible positions in the Big Data and IT industries. As well as studying a range of taught courses reflecting the state-of-the-art and the expertise of our internationally respected academic staff, you will undertake a significant programming team project, and develop your own skills in conducting a data science project.

Why this programme

◾The School of Computing Science is consistently highly ranked achieving 2nd in Scotland and 10th in the UK (Complete University Guide 2017)
◾The School is a member of the Scottish Informatics and Computer Science Alliance: SICSA. This collaboration of Scottish universities aims to develop Scotland's place as a world leader in Informatics and Computer Science research and education.
◾We currently have 15 funded places to offer to home and EU students.
◾You will have opportunities to meet employers who come to make recruitment presentations, and often seek to recruit our graduates during the programme.
◾You will benefit from having 24-hour access to a computer laboratory equipped with state-of-the-art hardware and software.

Programme structure

Modes of delivery of the MSc in Data Science include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

◾Big data
◾Data fundementals
◾Information retrieval
◾Machine learning
◾Research methods and techniques
◾Text as data
◾Web science
◾Masters team project.

Optional courses

◾Advanced networking and communications
◾Advanced operating systems
◾Algorithmics
◾Artificial intelligence
◾Big data: systems, programming and management
◾Computer architecture
◾Computer vision methods and applications
◾Cryptography and secure development
◾Cyber security forensics
◾Cyber security fundamentals
◾Distributed algorithms and systems
◾Enterprise cyber security
◾Functional programming
◾Human computer interaction
◾Human computer interaction: design and evaluation
◾Human-centred security
◾Information retrieval
◾Internet technology
◾IT architecture
◾Machine learning
◾Mobile human computer interaction
◾Modelling reactive systems
◾Safety critical systems.
◾Software project management
◾Theory of Computation

Depending on staff availability, the optional courses listed here may change.

If you wish to engage in part-time study, please be aware that dependent upon your optional taught courses, you may still be expected to be on campus on most week days.

Industry links and employability

◾The advent of Big Data tools in recent years has facilitated the large-scale mining of voluminous data, to allow actionable knowledge and understanding, known as Data Science. For instance, search engines can gain insights into how ambiguous a query is according to the querying and clicking patterns of different users. Data Science combines a thorough background in Big Data processing techniques, combined with techniques from information retrieval and machine learning, to permit coherent and principled solutions allowing real insights and predictions to be obtained from data.
◾The programme includes a thorough grounding in professional software development, together with experience of conducting a development project. The programme will prepare you for a responsible position in the IT industry.
◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors include representatives from IBM, J.P. Morgan, Amazon, Adobe, Red Hat and Bing.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the IT industry.

The Data Lab

We work closely with The Data Lab, an internationally leading research and innovation centre in data science. Established with an £11.3 million grant from the Scottish Funding Council, The Data Lab will enable industry, public sector and world-class university researchers to innovate and develop new data science capabilities in a collaborative environment. Its core mission is to generate significant economic, social and scientific value from data. Our students will benefit from a wide range of learning and networking events that connect leading organisations seeking business analytics skills with students looking for exciting opportunities in this field.

Read less
Learning how to design high-level software that guarantees safety and correctness while still being in control of its complexity. Read more
Learning how to design high-level software that guarantees safety and correctness while still being in control of its complexity.

Software plays a role in almost every aspect of our daily lives and in every organisation anywhere in the world. It can often be a crucial key to their success. Well-structured software that is attuned to an organisation’s needs and future plans can be cost effective, improve efficiency, offer better services and be innovative. Many companies, in every branch out there, are therefore looking for highly skilled software specialists. Graduates of the Master’s specialisation in Software Science will have no trouble finding a job.

Producing software is not merely a technological enterprise but a deeply scientific and creative one as well. Modern cars drive on 20 million lines of code. How do we develop all this software and control its complexity? How do we ensure correctness of software on which the lives in a speeding car literally depend on? This specialisation goes far beyond basic code writing. It’s about analysing and testing code in order to improve it as well as simplify it.

Why study Software Science at Radboud University?

