• University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
University College London Featured Masters Courses
Cranfield University Featured Masters Courses
University of Cambridge Featured Masters Courses
ETH Zürich Featured Masters Courses
"functional" AND "genomic…×
0 miles

Masters Degrees (Functional Genomics)

We have 43 Masters Degrees (Functional Genomics)

  • "functional" AND "genomics" ×
  • clear all
Showing 1 to 15 of 43
Order by 
This Masters in Bioinformatics (formerly Bioinformatics, Polyomics and Systems Biology) is an exciting and innovative programme that has recently been revamped. Read more

This Masters in Bioinformatics (formerly Bioinformatics, Polyomics and Systems Biology) is an exciting and innovative programme that has recently been revamped. Bioinformatics is a discipline at the interface between biology, computing and statistics and is used in organismal biology, molecular biology and biomedicine. This programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and graphical presentation - all of which form a core part of modern biology.

Why this programme

  • Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical elective courses in semester 2 and in a summer research project.
  • You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
  • Bioinformatics and the 'omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
  • Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
  • The semester 2 courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organising and implementing appropriate analysis pipelines.
  • You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics. Our College has carried out internationally-leading research in functional genomics and systems biology.
  • Some of the teaching and research scenarios you’ll be exposed to reflect the activities of 'Glasgow Polyomics', a world-class omics facility set up within the university in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its' scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
  • In addition, we have several world-renowned research centres at the University, such as the Wellcome Centre for Molecular Parasitology, the MRC-University of Glasgow Centre for Virus Research and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
  • You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area, systems biology.

‘Polyomics’ is an intrinsically systems-level approach involving the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure

  • core material of 60 credits in semester 1, made up of 10, 15 and 20 credit courses.
  • optional material of 60 credits in semester 2: students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
  • Project of 60 credits over 14 weeks embedded in a research group over the summer.

Additional information about the programme can be found in the Bioinformatics MSc Programme Structure 2017-18.

Please note: students undertaking the three month PgCert will also be required to take two exams in March/April.

Career prospects

Most of our graduates embark on a University or Institute-based research career path, here in the UK or abroad, using the skills they've acquired on our programme. These skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science.

A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - eg computing biology jobs in biotechnology, biosciences, neuroinformatics and the pharma industries.

Some of our graduates have entered science-related careers in scientific publishing or education. Others have gone into computing-related jobs in non-bioscience industry or the public sector.



Read less
The programme aims to provide students with training and learning opportunities in the skills and specialised knowledge needed to equip them for a career in biotechnology, molecular biotechnology or molecular biology, in particular in industry. Read more
The programme aims to provide students with training and learning opportunities in the skills and specialised knowledge needed to equip them for a career in biotechnology, molecular biotechnology or molecular biology, in particular in industry.

Practical skills will include sessions on fermentation, molecular biology, immunology, cell biology and protein chemistry, and you will go on to complete a major, supervised laboratory or computer-based research project.

Transferable skills gained via this programme will include written and oral presentation skills, statistics, and the ability to plan and write a grant application or a business plan. Subject-specific skills will include key techniques used in molecular biotechnology, specialist knowledge in theoretical and practical aspects of the subject, including: process engineering, molecular biology, functional genomics, 'omics' technologies, protein expression systems and antibody engineering. Practical skills will include fermentation, molecular biology, immunology, cell biology and protein chemistry.

Careers

While many graduates will go on to employment in biotechnology companies, you will also be employable in other life sciences industries or able to go on to further study and research.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
About the Course. This 1 year course leads to an internationally recognised MRes qualification that provides training in transferable skills essential for those wishing to pursue post-graduate PhD, commercial or industrial research opportunities. Read more

About the Course

This 1 year course leads to an internationally recognised MRes qualification that provides training in transferable skills essential for those wishing to pursue post-graduate PhD, commercial or industrial research opportunities. Focusing on parasites and the diseases that they cause, you will gain expert knowledge in the detection, prevention and control of protozoan as well as metazoan animal and human pathogens. You will be trained in specialisms including biochemistry, molecular biology, whole organism/cell culture and manipulation, bioinformatics, proteomics, transcriptomics, genomics, functional genomics, drug discovery, vaccinology, biomarker discovery, genetics/epigenetics, epidemiology, vector/intermediate host biology and ecology.

