• Cardiff University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Cranfield University at Shrivenham Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
University of Bath Featured Masters Courses
"functional" AND "medicin…×
0 miles

Masters Degrees (Functional Medicine)

We have 94 Masters Degrees (Functional Medicine)

  • "functional" AND "medicine" ×
  • clear all
Showing 1 to 15 of 94
Order by 
Our master’s program appeals to those interested in a more patient-centered approach to helping people achieve and maintain optimal wellness through focus on the whole person, rather than simply their symptoms. Read more
Our master’s program appeals to those interested in a more patient-centered approach to helping people achieve and maintain optimal wellness through focus on the whole person, rather than simply their symptoms.

Highlights:

- Accredited program offered in collaboration with the Institute for Functional Medicine (IFM)
- Rigorous, clinically-applicable curriculum that is continually reviewed and updated with new research and findings
- 100 percent online format with flexible schedule options
- Engaging online learning experience featuring distinguished and dedicated instructors and an expert support network to reinforce clinical and academic skills
- Program satisfies educational requirements to sit for many national nutrition certification exams

Don’t miss your chance to enroll in our spring term!

MISSION

The mission of the UWS master’s in human nutrition and functional medicine (HNFM) program is to prepare learners to serve as outstanding health care clinicians, consultants, educators, administrators and researchers in the field of human nutrition and functional medicine.

PROGRAM

Our clinically-oriented human nutrition and functional medicine program is the only fully accredited master’s degree in functional medicine, having been granted regional accreditation from the Northwest Commission on Colleges and Universities, the highest level of academic accreditation available in the U.S. This program is 100 percent online as offered as a collaborative endeavor between UWS and the Institute for Functional Medicine (IFM), the organization which founded and developed the key functional medicine concepts used today.

Functional medicine is a science-based, patient-centered and systems-oriented approach to helping people achieve and maintain excellent health. This is accomplished primarily through natural methods, with diet and nutrition as a central focus. It is a forefront model for health care practice that seeks to address the causes of disease and dysfunction rather than suppressing symptoms. Founded on a holistic view of health, functional medicine delves deep into the biochemical and genetic individuality of each patient.

Why choose UWS for a master’s in nutrition?

This program includes advanced instruction in clinical nutrition, similar to other master’s level nutrition programs, but it goes far beyond by also presenting extensive educational content on functional medicine principles and practices derived from the Institute for Functional Medicine. These include important interdisciplinary and evidence-based perspectives, patient assessments and clinical interventions designed to enhance the function of the whole person.

It is primarily a clinically focused degree, with emphasis on treating individual or multiple conditions and their risk factors using dietary and nutritional interventions. Every course contains elements of clinical assessment and diagnosis. There is also a strong focus on wellness promotion and general health in order to meet the clinician’s primary goal of preventing disease and metabolic dysfunction before they occur.

SCHEDULE

The program consists of 50 quarter-credits of graduate coursework (33 semester credits) and can be completed in seven quarters (under two years) if taken at the recommended pace of 7-8 credits (usually two courses) per quarter, though students may move more quickly or more slowly through the program. We recognize that the life situations of our students vary considerably in terms of their family, employment and community commitments, thus we are flexible with regard to speed and prefer that students take the time they need in order to learn the material well.

Additionally, it is possible to take a leave of absence for a quarter or more if needed. As long as the intended schedule is communicated with the registrar, it is possible to extend the program to better suit a student’s individual needs.

Classes are admitted twice per year, with Fall (October) and Spring (April) starts.

Read less
Are you interested in broadening your skills in Sports Medicine?. This Masters course is designed to provide enthusiastic professionals with practitioner-led training in the Sport and Exercise Medicine (SEM). Read more

Are you interested in broadening your skills in Sports Medicine?

This Masters course is designed to provide enthusiastic professionals with practitioner-led training in the Sport and Exercise Medicine (SEM). We are based in Yorkshire, home to the highest concentration of Sport and Exercise Medicine trainees and consultants in the UK. This is a flexible course compromising of blended learning opportunities suitable for applicants in full-time employment.

Benefits:

  • Provides specialised knowledge in sport and exercise medicine disciplines; functional sports anatomy, clinical assessment, musculoskeletal (MSK) medicine, sports injuries, exercise physiology and health, sports nutrition, physical activity and health, exercise prescription.
  • Strong emphasis on the development of technical skills necessary for SEM practice
  • Hands-on training in MSK clinics and pitch-side experience.
  • Access to brand new sports facilities and labs.
  • Wide range of supervised practical experience available via club placements and clinics
  • Extensive employment opportunities exist within: NHS Musculoskeletal, private sports medicine clinics and sports clubs

Sports and Exercise Medicine is now a recognised training route by the GMC for clinicians. SEM is a key deliverable in new government strategies, demand for training has increased with portfolio GPs and GPwSI specifically interested in training for Sports Medicine, and an increasing expectation amongst professional sports clubs that team doctors should have undergone structured training programmes to Masters Level.

Learn from industry experts

Dr Dane Vishnubala is the Curriculum Director for this course; he is a Sport and Exercise Doctor and General Practitioner (MRCGP) with 13 years Exercise Prescription experience.

"The University of Leeds has one of the best Sports Science departments in the UK and it's got one of the oldest medical schools as well. If you combined the two then you have a very interesting course led by some very high ranking individuals within this sector"

Dr Jon Powers is the Placement Director on this course; his current role in elite sport is working for the Football Association as England Men's Team Performance Medicine Doctor.

"The flexibility of the course allows you to continue doing a full time job whilst working around University studies without having huge amounts of face to face commitment at the University. The placements we have arranged mean that most of the clinical learning will be done in a real life sporting environment rather than in a lecture."

Course content

This Masters is available as both a full time course and as a two year part time course.