- Although not the only focus, our programme puts a lot of emphasis on embedded software and functional programming.
- We teach a unique range of software analysis techniques and application down to practical/commercial use in industry.
- This specialisation builds on the strong international reputation of the Institute for Computing and Information Sciences (iCIS) in areas such as model based and virtual product development, advanced programming, and domain specific languages. We also closely collaborate with the Embedded Systems Institute.
- Our approach is pragmatic as well as theoretical. As an academic, we don’t just expect you to understand and make use of the appropriate tools, but also to program and develop your own.
- For your Master’s research we have a large number of companies like Philips, ASML and NXP offering projects. There are always more projects than students.
- Thanks to free electives students can branch out to other Computing Science domain at Radboud University such as security, machine learning or more in-depth mathematical foundations of computer science.
- The job opportunities are excellent: some of our students get offered jobs before they’ve even graduated and almost all of our graduates have positions within six months after graduating.

See the website http://www.ru.nl/masters/softwarescience

Admission requirements for international students

1. A completed Bachelor's degree in Computing Science or related area
In order to get admission to this Master’s you will need a completed Bachelor’s degree in Computing Sciences or a related discipline.
2. A proficiency in English
In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor's degree or VWO diploma need one of the following:
- TOEFL score of >575 (paper based) or >232 (computer based) or >90 (internet based)
- IELTS score of >6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

Writing good software is a highly creative process, which requires the ability to approach problems in entirely novel ways through computational thinking. Besides creativity, a professional software scientist also has fine problem-solving, analytical, programming, and communication skills. By combining software programming, model-checking techniques and human intellect, software scientists can make a real difference to help and improve the devices that govern such a large part of our lives.

The job perspective for our graduates is excellent. Industry desperately needs software science specialists at an academic level, and thus our graduates have no difficulty in find an interesting and challenging job. Several of our graduates decide to go for a PhD and stay at a university, but most of our students go for a career in industry. They then typically either find a job at a larger company as consultant or programmer, or they start up their own software company.

Examples of companies where our graduates end up include the big Dutch high-tech companies such as Océ, ASML, Vanderlande and Philips, ICT service providers such as Topicus and Info Support and companies started by Radboud graduates, like AIA and GX.

Our research in this field

The Master’s programme in Computing Sciences is offered in close collaboration with the research Institute for Computing and Information Sciences (iCIS). Research at iCIS is organised in three different research sections:
- Model Based System Development
- Digital Security
- Intelligent Systems

The Software Science specialisation builds on the strong international reputation of iCIS in areas such model based and virtual product development, advanced programming, and domain specific languages.

Research project and internship

For your research project, you may choose to do your internship at:
- A company
---- SME, such as as Océ, Vanderlande, Clarity or GX
---- multinational, such as the Philips, ASML, NXP, Logica or Reed Business Media
- A governmental institute, such as the (Dutch) Tax Authorities or the European Space Agency.
- Any department at Radboud University or another university with issues regarding software, like studying new techniques for loop bound analysis, the relation between classical logic and computational systems, or e-mail extension for iTasks.
- One of the iCIS departments, specialising on different aspects of Software Science.
- Abroad, under supervision of researchers from other universities that we collaborate with. For instance, exploring a new technique for automata learning at Uppsala University in Sweden, or verifying the correctness of Erlang refactoring transformations at the Eötvös Loránd University (ELTE) in Budapest, Hungary.

See the website http://www.ru.nl/masters/softwarescience

Read less
The Masters in Software Engineering provides you with a thorough grounding in professional software development, together with experience of conducting a development project, preparing you for responsible positions in the IT industry. Read more
The Masters in Software Engineering provides you with a thorough grounding in professional software development, together with experience of conducting a development project, preparing you for responsible positions in the IT industry.