At the end of the course you will understand how interdisciplinary methods can be brought to bear on controlling some of the deadliest infectious organisms on the planet and be ready to pursue your career in parasitology.

Why study Parasite Control at Aberystwyth?

Parasitism is the most successful lifestyle on the planet and leads to diverse and highly-damaging infectious diseases of agricultural, veterinary and biomedical significance. Therefore, a greater understanding of the parasite species responsible for these conditions and the means by which they are controlled remain a priority for scientists, health care professionals and farmers in this 21st Century. For example, it is recognised that parasitic worms infect greater than 1 billion people worldwide with some species causing between $700 million-$1 billion USDs in economic losses per annum. The development of novel, creative and integrated control strategies are urgently needed to combat the growing threat of changing parasite distributions due to climate change, human migration, animal transportation and farming practices. This MRes course will provide you with a range of vocational skills and prepare you for professional employment or further post-graduate PhD studies in Parasitology or related disciplines (i.e. infectious diseases, public health, epidemiology, etc.).

IBERS continuously maintained an excellent internationally-recognised reputation in parasitological research since the 1930s. One of the British Society of Parasitology’s founding members and two of its past presidents were IBERS Parasitologists. More recently, IBERS appointments and University investments have increased critical mass in Parasitology leading to the formation of the Parasitology and Epidemiology Research Group (in 2007) as well as the Barrett Centre for Helminth Control (in 2016). The creation of both research groupings has facilitated greater interactions with animal health and pharmaceutical/biotech companies as well as increased research grant capture derived from government, research council and charitable funding bodies.

Why study at Aberystwyth?

With 360 members of staff (principle investigators, technicians and post-doctoral fellows), 1350 undergraduate students and more than 150 postgraduate students, IBERS is the largest research and teaching institute within Aberystwyth University. Excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey (NSS 2017) and being awarded University of the Year for Teaching Quality by the Times and Sunday Times Good University Guide 2018. Employability data from the Recent Destinations of Leavers from Higher Education (DLHE, 2017) shows that 97% of IBERS graduates were in work or further study six months after leaving Aberystwyth University. The economic and social impact of IBERS research was recognised in 2011 when IBERS won the national BBSRC Excellence with Impact Award.  

Course Details

An aspect of this course that uniquely positions itself from other Masters level Parasitology courses in the UK is the 12-month dissertation project (Semesters 1-3). Working under the supervision of active researchers in the field, you will collaboratively develop a research project on diverse topics such as (but not inclusive) intermediate host and vector control, anthelmintic drug and target discovery, biomarker identification, visual cue selection for arthropod vectors, mathematical modelling of disease transmission, host responses to parasite biomolecules, parasite and host population studies and functional genomics manipulation of parasites. A list of available projects and supervisors will be advertised closer to the start of each academic year. Your supervisor/supervisory team will mentor you in hypothesis and discovery driven experimental design, provide training in lab-based and computer-assisted methodologies, arrange instruction in analytical techniques, aid in the trouble-shooting of experimental challenges, assist you in the interpretation of results and prepare you for successful oral presentations. You will also be guided in how to most efficiently communicate your results during the dissertation write-up. It is expected that during this year long research project you will become an expert in your topic.   

Please refer to our couse web pages for full details of course modules.

Employability

Careers

This course is an ideal training programme for those wishing to:

-         Pursue PhD studies;

-         Work in industry, charities or funding bodies;

-         Improve animal and human health;

-         Influence governmental policies.

 

Skills

Throughout this course you will:

·        Develop strong data collection/analysis, fieldwork and laboratory skills;

·        Enhance your scientific communication and team work skills;

·        Write for a range of audiences including academics and the wider public;

·        Enhance your analytical abilities, critical thinking and problem solving skills;

·        Develop study and research skills;

·        Direct and sustain a self-initiated programme of study underpinned by good time management skills;

·        Work effectively and independently;

·        Hone your project management skills to deliver a demanding combination of research, analysis, communication and presentation

 

How will I learn?