During your studies you’ll focus on the following modules:

  • Functional sports anatomy and clinical assessment
  • Musculoskeletal medicine and sports injuries
  • The sport and exercise medicine practitioner
  • Exercise physiology, health and sports nutrition
  • Physical activity, health and exercise prescription
  • Project work and dissertation

You’ll attend a two-day Immediate Care in Sport course in your induction week and arrange MSK clinics and club placements to give you the opportunity to apply your knowledge through practical experience.

You’ll also have access to our brand new sports facilities and labs, where Olympic athletes train.

The course will equip you with strong team working skills through its interdisciplinary approach to training. You’ll be equipped to work in teams of professionals with complimentary expertise such as strength and conditioning, team coaches, physiotherapists and acute injury settings.

Compulsory modules

  • Musculoskeletal Medicine and Sport Injuries 30 credits
  • Functional Sports Anatomy and Clinical Assessment 20 credits
  • The Sport and Exercise Medicine Practitioner I 15 credits
  • Project Work and Dissertation 60 credits
  • Exercise Physiology, Health and Sports Nutrition 20 credits
  • Physical Activity, Health and Exercise Prescription 20 credits
  • The Sport and Exercise Practitioner II 15 credits
  • Project Work and Dissertation 60 credits

For more information on typical modules, read Sport and Exercise Medicine MSc full time in the course catalogue

For more information on typical modules, read Sport and Exercise Medicine MSc part time in the course catalogue

Learning and teaching

Attendance is compulsory and will be approximately one and a half days a month (you will not be expected to be in every week). Recorded lectures of shared modules with other courses will be available to be viewed online, along with specified eLearning material.

Seminars will be recorded, where appropriate. Some practical sessions, group tutorials and specific teaching sessions will be compulsory.

Placements at appropriate professional clubs and NHS clinics will be organised, with some flexibility to negotiate clinic dates and times, and contacts will be provided for self-organised additional experience opportunities. Predominantly we use a case based approach; the eLearning each week will have a relevant case or scenario identified, and required reading and practical tasks set.

Assessment

There will be a variety of assessments, appropriate for vocational character of the course and the nature of the subjects studied. These will include

  • Tutor observed assessment (case study presentation)
  • Reflective log
  • Summative MCQ
  • Short essay
  • Clinical competency sign-off
  • Pre-hospital qualification
  • eLearning completion (eg FIFA diploma in football medicine, World Rugby concussion, WADA doping course)
  • OSCE stations
  • Project dissertation.

You'll have access to a wide range of supervised experience via placements. They are available at NHS Bradford & Airedale MSK clinics; York City FC, Leeds United FC, Hull City FC; options also include GB Swimming, GB Basketball and more.

Career opportunities

This course is designed to train enthusiastic professionals wishing to pursue a career in the relatively new discipline of Sports and Exercise Medicine (SEM). With this Masters, you'll be able to apply what you have learned to any physical activity, exercise or sporting event that requires qualified SEM cover, with immediate effect.

Overall, the course aims to equip you with the skills and expertise to enhance the value of previous training to those organisations.

Employment opportunities exist within NHS musculoskeletal and private sports medicine clinics, as well as sports clubs. Sports and Exercise Medicine is now a recognised training route by the GMC for clinicians.



Read less
OVERVIEW. The MSc in Experimental Medicine offers advanced research training in a broad range of laboratory based biomedical sciences. Read more

OVERVIEW

The MSc in Experimental Medicine offers advanced research training in a broad range of laboratory based biomedical sciences.

MSc in Experimental Medicine is designed for students wishing to pursue a career in experimental medicine, whether it is in academia, clinical practice, industry or government. The programme will also provide an excellent platform for progression to PhD programmes either in Queen’s or worldwide. 

MSc in Experimental Medicine will develop a strong fundamental understanding of high quality biomedical research, including experimental design and execution, data management and interpretation, and scientific communication, including publishing, presentation, and use of social media. 

The programme offers comprehensive research training with access to over 40 research groups and the state-of-the-art research facilities at the Centre for Experimental Medicine (CEM). Research facilities include Central Technology Units for Imaging and Genomics which are leading the way in research excellence and innovative healthcare. 

Experimental medicine aims to identify mechanisms of pathophysiology of disease, and demonstrate proof-of-concept evidence of the efficacy and importance of new discoveries or treatments. There is an increasing need for graduates who can undertake basic and clinical research, and translate it into improved medical treatments for patients.

This research-intensive MSc programme in Experimental Medicine will equip you with the rigorous research skills, and the innovative mentality to tackle the major medical and therapeutic challenges of the 21st century.

For further information email  or send us a message on WhatsApp

EXPERIMENTAL MEDICINE HIGHLIGHTS

The strong links between the Centre for Experimental Medicine and the biotech or biopharmaceutical sectors provides a stimulating experimental and translational environment, while also expanding your career opportunities.

PROFESSIONAL ACCREDITATIONS

  • You will have an opportunity to obtain a formally accredited certificate of training in good clinical practice (GCP) via the Inflammation, Infection and Immunity module. Students working with animal models of disease will also receive official training in animal handling, leading to a UK official animal handling personal license.

WORLD CLASS FACILITIES

  • You will be taught and mentored within the Centre for Experimental Medicine: a brand new, purpose-built institute at the heart of the Health Sciences Campus, boasting state-of-the-art research facilities. The programme offers comprehensive research training with access to over 40 research groups and the state-of-the-art research facilities at the Centre for Experimental Medicine (CEM). Research facilities include Central Technology Units for Imaging and Genomics which are leading the way in research excellence and innovative healthcare.