Why this programme

◾The School of Computing Science is consistently highly ranked achieving 2nd in Scotland and 10th in the UK (Complete University Guide 2017)
◾You will have opportunities to meet industrial speakers who contribute to our professional skills & issues course. Employers also come to make recruitment presentations, and often seek to recruit our graduates during the programme.
◾The School of Computing Science is a member of the Scottish Informatics and Computer Science Alliance (SICSA). This is a collaboration of Scottish Universities whose goal is to develop and extend Scotland's position as a world leader in Informatics and Computer Science research and education.
◾You will have opportunities to meet employers who come to make recruitment presentations, and often seek to recruit our graduates during the programme.
◾You will benefit from having 24-hour access to a computer laboratory equipped with state-of-the-art hardware and software.

Programme structure

Modes of delivery of the MSc in Software Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

◾Enterprise cyber security
◾IT architecture
◾Research methods and techniques
◾Safety critical systems
◾Masters team project.

Optional courses

◾Advanced networking and communications
◾Advanced operating systems
◾Algorithmics
◾Artificial intelligence
◾Big data: systems, programming and management
◾Computer architecture
◾Computer vision methods and applications
◾Cryptography and secure development
◾Cyber security forensics
◾Cyber security fundamentals
◾Distributed algorithms and systems
◾Financial software engineering
◾Functional programming
◾Human-computer interaction
◾Human-computer interaction: design and evaluation
◾Human-centred security
◾Information retrieval
◾Internet technology
◾Machine learning
◾Mobile human-computer interaction
◾Modelling reactive systems
◾Software project management
◾Theory of computation
◾Web science

Depending on staff availability, the optional courses listed here may change.

If you wish to engage in part-time study, please be aware that dependent upon your optional taught courses, you may still be expected to be on campus on most week days.

Accreditation

MSc Software Engineering is accredited by the British Computer Society (BCS) and the Institution of Engineering & Technology (IET).

Our specialist MSc graduates in Computing Science, Software Engineering and Information Security are recognised by the British Computer Society (BCS), The Chartered Institute for IT, for the purposes of fully meeting the further learning academic requirement for registration as a Chartered IT Professional (CITP Further Learning) and partially meeting the academic requirement for registration as a Chartered Scientist (CSci). These programmes have also been awarded the Euro-Info Master Label.

Industry links and employability

◾This programme enables students to meet the demanding schedule of a software engineer. It provides students with improved ability to analyse and design software systems.
◾Overall the programme provides students with the knowledge and skills to deliver robust, advanced, on-time and in-budget software systems for their organisation.
◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors include representatives from IBM, J.P. Morgan, Amazon, Adobe and Red Hat.
◾Employers are interested in graduates who have a combination of good technical skills and well-developed personal skills, and in this respect graduates of the MSc in Software Engineering from the University of Glasgow are particularly well placed.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the IT industry.

Read less
This flexible course offers a largely free choice of modules from our range of Advanced Master's programmes. It is likely to appeal to computing graduates whose interests span more than one specialism and/or those seeking the freedom to explore a variety of advanced topics. Read more
This flexible course offers a largely free choice of modules from our range of Advanced Master's programmes.

It is likely to appeal to computing graduates whose interests span more than one specialism and/or those seeking the freedom to explore a variety of advanced topics. Depending on the options chosen, this course can serve as a springboard for employment or research.

This programme is available with an optional industrial placement. The course duration varies depending on the options taken.

Visit the website https://www.kent.ac.uk/courses/postgraduate/246/advanced-computer-science

About the School of Computing

Our world-leading researchers, in key areas such as systems security, programming languages, communications, computational intelligence and memory management, and in interdisciplinary work with biosciences and psychology, earned us an outstanding result in the most recent national research assessment.

In addition, two of our staff have been honoured as Distinguished Scientists by the ACM and we have also held Royal Society Industry Fellowships.