During the one year of full-time study students complete 40 60 credits of core modules centred on parasitology, parasite control and a further 20 credits focusing on laboratory techniques & research methodologies. The taught modules are assessed by scientific writing assignments (such as reports, critical reviews, essays and journalistic articles), presentations, contribution to group discussions in seminars and online assignments. The core element of this course is the 120 credit MRes Dissertation, during which students will have supervision meetings to give them guidance before undertaking a prolonged period of experimental work/data gathering, research, and writing up of the dissertation. All postgraduate students in IBERS also have a named personal tutor, with whom they can discuss personal or domestic concerns that impact on their studies. Subsequent successful submission of your dissertation leads to the award of an MRes.



Read less
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living. Read more
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living.

Our course provides you with knowledge, understanding and hands-on experience in modern biotechnology, and with practical insights into current commercial applications. It creates access to a broad range of career opportunities in this rapidly growing key technology.

You will learn about and appraise the approaches that can be used to address the challenges facing our planet, including:
-The development of biofuels, pharmaceuticals and crops to support and feed the growing human population
-Industrial, plant and medical biotechnology
-Gene and protein technology
-Synthetic biology
-Bioinformatics

The course has a very high proportion of practical work that provides valuable experience for your career, and in addition to this, our optional module Creating and Growing a New Business Venture challenges you to think creatively. This increases your value to organisations, including small enterprises, which are a growing part of the biotechnology sector.

Your research project is a major component of this course, for which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories, or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology, and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside leading academics and PhD students in shared labs
-Learn to use state-of-the-art equipment

Your future

Our graduates are well placed to find employment in the ever-growing bio-based economy, and postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and to work in some public bodies or private companies.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Biotechnology - MSc
-Research Project: MSc Biotechnology
-Protein Technologies
-Gene Technology and Synthetic Biology
-Genomics
-Professional Skills and the Business of Biotechnology
-Creating and Growing a New Business Venture (optional)
-Industrial Biotechnology: Enzymes, Biochemicals and Biomaterials (optional)
-Molecular Medicine and Biotechnology (optional)
-Plant Biotechnology (optional)
-Rational Drug Design (optional)

Read less
Research profile. This programme is organised by Edinburgh Infectious Diseases (EID), which is hosted by the College of Medicine and Veterinary Medicine and the College of Science and Engineering. Read more

Research profile

This programme is organised by Edinburgh Infectious Diseases (EID), which is hosted by the College of Medicine and Veterinary Medicine and the College of Science and Engineering.

It provides an introduction to research methodology for biologists, medics and veterinarians. The training also provides an entry into PhD studies. Previous students have undertaken projects in the following areas:

  • antibiotic resistance and hospital-acquired infections
  • arthropod vector biology and vectorborne diseases
  • epidemiology and mathematical modelling of animal and human infections
  • functional genomics and bioinformatics
  • molecular diagnosis and point-of-care detection of infectious diseases
  • the immunology of bacterial and parasitic infections (including major tropical diseases such as malaria, lymphatic filariasis and river blindness)
  • the immunology of ruminant infections (for example Johne's Disease)
  • the pathogenesis of prion and viral diseases (animal and human, including herpes and HIV)

The learning process includes a one-year research project and during the study period students will be required to attend research seminars and lectures, including those on the related areas of immunology, microbiology and pathology. Training will also be given in generic skills including: statistics; project management and planning; oral and written presentational skills.

Depending on the project selected, students will learn how to apply modern molecular and biochemical techniques to the investigation of pathogenesis of infections, or the use of statistics and mathematical models to study the epidemiology of diseases.

Programme structure

The learning process includes a one-year research project and during the study period students will be required to attend research seminars and lectures, including those on the related areas of immunology, microbiology and pathology. Training will also be given in generic skills including: statistics; project management and planning; oral and written presentational skills.



Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
One of the most rapidly developing areas of toxicology is the use of molecular, cell biology and omics to identify adverse outcome pathways (AOPs) and to develop a mechanistic understanding of chemical toxicity at the cellular and molecular level. Read more
One of the most rapidly developing areas of toxicology is the use of molecular, cell biology and omics to identify adverse outcome pathways (AOPs) and to develop a mechanistic understanding of chemical toxicity at the cellular and molecular level. This is not only of fundamental interest (i.e., understanding the mechanism of action) but it also relates to an increased need for a mechanistic component in chemical risk assessment and development of high throughput screens for chemical toxicity.