STUDENT EXPERIENCE

  • A strength of this MSc incorporates transdisciplinary elements throughout the degree programme, which contribute to the delivery of innovative postgraduate education and research training. Central to this programme is a multi-disciplinary team of academic and clinical specialists, with expertise ranging from molecular disease phenotyping, functional genomics, infectious disease biology, vascular biology, genetic epidemiology, imaging, immunology, stem cell biology and exploitation, unique pre-clinical models of disease, and patient-based investigation and clinical trials. The transdisciplinary expertise provided is complemented with programme access to state-of-the-art research facilities, including a diverse range of new and emerging technologies in genomics, advanced imaging, and patient-orientated research tools

COURSE STRUCTURE

Semester 1

It comprises 3 months of intensive teaching, which includes essential research skills followed by specialist chosen modules entitled “Infection & Immunity”, or “Diabetes and Cardiovascular Disease”. The remaining period will provide a unique opportunity to focus for 8 months on an extensive research project chosen from a large panel of projects offered by Principal Investigators in the CEM in one of the above themes. This period will be interspersed with monthly training to develop project-specific transferable skills, such as oral and poster presentation, and scientific writing.Semester 2

Semester 2 

You will specialise in one of these two research streams:

  • The Diabetes and Cardiovascular Disease stream is a specialised pathway within the MSc in Experimental Medicine which builds on our major strategic research strength in this globally significant area. This stream contains two complementary taught modules focusing on fundamental, experimental and translational principles of diabetes and cardiovascular disease, thereby providing good understanding of the pathophysiology of the diseases as well as current and experimental treatments. These modules will instil an appreciation of how this knowledge is being applied in the search for novel diagnostic, prognostic and therapeutic approaches for the clinical management of cardiovascular disease in diabetic patients, which is the biggest killer worldwide. Within this MSc programme, we offer a wide range of complementary experimental and translational research projects focused on the major cardiovascular complications of diabetes, including retinopathy, cardiomyopathy, peripheral vascular disease, nephropathy and pre-eclampsia (in pregnancy). 
  • The Infection and Immunity stream is another specialised pathway within the MSc in Experimental Medicine programme and exposes students to exciting concepts and their application in the field of infection biology, antimicrobial resistance, inflammatory processes and the role of immunity in health and disease. There is a strong emphasis on current developments in this rapidly accelerating field of translational medicine. Students will learn how the immune system maintains health, identifies and responds to invading pathogens or allergens and prevents repeated infections through strong adaptive immune responses. Lectures will provide an in-depth understanding of the immune system, an overview of research models used, key areas of research in inflammatory and immune-mediated pathology, and how to use this basic knowledge to identify and test new therapies. There is a considerable emphasis on clinical trial methodology within this stream and students will be introduced to the concepts of clinical trials and approaches to designing a trial to test novel methods to diagnose/prevent or treat illness.

RESEARCH PROJECT

You’ll undertake a project at the Centre of Experimental Medicine, QUB, relating to the research stream that you have chosen.

For further information email  or send us a message on WhatsApp



Read less
Our Sport and Exercise Medicine (SEM) programme is internationally renowned for providing high quality distance learning exclusively to doctors. Read more

Our Sport and Exercise Medicine (SEM) programme is internationally renowned for providing high quality distance learning exclusively to doctors. The programme is designed to provide relevant knowledge for doctors involved, or wishing to be involved, in the full or part-time management of recreational and elite athletes. By studying this programme you will develop practical skills that can be applied to both primary and specialist care.

The highly interactive, flexible, online learning and hands-on clinical teaching provide you with expert knowledge and skills, while also enabling you to remain in practice.

Programme features:

- Flexible and online, allowing you to study alongside your clinical practice.

- Recognised by the Faculty of Sport & Exercise Medicine (FSEM) (http://www.fsem.co.uk/).

- You will become part of an international online community of SEM specialists.

- A problem-solving and reflective approach to sport and exercise medicine.

- Benefit from a reduced membership rate to the British Association of Sport and Exercise Medicine (BASEM) (http://www.basem.co.uk/) for the first year.

Programme structure

This is a flexible programme. The Diploma can be completed in two years, but students have the option of taking up to four years. The MSc can be completed in 3.5 years: again, students have the option of taking up to 5 years.

The following events take place on the University of Bath campus:

- Induction Event (two days) – Year One (September)

- Sports Science Residential Week - Year One (January)

- Clinical Residential Week - Year Two (June)

- OSCE (Examination Event) (1 day) – Year Two (June or October)

Years one and two (Diploma):

- Sport & Exercise Medicine in Practice 1 - 6 Credits (ongoing throughout Diploma)

- Sport & Exercise Medicine in Practice 2 - 6 Credits (ongoing throughout Diploma)

- Sports Doctor - 6 Credits (3 month unit)

- Exercise Physiology - 6 Credits (3 month unit)

- Functional Anatomy and Sporting Movement Analysis - 12 credits (6 month unit)

- Sports Injuries & Rehabilitation - 12 credits (6 month unit)

- Psychology of Sport and Exercise - 6 Credits (3 month unit)

- Exercise for Health - 6 Credits (3 month unit)

Year three (MSc):

- Research Project Design

- Sport and Exercise Medicine Research Project

Learning and teaching

Our programmes are modular, consisting of self-contained units, taught and assessed on a semester basis. As you progress through each semester and successfully pass the examinations, you will receive credit for the units, thus providing you with a clear indication of your academic progress.

The majority of the content of the programme is delivered online to allow you to engage in flexible study alongside your clinical practice. To complement the online teaching there is a face-to-face induction event at the University and residential teaching weeks in the first and second years of the programme. Reflective, practice-based elements are provided through professional experiential learning and online virtual workshops.

Methods of assessment

You will be assessed through written assignments and case studies, a portfolio of clinical experience, the OSCE Examination and a Dissertation. Each unit is assessed individually.

Assignments are delivered online and must also be submitted online. The formative assessment includes moderated online discussions, self-assessment questions and online multiple choice tests.