As an internationally recognised Centre of Excellence for programming education, the School of Computing is a leader in computer science teaching. Two of our staff have received the ACM SIGCSE Award for Outstanding Contribution to Computer Science Education. We are also home to two National Teaching Fellows, to authors of widely used textbooks and to award-winning teaching systems such as BlueJ.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

CO880 - Project and Dissertation (60 credits)
CO885 - Project Research (15 credits)
CO881 - Object-Oriented Programming (15 credits)
CO871 - Advanced Java for Programmers (15 credits)
CO874 - Networks and Network Security (15 credits)
CO876 - Computer Security (15 credits)
CO846 - Cloud Computing (15 credits)
CO882 - Advanced Object-Oriented Programming (15 credits)
CO836 - Cognitive Neural Networks (15 credits)
CO837 - Natural Computation (15 credits)
CO889 - C++ Programming (15 credits)
CO894 - Development Frameworks (15 credits)
CO899 - System Security (15 credits)
CO890 - Concurrency and Parallelism (15 credits)
CO892 - Advanced Network Security (15 credits)
CO838 - Internet of Things and Mobile Devices (15 credits)
CO841 - Computing Law, Contracts and Professional Responsibility (15 credits)
CO528 - Introduction to Intelligent Systems (15 credits)
CO545 - Functional and Concurrent Programming (15 credits)
CO641 - Computer Graphics and Animation (15 credits)
CO645 - IT Consultancy Practice 2 (15 credits)
CO832 - Data Mining and Knowledge Discovery (15 credits)
CO834 - Trust, Security and Privacy Management (15 credits)
CO884 - Logic and Logic Programming (15 credits)
CO847 - Green Computing (15 credits)

Assessment

Assessment is through a mixture of written examinations and coursework, the relative weights of which vary according to the nature of the module. The final project is assessed by a dissertation.

Programme aims

This programme aims to:

- enhance the career prospects of graduates seeking employment in the computing/IT sector

- prepare you for research and/or professional practice at the forefront of the discipline

- develop an integrated and critically aware understanding of one or more areas of computing/IT and their applications (according to your degree title)

- develop a variety of advanced intellectual and transferable skills

- equip you with the lifelong learning skills necessary to keep abreast of future developments in the field.

Careers

Students can gain practical work experience as part of their degree through our industrial placements scheme and KITC (see above). Both of these opportunities consolidate academic skills with real world experience, giving our graduates a significant advantage in the jobs market. Our graduates go on to work for leading companies including Cisco, GlaxoSmithKline, IBM, Intel, Lilly, Microsoft, Morgan Stanley, Thomson Reuters and T-Mobile. Many have gone on to develop their careers as project leaders and managers.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
This Masters in Bioinformatics is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Read more
This Masters in Bioinformatics is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Bioinformatics is a discipline at the interface between biology and computing and is used in organismal biology, molecular biology and biomedicine. This programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and display - all of which form a core part of modern biology.

Why this programme

◾Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical-based elective courses in Semester 2 and in a summer research project.
◾You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
◾Bioinformatics and the 'Omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
◾Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
◾The Semester 2 elective courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organizing and implementing appropriate analysis pipelines.
◾You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics; our College has carried out internationally-recognised research in functional genomics and systems biology.
◾The new programme reflects the development and activities of 'Glasgow Polyomics'. Glasgow Polyomics is a world-class facility set up in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
◾In addition, we have several world-renowned research centres at the University, such as the Wellcome Trust Centre for Molecular Parasitology and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
◾You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area: systems biology.

‘Polyomics’ involves the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure
◾Core material - 60 credits, Semester 1, made up of 10, 15 and 20 credit courses.
◾Elective material - 60 credits, Semester 2, students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
◾Project - 60 credits, 14 weeks embedded in a research group over the summer.

Core and optional courses

◾Programming (Java)
◾Database Theory and Application
◾Foundations of Bioinformatics
◾Omics and Systems Approaches in Biology
◾These 4 courses are obligatory for those taking the MSc degree and the PgDip; they are also obligatory for those with no prior programming experience taking the PgCert.
◾60-credit summer research project lasting 14 weeks - this is also obligatory for those taking the MSc programme; normally this will be with one of the research laboratories in Glasgow associated with the programme, but there is also the opportunity to study in suitable laboratories in other parts of the world.

Optional courses include:
◾RNA-seq and next generation transcriptomics
◾Metagenomics
◾Pathogen Polyomics
◾Using Chemical Structure Databases in Drug Discovery for Protein Targets
◾Identification of disease-causing genetic variants
◾A range of more general biology and computing biology courses are also available in semester 2.