The MRes in Molecular Mechanistic Toxicology is a one-year full-time programme that provides students with a research-orientated training in a lively, highly interactive teaching and research environment.

Programme content

The programme is coordinated by the School of Biosciences, which is recognised internationally as a major centre for both teaching and research in Toxicology. Molecular Toxicology is a major component of the School of Biosciences research activities along with interactions with other departments including Chemistry and the Medical School.

Specific areas of active research include:

- Mechanisms of cell toxicity
- Development of novel DNA binding chemicals
- Cellular proliferation and differentiation
- Environmental genomics and metabolomics
- Molecular biomarkers of genotoxicity, oxidative stress and cellular responses
- Role of environmental and genetic factors in disease
- Learning and teaching

Two five-week taught modules are held in Semester 1 in conjunction with the taught MSc in Toxicology programme. Training in generic and laboratory research skills is also an important element of the programme. The programme also includes a six-month research project, which provides students with an opportunity for further advanced research training and hands-on experience of molecular and cellular biology techniques embedded in a research laboratory. Research projects can take place either in academic or industrial institutions.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. Read more
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. It seeks to create, advance and apply computer/software-based solutions to solve formal and practical problems arising from the management and analysis of very large biological data sets. Applications include genome sequence analysis such as the human genome, the human microbiome, analysis of genetic variation within populations and analysis of gene expression patterns.

As part of the MSc course, you will carry out a three month research project in a research group in UCC or in an external university, research institute or industry. The programming and data handling skills that you will develop, along with your exposure to an interdisciplinary research environment, will be very attractive to employers. Graduates from the MSc will have a variety of career options including working in a research group in a university or research institute, industrial research, or pursuing a PhD.

Visit the website: http://www.ucc.ie/en/ckr33/

Course Detail

This MSc course will provide theoretical education along with practical training to students who already have a BSc in a biological/life science, computer science, mathematics, statistics, engineering or a related degree.

The course has four different streams for biology, mathematics, statistics and computer science graduates. Graduates of related disciplines, such as engineering, physics, medicine, will be enrolled in the most appropriate stream. This allows graduates from different backgrounds to increase their knowledge and skills in areas in which they have not previously studied, with particular emphasis on hands-on expertise relevant to bioinformatics:

- Data analysis: basic statistical concepts, probability, multivariate analysis methods
- Programming/computing: hands-on Linux skills, basic computing skills and databases, computer system organisation, analysis of simple data structures and algorithms, programming concepts and practice, web applications programming
- Bioinformatics: homology searches, sequence alignment, motifs, phylogenetics, protein folding and structure prediction
- Systems biology: genome sequencing projects and genome analysis, functional genomics, metabolome modelling, regulatory networks, interactome, enzymes and pathways
- Mathematical modelling and simulation: use of discrete mathematics for bioinformatics such as graphs and trees, simulation of biosystems
- Research skills: individual research project, involving a placement within the university or in external research institutes, universities or industry.

Format

Full-time students must complete 12 taught modules and undertake a research project. Part-time students complete about six taught modules in each academic year and undertake the project in the second academic year. Each taught module consists of approximately 20 one-hour lectures (roughly two lectures per week over one academic term), as well as approximately 10 hours of practicals or tutorials (roughly one one-hour practical or tutorial per week over one academic term), although the exact amount of lectures, practicals and tutorials varies between individual modules.

Assessment

There are exams for most of the taught modules in May of each of the two academic years, while certain modules may also have a continuous assessment element. The research project starts in June and finishes towards the end of September. Part-time students will carry out their research project during the summer of their second academic year.

Careers

Graduates of this course offer a unique set of interdisciplinary skills making them highly attractive to employers at universities, research centres and in industry. Many research institutes have dedicated bioinformatics groups, while many 'wet biology' research groups employ bioinformaticians to help with data analyses and other bioinformatics problems. Industries employing bioinformaticians include the pharmaceutical industry, agricultural and biotechnology companies. For biology graduates returning to 'wet lab' biology after completing the MSc course, your newly acquired skills will be extremely useful. Non-biology graduates seeking non-biology positions will also find that having acquired interdisciplinary skills is of great benefit in getting a job.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This masters programme is designed to prepare you for a career in research in molecular and cellular biology and its applications. Read more
This masters programme is designed to prepare you for a career in research in molecular and cellular biology and its applications.