Summative assessment will vary between units but will typically include some of the following:

Compilation of portfolio of evidence [SEM in Practice]

OSCE examination [SEM in Practice]

Maintaining a reflective practitioner portfolio [SEM in Practice]

Essays

Case studies

Short answer questions

Recorded consultations

- Accreditation of Prior Learning (APL):

If you have a previous qualification, or undertaken postgraduate units from another institution, you may be eligible to transfer credit for this prior learning.

Depending on the programme of study, you can gain APL for up to 50% of the total credits required (this credit must have been obtained within the previous five years).

- Accreditation of Prior Experiential Learning (APEL)

You may also apply for APEL by submitting a portfolio of evidence, demonstrating that you have successfully achieved the learning outcomes for the specific unit(s) you seek exemption from.

We recommend you discuss this with the Director of Studies first to ensure this is suitable, as creating your portfolio can be very time consuming.

We will not permit exemptions of fractional units, and so the minimum threshold for the applications of APEL procedures will be a single, free standing unit (including three credit units). The maximum threshold for exemption will normally be 50% of the total credits required for a programme of study, for example, a 45-credit exemption towards a 90-credit Masters degree.



Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
We are pleased to deliver an innovative Level 7 Masters, MCh in Surgery with four individual awards in the specialist surgical pathways of. Read more

We are pleased to deliver an innovative Level 7 Masters, MCh in Surgery with four individual awards in the specialist surgical pathways of:

-Orthopaedics and Regenerative Medicine

-Otorhinolaryngology

-Urology

-Ophthalmology

Orthopaedics and Regenerative Medicine

The specialist surgical field of orthopaedics has been central in the use of regenerative medicine. The focus in modern orthopaedics is changing as research exposes ever greater knowledge widening the spectrum of therapeutic options encompassing reconstruction, regeneration and substitution (Kim, S-J. and Shetty, A.A., 2011; Shetty, A.A. and Kim, S-J., 2013; Kim, J-M., Hans, J.R. and Shetty, A.A., 2014).

Research methods, studies in regenerative medicine and other emerging technologies feature poorly in the standard curriculum of the orthopaedic trainee. This limits the quality of research output, reduces the potential for innovation and slows the rates of adoption of transformative treatments for patients, while leaving the surgeon unable to critically evaluate new treatments.

This programme targets this deficiency with a strong emphasis on research methodology and critical analysis that is based on a platform formed of in-depth scientific knowledge and proven by translation into clinical practice.

Otorhinolaryngology

Otorhinolaryngology (Ear, Nose and Throat surgery – ENT) is a diverse surgical specialty that involves the management of both children and adults. In contrast to other surgical specialties the management of a significant number of conditions requires a non-surgical approach. An understanding of the pathogenesis and progression of pathology is essential. This surgical specialty is rapidly evolving. Significant progress has been made through regenerative medicine and technology, some locally through mobile platforms.

Entry into Otorhinolaryngology is competitive. This is often despite the fact that whilst at University many medical students may have had little, if any, formal training in ENT. Some junior trainees entering the specialty have had limited exposure which may affect their decision making.

The MCh in Surgery (Otorhinolaryngology) course aims to prepare a trainee to meet the challenges of the current and future challenges in Otorhinolaryngology. It provides an evidence based approach for the management of patients, and provides a foundation for those who will eventually undertake formal exit examinations in this specialty.

Urology

Urology is a surgical specialty dealing with the problems associated with the urinary tract and it deals with cancer, non-cancer, functional problems and diseases (Khan, F., Mahmalji, W., Sriprasad, S. and Madaan, S., 2013). In urology many problems can be managed with medications (for example treating erectile dysfunction and lower urinary tract symptoms have become largely by pharmaceutical agents) and this underpins the importance of understanding the basic science and molecular biology as applied to the specialty.

This surgical field is constantly evolving with technology being the main driver. Improvements have been made through lasers, optics, gadgets and robotics (Jeong, Kumar and Menon, 2016). Regenerative medicine is fast evolving in urology. The architectural simplicity of hollow structures (such as bladder) and tubes (such as the ureters and urethra) make them particularly amenable.

Despite the fact that many medical students may not have had a urology placement during their training (Derbyshire and Flynn, 2011) the specialty is very much sought after. Getting into urological training is very competitive. Doctors typically undertake research, obtain higher degrees and publish papers in peer-reviewed journals in order to advance their surgical training. A MCh in Surgery (Urology) will therefore be significantly valuable to you for not only your professional knowledge and skills but also to help you reach your goals of becoming a Consultant.

The MCh in Surgery (Urology) will prepare you to meet the challenges of current and future urologic medicine and surgery. All this provides a platform for further advancement of your scientific knowledge, innovative and forward thinking, career progression and camaraderie with fellow students.

Ophthalmology

Ophthalmology is a surgical specialty dealing with disorders of the eye and visual pathways. Although the treatment of eye conditions involves a range of therapeutic options, including medicine, laser and surgery, the surgical field in particular is constantly evolving with technology being the main driver. Improvements are being made through lasers, optics, and minimally invasive surgical procedures with enhanced outcomes for patients.

There is very little ophthalmology teaching in modern medical school curricula. However, the speciality is highly sought after with intense competition for a limited number of training positions. Therefore, doctors typically undertake research, obtain higher degrees and publish papers in peer-reviewed journals in order to advance their surgical training and improve their chances of achieving a training number. A MCh in Surgery (Ophthalmology) will provide you with a solid foundation and valuable qualification to enhance selection onto a career pathway in this highly competitive field, culminating in a Consultant appointment. The MCh in Surgery (Ophthalmology) will prepare you as a trainee surgeon to meet the challenges of current and future ophthalmology. Specifically, you will be taught to critically analyse and evaluate data through learning research methodology. You will then learn to apply this to clinical practice and to evaluate the different treatment options and new technologies with respect to patient benefit and outcomes. There will be the opportunity of studying a range of conditions and treatments in depth. All this provides a platform for further advancement of your scientific knowledge, innovative and forward thinking. A unique aspect of the MCh programme is the teaching of regenerative medicine. Regenerative medicine is fast evolving in ophthalmology, and this programme will help you to appreciate this area of medicine as applied to eye conditions. This is especially so in retinal conditions, optic neuropathies and glaucoma. The knowledge gained is critical not just for the local students from the United Kingdom but to any trainee from anywhere in the world.