Career prospects

Most of our graduates embark on a research career path here in the UK or abroad using the skills they've acquired on our programme - these skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science. A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - e.g. computing biology jobs in biotechnology/biosciences/neuroinformatics/pharma industry. Some of our graduates have entered science-related careers in scientific publishing or education; others have gone into computing-related jobs in non-bioscience industry or the public sector.

Read less
This advanced Master's programme in Mobile Application Development prepares students to develop applications for these devices, equipping you to become highly skilled professionals for the Mobile Industry with the latest skill set. Read more
This advanced Master's programme in Mobile Application Development prepares students to develop applications for these devices, equipping you to become highly skilled professionals for the Mobile Industry with the latest skill set.

The programme combines technology, interface design and application development for mobile platforms, with a particular emphasis on developing iPhone and iPad apps and creating apps with high usability and reliability.

On completion of the course, you will have gained skills in the latest technologies in this rapidly expanding and developing field.

Visit the website https://www.kent.ac.uk/courses/postgraduate/257/mobile-application-design

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting new field of digital media.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

The MSc begins in late September and finishes in September of the following year, and consists of approximately six months of coursework followed by a short period reserved for examinations and a four-month project.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL880 - HCI For Mobiles (15 credits)

EL881 - Android Application Design (15 credits)
This module is concerned with the design, implementation and testing of applications for the Android operating system. Students will work at all stages of the development life-cycle from inception to testing, whilst considering usability and device capabilities for a mobile application capable of meeting a functional specification.

EL882 - iPhone Application Design (15 credits)
This module is concerned with the design, implementation and testing of applications for the iPhone. Students will work at all stages of the development life-cycle from inception to testing, whilst considering usability and device capabilities for a mobile application capable of meeting a functional specification.

EL883 - Mobile Web Development (15 credits)

EL884 - Mobile Application Design Project (30 credits)
A mobile application will be developed for a platform agreed between the student and the supervisor either in an industrial context or within the School.

EL885 - Research Methods and Project Design for Mobile Apps (15 credits)

CO871 - Advanced Java for Programmers (15 credits)
This module provides for well-qualified computer science students entering the MSc programme from a range of backgrounds. These students will have good programming skills but will not necessarily have used Java or another object-oriented language extensively. This module seeks to ensure that students have the Java and object-oriented design skills necessary for the rest of their programme.

CO881 - Object-Oriented Programming (15 credits)
This module provides an introduction to object-oriented programming using the popular Java language. It is designed for beginners who have not studied computer programming before. By the end students will be able to develop simple programmes using Java. (Note that students with substantial prior experience of programming take module CO871 Advanced Java for Programmers[1] instead.)

EL890 - MSc Project (60 credits)
A major practical system will be developed either in an industrial context or within the department. There are no formal lectures - students will undertake the work in their own time under the regular supervision of a member of the academic staff and, where appropriate, industrial collaborators.

Assessment

The project module is examined by a presentation and dissertation. The Research Methods and Project Design module is examined by several components of continuous assessment. The other modules are assessed by examinations and smaller components of continuous assessment. MSc students must gain credits from all the modules (180 credits in total). For the PDip, you must gain at least 120 credits in total, and pass certain modules to meet the learning outcomes of the PDip programme.

Programme aims

This programme aims to:

- educate graduate engineers and equip them with advanced knowledge of the technology required to deliver applications and web content to mobile devices

- produce high-calibre designers versed in modern interaction design methodology who are able to develop mobile applications with high usability

- provide you with proper academic guidance and welfare support

- create an atmosphere of co-operation and partnership between staff and students, and offer you an environment where you can develop your potential

- to strengthen and expand opportunities for industrial collaboration with the School of Engineering and Digital Arts.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build a long-term career in this important discipline.

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) has an excellent record of student employability (http://www.eda.kent.ac.uk/school/employability.aspx). We are committed to enhancing the employability of all our students, to equip you with the skills and knowledge to succeed in a competitive, fast-moving, knowledge-based economy.


Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less

Show 10 15 30 per page



Cookie Policy    X