It comprises a year of intensive training and research experience leading to the award of an MRes degree which will give you a ‘flying start’ to a subsequent PhD programme, if this is your chosen career path.

This programme is designed to prepare you for a career in research in molecular and cellular biology and its applications. It comprises a year of intensive training and research experience leading to the award of an MRes degree which will give you a ‘flying start’ to a subsequent PhD programme, if this is your chosen career path.

The programme aims to provide training in the practical aspects that underlie research science in this field. To achieve this aim the course contains a very high level of hands-on research, as it is our view there is no better training than lab experience.

Programme content

Two-thirds of the programme is taken up by two approximately 18-week research projects, which are undertaken in different laboratories and with different supervisors. A very wide range of research topics falling within the scope of molecular and cellular biology is available within the School; this range extends from structural biology at one extreme to multicellular systems at the other.

In addition to this direct research experience, there are two compulsory taught modules which provide training in:

- Science Funding and Enterprise Skills in Biosciences
- Techniques in Molecular and Cellular Biology
These modules cover the basic principles underlying scientific research methods and the design of biological/biochemical experiments, and discussion of modern techniques in molecular and cellular biology. In addition, the science funding and enterprise module provides the skills required to obtain funding for sciences. This includes grant and business case writing and scientific presentation skills. You can also take courses to develop general research skills arranged through the Biosciences Graduate Research School.

The taught modules consist of a combination of seminars and lectures. The lab work that is carried out during the course is student-led. You will be able to choose areas of molecular and cellular biology that fit with your career aspirations.

Assessment

The two taught modules are assessed via examination, essays and oral presentations. The two research projects are assessed via written thesis and an oral examination.

Skills gained

This programme offers the following advantages:

Broad training in the skills and techniques of contemporary research in molecular and cellular biology
The opportunity to experience research in at least two different areas
Increased breadth and experience, which will enhance subsequent employability
The course will also enable you to:

Conduct and fund independent research
Present research results in an appropriate manner both written and orally
Have an appreciation and knowledge of the use of modern techniques in molecular and cellular biology
Build and develop scientific research projects in the public and private sector
Careers

Those who perform effectively in the MRes often continue at Birmingham to a PhD; however, the MRes also provides a very good qualification to move into research and a wide range of professions.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This programme provides vocational training in the theoretical, clinical and laboratory aspects of toxicology. You will learn about the nature and mechanism of adverse effects of chemicals such as those found in industry, in the household, in agriculture, in medicine and those that occur naturally in the environment. Read more
This programme provides vocational training in the theoretical, clinical and laboratory aspects of toxicology.

You will learn about the nature and mechanism of adverse effects of chemicals such as those found in industry, in the household, in agriculture, in medicine and those that occur naturally in the environment. We give particular emphasis to molecular and cellular mechanisms of toxicity and to risk assessment.

The MSc in Toxicology programme aims to:

- provide a broad, modern training in the theoretical and practical aspects of toxicology
- prepare individuals to collate, interpret and communicate toxicological information
- provide an opportunity to study at the cutting edge of research in a chosen specialist field of toxicology in clinical practice, industry or academia
- develop student awareness of the importance of toxicology to industry, health, the environment and society.

Skills gained

As well as specialist disciplinary knowledge, graduates of the MSc Toxicology programme will also acquire many transferable skills such as the ability to design experiments using a variety of research techniques, collate and interpret the data, use of specialist computer software packages to predict metabolism and toxicity, communication and interpersonal skills, which will all provide an appropriate grounding for employment or further study.

Careers

Toxicology relates to many aspects of our everyday activities, so a career in this field promises to provide a variety of opportunities aimed at improving the standard of life and the environment. Career opportunities are excellent, as even in times of economic hardship toxicology remains a necessary and important area for funding.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines. genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few. Read more
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines: genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few.

In 2014 the school relocated to a new £54 million, state-of-the-art Life Sciences building. Our new laboratory facilities are among the best in the world, with critical '-omics' technologies and associated computing capacity (bioinformatics) a core component. The new building is designed to foster our already strong collaborative and convivial environment, and includes a world-leading centre for evolutionary biology research in collaboration with key researchers from earth sciences, biochemistry, social medicine, chemistry and computer sciences. The school has strong links with local industry, including BBC Bristol, Bristol Zoo and the Botanic Gardens. We have a lively, international postgraduate community of about 150 research students. Our stimulating environment and excellent graduate school training and support provide excellent opportunities to develop future careers.