The theme of regenerative medicine will run through each of the specialist pathway modules with its application, research and emerging technologies being critically explored. Although a key component and theme through this programme will be regenerative medicine, a further theme that will run through each of the modules is the teaching of practical surgical skills in each of the pathways and modules through simulation



Read less
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine. Read more
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine.

This course aims to give participants an indepth understanding of the emerging field of molecular medicine which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that of molecular interactions.

The course aims to provide students with an understanding of the molecular basis of human disease and its implications for the practice of clinical medicine and research in the life sciences. The course will ensure that students from all disciplines have the skills necessary to conduct research and critically evaluate the scientific and medical literature.

The course includes lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and to disease processes. Modules on molecular signalling and therapeutics, bioinformatics and ethical-legal aspects of the discipline are included, as well as literature reviews, laboratory practicals and a laboratory project.

The course is available in a one-year, full-time and a two-year, part-time format. It consists of lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and more specifically to disease processes such as cancer, immune dysfunction, and diseases with an inherited component. The course content includes molecular signalling and therapeutics, molecular and population genetics, nanoscience, and high content cell analysis. There is a core, 'Research Skills' module which encompasses bioinformatics and ethical-legal aspects of the emerging discipline, literature reviews, and laboratory practicals in basic molecular and cellular techniques. Candidates will complete a laboratory project of three months (full-time) or six months (part-time) duration. Candidates must also complete the taught module, Molecular Mechanisms of Human Disease I. This course provides the applicant with state-of-the-art information and critical analysis of: The human genome at a molecular level, the integration of molecular and cellular biology in relation to human diseases; the molecular basis of human genetic disease; the molecular interactions between microbiological pathogens and the human host; the technology currently employed in researching molecular medicine; the molecular basis of common human inflammatory diseases and malignancies; the utilisation of knowledge on the molecular basis of human disease in planning and design of novel therapies, using pharmacological agents or gene therapy; the ethical and legal aspects of molecular medicine as it impinges on clinical practice. You will also gain a working appreciation of molecular and cellular biology at the practical level and development of the ability to perform independent research with the ability to apply bioinformatic and computational techniques in medical and biological research, and information retrieval. The student is examined on the basis of a submitted critical literature review essay, a written examination, assessment of laboratory practicals and the writing of a dissertation based on a research project. Candidates from health science (medical, dental, veterinary), biological science and other science disciplines (e.g. chemical or pharmacy), are invited to apply.

Read less
This programme aims to provide participants with an in-depth understanding of the emerging field of molecular medicine, which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that is, at the level of molecular interactions. Read more
This programme aims to provide participants with an in-depth understanding of the emerging field of molecular medicine, which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that is, at the level of molecular interactions. The Diploma in Molecular Medicine is designed to make available a high quality course to those individuals who cannot avail of a full-time programme, due to the high demands it makes on a candidate's time. The diploma may therefore be an attractive option for, among others, people working in business, clinical industry, or other disciplines, who wish to gain a comprehensive knowledge in this area with a view to progressing professionally, or going on to do a higher degree.

This programme offers a comprehensive and thoroughly up-to-date overview of the area, which provides participants with the skills necessary to critically evaluate the literature and understand the central concepts of molecular medicine, such as the molecular basis of human disease and its implications for the practice of clinical medicine and research in the life sciences. The course includes lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and to disease processes. Advanced modules cover topics such as molecular oncology, signalling, development and therapeutics, immunology and infectious agents among others. A selection of modules on issues such as bioinformatics, research methodology, statistics and ethicallegal aspects of the discipline may be undertaken on an optional basis.

Students choose a minimum of 10 units totalling a minimum of one hundred contact hours teaching. Students are also required to complete a written review of a relevant part of the literature. Students are examined on the basis of the submitted critical literature review essay, and written examinations of the modules taken. Examinations are undertaken at the end of each term.

Candidates should normally have a minimum of a 2.1 honors degree or equivalent in a biological science; a clinical science such as medicine, dentistry or veterinary; a pharmaceutical science such as pharmacy, or related area. However individuals with other appropriate or industrial experience (for example those working in the life sciences sector) will also be considered. The candidate may be interviewed to establish his/her suitability for the course.

Read less
ENGINEERING THE FUNCTIONAL RESTORATION OF TISSUES AND ORGANS. Combine fundamental disciplines such as stem cell biology, materials science and biomechanics with more applied disciplines such as cell therapy, implantations and imaging. Read more

ENGINEERING THE FUNCTIONAL RESTORATION OF TISSUES AND ORGANS

Combine fundamental disciplines such as stem cell biology, materials science and biomechanics with more applied disciplines such as cell therapy, implantations and imaging. New collaborations amongst these disciplines assist in innovation in fundamental life sciences research but also in new patient therapies and clinical applications with the ultimate goal to restore lost tissue or organ function. Sounds interesting? Join our programme!

GAIN DEEPER INSIGHT THROUGH A UNIQUE COLLABORATION

Do you want contribute to current and future health care applications? Join the rapidly emerging field of regenerative medicine! Become a multidisciplinary scientists and help stimulate research at the interface between biomedical sciences, engineering and clinical application.

Regenerative Medicine and Technology is a cooperation between Utrecht University, the University Medical Center Utrecht and the Faculty of Biomedical Engineering at Eindhoven University of Technology (TU/e). The combined expertise, various state-of-the-art laboratories and research groups equip you with an understanding of processes ranging from specific cell culturing techniques, the use of biomaterials to computer models and imaging modalities.

WHY YOU SHOULD STUDY REGENERATIVE MEDICINE AND TECHNOLOGY AT UTRECHT UNIVERSITY

  • Learn to combine a technological (TU/e), clinical (UMC Utrecht) and biomedical (Utrecht University) point of view in multidisciplinary research projects.
  • Worldwide partners allow you to do your internship at prestigious partner institutions such as the Massachusetts Institute of Technology (MIT), King’s College London and the Karolinska Institute.
  • Collaborate to address current health care problems with a multidisciplinary approach at our state-of-the-art Utrecht Regenerative Medicine Center.
  • Take part in a lively research environment in academia, consultancy companies or industry during your six to nine month internships.
  • Take theoretical courses and seminars as well as master classes led by specialists in the field in both Eindhoven and Utrecht. The courses are interactive, and challenge students to further improve their communication, writing and presenting skills.
  • Create your own personal Master’s programme by choosing and planning your electives and internship projects according to your ambitions and interest.


Read less
Overview. The MSc in Biomedical Engineering at Keele is a multidisciplinary course that will prepare you for an exciting career across a wide range of areas of engineering in medicine, be that in academic or industrial research, the medical devices sector or in the clinical arena. Read more

Overview

The MSc in Biomedical Engineering at Keele is a multidisciplinary course that will prepare you for an exciting career across a wide range of areas of engineering in medicine, be that in academic or industrial research, the medical devices sector or in the clinical arena. The course is professionally accredited and suitable for people with both engineering and life science backgrounds, including medicine and subjects allied to medicine.

Course Director: Dr Ed Chadwick ()

Studying Biomedical Engineering at Keele

The course will cover the fundamentals of engineering in medicine, introduce you to the latest developments in medical technology, and expose you to the challenges of working with patients through clinical visits. Learning and teaching methods include lectures and demonstrations from medical and engineering specialists, practical classes using state-of-the-art facilities and seminars with leading national and international researchers.

Graduate destinations for our students could include: delivering non-clinical services and technology management in a hospital; designing, developing and manufacturing medical devices in the private sector; working for a governmental regulatory agency for healthcare services and products; undertaking further postgraduate study and research (PhD); pursuing a university-based, academic research career; or providing technical consultancy for marketing departments.

See the website https://www.keele.ac.uk/pgtcourses/biomed/

Course Accreditation by Professional Body

The course is accredited by the Institute for Physics and Engineering in Medicine, whose aims are to ensure that graduates of accredited programmes are equipped with the knowledge and skills for the biomedical engineering workplace, be that in industry, healthcare or academic environments. Accreditation gives you confidence that the course meets strict suitability and quality criteria for providing Masters-level education in this field.‌‌‌

About the department

Delivered through the Keele School of Medicine and the Research Institute for Science and Technology in Medicine (ISTM), the course dates as far back as 1999, when it was established in partnership with Biomedical Engineering and Medical Physics at the University Hospital. Most teaching now takes place in the Guy Hilton Research Centre, a dedicated research facility located on the hospital campus. The medical school is one of the top-ranked in the UK, and the research institute has an international reputation for world-leading research.

The centre was opened in 2006 and offers state-of-the-art equipment for translational research including newly-developed diagnostic instruments, advanced imaging modalities and additive manufacturing facilities. Its location adjacent to the university hospital ensures that students experience real-world patient care and the role that technology plays in that. Students also have access to advanced equipment for physiological measurement, motion analysis and functional assessment in other hospital and campus-based laboratories. The School embraces specialists working in UHNM and RJAH Orthopaedic Hospital Oswestry, covering key medical and surgical subspecialties.

The course runs alongside its sister course, the MSc in Cell and Tissue Engineering, and an EPSRC and MRC-funded Centre for Doctoral Training, ensuring a stimulating academic environment for students and many opportunities for engaging with further study and research.

Course Aims

The aim of the course is to provide multidisciplinary Masters level postgraduate training in Biomedical Engineering to prepare students for future employment in healthcare, industrial and academic environments. This involves building on existing undergraduate knowledge in basic science or engineering and applying it to core principles and current issues in medicine and healthcare.

Specifically, the objectives of the course are to:

- provide postgraduate-level education leading to professional careers in biomedical engineering in industry, academia and a wide range of healthcare establishments such as medical organisations, medical research institutions and hospitals;

- provide an opportunity for in-depth research into specialist and novel areas of biomedical and clinical engineering;

- expose students to practical work in a hospital environment with hands-on knowledge of patient care involving technological developments at the forefront of the field;

- introduce students to exciting new fields such as regenerative medicine and novel technologies for physiological monitoring and diagnostics.

Teaching and Learning Methods

The course is taught through subject-centred lectures and seminars, supported by tutorials and practical exercises. Collaborative learning and student-centred learning are also adopted giving widespread opportunity for group work and individual assignments. Students are required to conduct extensive independent study, and this is supported by full access to two libraries, online journal access and a suite of dedicated computers for exclusive use by MSc students on the course. In addition, students are supported by the guidance of a personal tutor within the department, as well as having access to university-wide support services. This includes English language support where appropriate.

Assessment

Modules will be assessed by a mixture of assessment methods, including lab reports, essays, and presentations, and final examination. This ensures the development of a range of transferrable employability skills such as time management and planning, written and verbal communication and numeracy as well as technical and subject-specific knowledge. The project dissertation forms a major component of the student’s assessed work.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/



Read less
Overview. Located within a European Centre of Excellence for Tissue engineering, and based on Keele’s University’s local hospital campus at the Guy Hilton Research Centre, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. Read more

Overview

Located within a European Centre of Excellence for Tissue engineering, and based on Keele’s University’s local hospital campus at the Guy Hilton Research Centre, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. The research centre is also an EPSRC Doctoral Training Centre for Regenerative Medicine, an Arthritis UK Centre and a UK Regenerative Medicine Platform Research Hub. This multidisciplinary environment enables close interaction with leading academics and clinicians involved in cutting-edge, and clinically transformative research.