Research groups

The underlying theme of our research is the search for an understanding of the function, evolution, development and regulation of complex systems, pursued using the latest technologies, from '-omics' to nanoscience, and mathematical modelling tools. Our research is organised around four main themes that reflect our strengths and interests: evolutionary biology; animal behaviour and sensory biology; plant and agricultural sciences; and ecology and environmental change.

Evolutionary Biology
The theme of evolutionary biology runs through all our research in the School of Biological Sciences. Research in this theme seeks to understand organismal evolution and biodiversity using a range of approaches and study systems. We have particular strengths in evolutionary genomics, phylogenetics and phylogenomics, population genetics, and evolutionary theory and computer modelling.

Animal Behaviour and Sensory Biology
Research is aimed at understanding the adaptive significance of behaviour, from underlying neural mechanisms ('how', or proximate, questions) to evolutionary explanations of function ('why', or ultimate, questions). The approach is strongly interdisciplinary, using diverse physiological and biomechanical techniques, behavioural experiments, computer modelling and molecular biology to link from the genetic foundations through to the evolution of behaviour and sensory systems.

Plant and Agricultural Sciences
The global issue of food security unifies research in this theme, which ranges from molecular-based analysis of plant development, signal transduction and disease, to ecological studies of agricultural and livestock production systems. We have particular strengths in functional genomics, bioinformatics, plant developmental biology, plant pathology and parasite biology, livestock parasitology and agricultural systems biology. Our research is helped by the LESARS endowment, which funds research of agricultural relevance.

Ecology and Environmental Change
Research seeks to understand ecological relations between organisms (plant, animal or microbe) at individual, population and community levels, as well as between organisms and their environments. Assessing the effect of climate change on these ecological processes is also fundamental to our research. Key research areas within this theme include community ecology, restoration ecology, conservation, evolutionary responses to climate change and freshwater ecology. Our research has many applied angles, such as ecosystem management, wildlife conservation, environmental and biological control, agricultural practice and informing policy.

Careers

Many postgraduate students choose a higher degree because they enjoy their subject and subsequently go on to work in a related area. An Office of Science and Technology survey found that around three-quarters of BBSRC- and NERC-funded postgraduates went on to a job related to their study subject.

Postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and for work in some public bodies or private companies. Around 60 per cent of biological sciences doctoral graduates continue in research. Academic research tends to be contract-based with few permanent posts, but the school has a strong track record in supporting the careers of young researchers by helping them to find postdoctoral positions or develop fellowship applications.

Read less
This MSc programme is built on the combined expertise in microbiology and infection that has been assembled through the establishment of the Institute of Microbiology and Infection at Birmingham. Read more
This MSc programme is built on the combined expertise in microbiology and infection that has been assembled through the establishment of the Institute of Microbiology and Infection at Birmingham.

It draws on the internationally recognized expertise of members of both the College of Life and Environmental Sciences and College of Medical and Dental Sciences to provide a course that will be attractive to aspiring biomedical scientists and clinical microbiologists worldwide.

Students graduating from this course can look forward to gaining a thorough grounding in this important area, with job opportunities throughout the public and private sector, as well as in research settings.

This course will provide graduates in the Biosciences with a sound theoretical background and hands-on laboratory experience in leading-edge microbiology. Students will gain specialist knowledge and insight in key aspects of bacterial infection.

The Institute of Microbiology and Infection at Birmingham brings together a group of researchers and lecturers from the College of Life and Environmental Sciences and the College of Medical and Dental Sciences with expertise in a wide range of aspects of microbiology in infectious disease. The MSc Microbiology and Infection draws on this expertise to highlight the impact of recent advances in understanding of microbes in infection.