Course Director: Dr Adam Sharples ()

Studying Cell and Tissue Engineering at Keele

Our MSc Cell and Tissue Engineering programme has tracked alongside the strongly emergent global Regenerative Medicine industry and will prepare you for an exciting future within a range of medical engineering areas, be that in academic or industrial research, medical materials, devices, or therapeutics sectors, or in the clinical arena. The modular structure to the course enables flexibility and personalisation to suit your career aspirations, build upon strengths and interests and develop new understanding in key topics.

Graduate destinations for our students could include: undertaking further postgraduate study and research (PhD); pursuing a university-based, academic research career; providing technical consultancy for marketing and sales departments within industry; working within biomedical, biomaterials, therapeutic, life science and regenerative medicine industries or working for a governmental regulatory agency for healthcare services and products.

See the website https://www.keele.ac.uk/pgtcourses/cellandtissueengineering/

‌‌The course provides support from the basics of human anatomy and physiology, through to development of novel nanotechnologies for healthcare. Due to the teaching and research involvement of clinical and academic staff within the department, there are exciting opportunities to be exposed to current clinical challenges and state-of-the-art developments. Clinical visits and specialist seminars are offered and students will be able to select dissertation projects that span fundamental research to clinical translation of technologies – a truly ‘bench to bedside’ approach.

Learning and teaching methods include lectures and demonstrations from medical and engineering specialists, practical classes using state-of-the-art facilities and seminars with leading national and international researchers. Full-time study will see the course completed in 12 months; part-time study will allow you to complete it over two years.

About the department

Delivered through the Keele School of Medicine and the Research Institute for Science and Technology in Medicine (ISTM), the course dates as far back as 1999, when it was established in partnership with Biomedical Engineering and Medical Physics at the University Hospital. Most teaching now takes place in the Guy Hilton Research Centre, a dedicated research facility located on the hospital campus. The medical school is one of the top-ranked in the UK, and the research institute has an international reputation for world-leading research.

The centre was opened in 2006 and offers state-of-the-art equipment for translational research including newly-developed diagnostic instruments, advanced imaging modalities and additive manufacturing facilities. Its location adjacent to the university hospital ensures that students experience real-world patient care and the role that technology plays in that. Students also have access to advanced equipment for physiological measurement, motion analysis and functional assessment in other hospital and campus-based laboratories. The School embraces specialists working in UHNM and RJAH Orthopaedic Hospital Oswestry, covering key medical and surgical subspecialties.

The course runs alongside its sister course, the MSc in Biomedical Engineering, and an EPSRC-MRC funded Centre for Doctoral Training, ensuring a stimulating academic environment for students and many opportunities for engaging with further study and research.

Course Aims

The aim of the course is to provide multidisciplinary Masters level postgraduate training in Cell and Tissue Engineering to prepare students for future employment in healthcare, industrial and academic environments. This involves building on existing undergraduate knowledge in basic science or engineering and applying it to core principles and current issues in medicine and healthcare.

Specifically, the objectives of the course are to:

- provide postgraduate-level education leading to professional careers in Cell and Tissue Engineering in industry, academia and a wide range of healthcare establishments such as medical organisations, medical research institutions and hospitals;

- provide an opportunity for in-depth research into specialist and novel areas of Biomaterials, and Cell and Tissue Engineering;

- expose students to the clinically translational environment within an active medical research environment with hands-on practical ability and supporting knowledge of up-to-date technological developments at the forefront of the field;

- introduce students to exciting new fields such as regenerative medicine, nanotechnology and novel devices for physiological monitoring and diagnostics.

Teaching and Learning Methods

The course is taught through subject-centred lectures and seminars, supported by tutorials and practical exercises. Collaborative learning and student-centred learning are also adopted giving widespread opportunity for group work and individual assignments. Students are required to conduct extensive independent study, and this is supported by full access to two libraries, online journal access and a suite of dedicated computers for exclusive use by MSc students on the course. In addition, students are supported by the guidance of a personal tutor within the department, as well as having access to university-wide support services. This includes English language support where appropriate.

Assessment

Modules will be assessed by a mixture of assessment methods, including lab reports, essays, and presentations, and final examination. This ensures the development of a range of transferrable employability skills such as time management and planning, written and verbal communication and numeracy as well as technical and subject-specific knowledge. The project dissertation forms a major component of the student’s assessed work.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/



Read less
About the course. A multi-disciplinary course, students will be introduced to the field of biomaterials, and important factors in the selection, design, and development of biomaterials for clinical applications. Read more

About the course

A multi-disciplinary course, students will be introduced to the field of biomaterials, and important factors in the selection, design, and development of biomaterials for clinical applications. You’ll develop an understanding of biomaterials science, engineering, regenerative medicine and associated specialisms.

This course will be of particular interest to students interested in facilitating their development into the medical field aiming to contribute in the health care sector.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

  • Scientific Writing and Health Informatics
  • Polymers Materials Chemistry
  • Materials for Biological Applications
  • Bio-imaging and Bio-spectroscopy
  • Tissue Engineering Approaches to Failure in Living Systems
  • Structural and Physical Properties of Dental and Bio-materials
  • Research project in an area of your choice

Examples of optional modules

  • Dental Materials Science
  • Group Projects and Developing Research
  • Tissue Structure and Function


Read less
This new Master’s course provides academic, laboratory and research training in the methods and strategies used to elucidate which and how potential targets identified through Omics technologies- genomics, proteomics, transcriptomics- may be relevant to human disease. Read more
This new Master’s course provides academic, laboratory and research training in the methods and strategies used to elucidate which and how potential targets identified through Omics technologies- genomics, proteomics, transcriptomics- may be relevant to human disease. Students will gain insight on target selection given a large data set, and the in vitro and in vivo techniques that could be applied to study an identified target in the context of disease. The emphasis will be on critical analysis of data and published information, and the design of experimental protocols/pipeline to answer specific scientific questions.

Programme structure

The course is organised as follows:
•October - February: 5-month taught section – 5 modules
•March - September: 7-month laboratory-based research project

Read less
Materials are at the forefront of new technologies in medicine and dentistry, both in preventative and restorative treatment. Read more
Materials are at the forefront of new technologies in medicine and dentistry, both in preventative and restorative treatment. This programme features joint teaching within the School of Engineering and Materials Science and the Institute of Dentistry, bringing together expertise in the two schools to offer students a fresh perspective on opportunities that are available in the fields of dental materials.

* This programme will equip you with a deep understanding of the field of dental materials and the knowledge necessary to participate in research, or product development.
* An advanced programme designed to develop a broad knowledge of the principles underlying the mechanical, physical and chemical properties of Dental Materials.
* Special emphasis is placed on materials-structure correlations in the context of both clinical and non clinical applications.
* Provides an introduction to materials science, focusing on the major classes of materials used in dentistry including polymers, metals, ceramics and composites.
* Provides up-to-date information on dental materials currently used in Clinical Dentistry and in developments for the future It covers the underlying principles of their functional properties, bioactivity and biocompatibility, and also covers specific dental materials applications such as drug delivery, tissue engineering and regulatory affairs.

Why study with us?

Dental Materials is taught jointly by staff from the School of Medicine and Dentistry (SMD), and School of Engineering and Materials Science (SEMS).

Our school of medicine and dentistry is comprised of two world renowned teaching hospitals, Barts and The London School of Medicine and Dentistry, which have made, and continue to make, an outstanding contribution to modern medicine. We are ranked sixth in the UK for medicine (Complete University Guide 2012), and Dentistry was placed at number two in the UK in last Research Assessment Exercise (2008). Our Materials Department was the first of its kind established in the UK, and was placed at number 1 in the UK in the 2011 National Student Survey.

This degree is aimed at dental surgeons, dental technicians, materials scientists and engineers wishing to work in the dental support industries, and the materials health sector generally. On completion of the course you should have a good knowledge of topics related to dental materials, and in addition, be competent in justifying selection criteria and manipulation instructions for all classes of materials relevant to the practice of dentistry.

There has been a general move away from destructive techniques and interventions towards less damaging cures and preventative techniques. This programme will update your knowledge of exciting new technologies and their applications.

* The programme is taught by experts in the field of dentistry and materials; they work closely together on the latest developments in dental materials.
* Innovations in medical practice, drug development and diagnostic tools are often tested in the mouth due to simpler regulatory pathways in dentistry.
* The programme allows practitioners the opportunity to update their knowledge in the latest developments in dental materials.

Facilities

You will have access to state-of-the-art laboratories and equipment, including:

* Cell & Tissue Engineering Laboratories; five dedicated cell culture laboratories, a molecular biology facility and general purpose laboratorie
* Confocal microscopy unit incorporating two confocal microscopes, enabling advanced 3D imaging of living cells
* Mechanical Testing Facilities
* NanoVision Centre; our state-of-the-art microscopy unit bringing together the latest microscope techniques for structural, chemical and mechanical analysis at the nanometer scale
* Spectroscopy Lab
* Thermal Analysis Lab.

Read less
Study under Australia's leading occupational researchers and make a difference to the lives of individuals and communities affected by environmental and work-related injury and illness with this practical master's degree. Read more
Study under Australia's leading occupational researchers and make a difference to the lives of individuals and communities affected by environmental and work-related injury and illness with this practical master's degree.

You will gain the skills and knowledge to prevent and manage occupational risks and related health problems. This degree provides you with the skills necessary to evaluate health problems in communities thought to be associated with industrial activities, and control related hazards and risks.

It is particularly suitable for medical practitioners, nurses, allied health personnel, scientists and occupational health and safety managers.

Most of the course is offered by off-campus learning, with compulsory block requirements each semester. The program comprises nine core units and three electives.. The core units cover OHS, epidemiology, biostatistics, chemical and biological hazards, workplace hazard assessment and control, ergonomic and physical hazards, the psychosocial work environment, environmental influences on health, safety management systems, and research methods.

You can exit early with a Graduate Diploma in Occupational and Environmental Health or a Graduate Certificate in Occupational Health if you meet the requirements.

Visit the website http://www.study.monash/courses/find-a-course/2016/occupational-and-environmental-health-2312?domestic=true

Career opportunities

Graduates may seek employment in occupational medicine, occupational nursing, management positions within industry, government or independent professional practice. This course is recognised by the Australasian Faculty of Occupational Medicine.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Faculty of Medicine, Nursing and Health Sciences

The Faculty is also home to a number of leading medical and biomedical research institutes and groups, and has contributed to advances in many crucial areas: in vitro fertilisation, obesity research, drug design, cardiovascular physiology, functional genomics, infectious diseases, inflammation, psychology, neurosciences and mental health.

Notwithstanding the relatively short history of our University, the Faculty is ranked in the top 50 in the world for its expertise in life sciences and biomedicine by the Times Higher Education and QS World University 2012 benchmarks.

Courses offered by the Faculty include medicine, nursing, radiography and medical imaging, nutrition and dietetics,emergency health studies, biomedical sciences, physiotherapy, occupational therapy, and social work. A range of research and coursework postgraduate programs is also offered.

The Faculty takes pride in delivering outstanding education in all courses, in opening students to the possibilities offered by newly discovered knowledge, and in providing a nurturing and caring environment.

Further details may be found at: http://www.med.monash.edu.au/about.html

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/occupational-and-environmental-health-2312?domestic=true#making-the-application

Read less

Show 10 15 30 per page



Cookie Policy    X