The course will enable students to develop basic abilities and skills on which to build professional capability in a healthcare or related microbiology or biomedical research setting.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
If you are passionate about a career in embryology, this course is for you. Read more
If you are passionate about a career in embryology, this course is for you. The Intensive Master of Clinical Embryology course (MCE) has gained global recognition as a training program for all assisted reproductive technologies (ART), producing high calibre embryologists, with the excellent knowledge and practical skills to eventually work in, and manage, human ART clinics. MCE is offered both on-campus (one year full time) and off-campus (restricted entry, full or part-time) to domestic and international students

Your studies will include the foundations of mammalian embryology, detailed assessment of all infertility treatment strategies, the theoretical basis behind embryo production, embryo selection and cryopreservation, focussing on all current and future technologies associated with ART. There are 3 units dedicated to Total Quality Management, Preimplantation Diagnosis and Ethics. Most importantly, we are equipped to teach all the practical skills required of andrologists and embryologists, beginning with sperm and embryo handling and assessment, and slowly building skills though learning in vitro fertilisation techniques, the latest cryopreservation techniques, such as vitrification of gametes and embryos finally finishing the year with ICSI and biopsy. While learning the practical skills, students are also given opportunities to visit ART clinics within Australasia and worldwide and all encouraged to attend ART industry conferences. Students engage in research projects that are designed to enhance practical and research skills, while assessments throughout the year are designed to measure the competency of students in theoretical, practical and research disciplines.

Visit the website http://www.study.monash/courses/find-a-course/2016/clinical-embryology-2309?domestic=true

Overview

This 12-month, intensive course provides students with the essential postgraduate knowledge and practical skills necessary to contribute competently to human infertility clinical services. Theoretical and practical skills are presented in the broad context of the regulations and the ethical considerations that apply to human IVF, both nationally and internationally, along with the quality control procedures required to ensure maximum success for IVF patients. The guidelines, protocols and regulations that steer and control human infertility services are also presented. In addition to attending lectures and self-directed study, students are required to undertake continual practical skills training and also students will undertake a minor research project. Students will not only be equipped with practical skills required for work in an IVF laboratory but also gain a greater understanding of research applications within the field of reproductive or developmental biology. Research-related tasks contribute to the overall assessment for specific coursework units.

Career opportunities

On completion of this course graduates may gain employment as clinical embryologists, or work in laboratories in embryology, health, in vitro fertilisation (IVF), or in related jobs within the reproductive biology field.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Faculty of Medicine, Nursing and Health Sciences

The Faculty is also home to a number of leading medical and biomedical research institutes and groups, and has contributed to advances in many crucial areas: in vitro fertilisation, obesity research, drug design, cardiovascular physiology, functional genomics, infectious diseases, inflammation, psychology, neurosciences and mental health.

Notwithstanding the relatively short history of our University, the Faculty is ranked in the top 50 in the world for its expertise in life sciences and biomedicine by the Times Higher Education and QS World University 2012 benchmarks.

Courses offered by the Faculty include medicine, nursing, radiography and medical imaging, nutrition and dietetics,emergency health studies, biomedical sciences, physiotherapy, occupational therapy, and social work. A range of research and coursework postgraduate programs is also offered.

The Faculty takes pride in delivering outstanding education in all courses, in opening students to the possibilities offered by newly discovered knowledge, and in providing a nurturing and caring environment.

Further details may be found at: http://www.med.monash.edu.au/about.html

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/clinical-embryology-2309?domestic=true#making-the-application

Read less
Undertaking the Master of Clinical Research Methods at Monash University, a Group of Eight University and one that is ranked in the Top 100 Universities worldwide, will give you the knowledge and skills necessary to work in the broad domain of clinical research and a postgraduate qualification that is recognised around the world. Read more
Undertaking the Master of Clinical Research Methods at Monash University, a Group of Eight University and one that is ranked in the Top 100 Universities worldwide, will give you the knowledge and skills necessary to work in the broad domain of clinical research and a postgraduate qualification that is recognised around the world.

This 12-unit course provides students with the full range of quantitative and analytical skills necessary to work in the broad domain of clinical health. It especially focuses on developing skills in the quantitative methods of clinical research and application to patient care.

Students must complete 9 core units, plus either 3 electives or 1 elective and a 12 credit point project.

Teaching is structured as a combination of on-line educational delivery, and face to face block days which suits busy professionals and those who balance other responsibilities in their lives.

Students may quality for entry into a PhD by the following pathways:

Successfully completing the Master of Clinical Research Methods including a Distinction average in: chronic diseases: epidemiology and prevention; regression methods for epidemiology; advanced statistical methods for clinical research; clinical measurement and systematic reviews and meta-analysis.

OR

Completing the Master of Clinical Research Methods including the 12 credit point project and achieve a Distinction average in epidemiology and prevention; regression methods for epidemiology; advanced statistical methods for clinical research; and clinical measurement.

Exit points: Students may be eligible to alternately exit from the Master's program with a Graduate Certificate in Clinical Research Methods or Graduate Diploma in Clinical Research Methods provided the requirements of the alternative exit have been met.

Visit the website http://www.study.monash/courses/find-a-course/2016/clinical-research-methods-2311?domestic=true

Career opportunities

Graduates may move into careers in a diverse range of areas within research and the wider health sector. These may include employment within clinical research units in medical, nursing or allied health science; work in industry sponsored trials; applying their skills in investigator initiated studies in public health, primary care, infection control, chronic disease and clinical medicine, or they may implement their skills in their usual employment.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Faculty of Medicine, Nursing and Health Sciences

The Faculty is also home to a number of leading medical and biomedical research institutes and groups, and has contributed to advances in many crucial areas: in vitro fertilisation, obesity research, drug design, cardiovascular physiology, functional genomics, infectious diseases, inflammation, psychology, neurosciences and mental health.

Notwithstanding the relatively short history of our University, the Faculty is ranked in the top 50 in the world for its expertise in life sciences and biomedicine by the Times Higher Education and QS World University 2012 benchmarks.

Courses offered by the Faculty include medicine, nursing, radiography and medical imaging, nutrition and dietetics,emergency health studies, biomedical sciences, physiotherapy, occupational therapy, and social work. A range of research and coursework postgraduate programs is also offered.

The Faculty takes pride in delivering outstanding education in all courses, in opening students to the possibilities offered by newly discovered knowledge, and in providing a nurturing and caring environment.

Further details may be found at: http://www.med.monash.edu.au/about.html

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/clinical-research-methods-2311?domestic=true#making-the-application

Read less
This course, offered by the Department of Epidemiology and Preventive Medicine, is designed for health professionals currently in, or seeking to be in, middle and senior health care management positions. Read more
This course, offered by the Department of Epidemiology and Preventive Medicine, is designed for health professionals currently in, or seeking to be in, middle and senior health care management positions. If you are seeking to expand your knowledge and skills in the management of health services, this degree caters for your needs. This includes medical or general hospital administrators, clinicians, quality assurance managers, team leaders, senior nursing administrators, unit managers and a range of general task coordinators within the health care system.

If you are working or planning to work in middle or senior management roles in health care, this course will help you prepare for and advance your career.

The course coordinator, Professor Just Stoelwinder, is one of Australia's most senior and respected health care managers and management and policy academics.

You will complete eight core and three elective units.

Core units include:

- clinical leadership and management
- financial issues in health care management
- introduction to epidemiology and biostatistics
- principles of health care quality improvement
- foundations of health policy
- law for health systems
- reform and development of health services
- HSM case study.

Elective units include:

- human factors for patient safety
- applying and practising the principles of patient safety and quality improvement
- climate change and public health
- introduction to health economics
- nursing practice and management
- advanced nursing practice in context
- improving Indigenous equity in profession practice
- MPH code approved units (except units: MPH5020, MPH5301-5313).

You can exit the course early with a Graduate Certificate in Health Services Management or a Graduate Diploma in Health Services Management if you meet the requirements.

Visit the website http://www.study.monash/courses/find-a-course/2016/health-services-management-m6008?domestic=true

Course Structure

The course is structured in 2 parts. Part A Advanced Healthcare Administration and Management and Part B. Extending specialist knowledge electives. All students complete Part A and B.

[Note that if you are eligible for credit for prior studies you may elect not to receive the credit.]

Part A. Advanced Healthcare Administration and Management
These studies provide you with a comprehensive study of health services management and administration, enabling you to gain advanced skills and knowledge. This includes in areas of health system laws, clinical leadership and management, quality improvement, financial and information management, health policy and health services development.

Part B. Extending specialist knowledge electives
These studies enable you to develop specialised knowledge and advanced skills in areas that suit your interests, skills and career goals. The theoretical and practical skills you gain are consolidated through the completion of a case study, in which you focus on exploring in detail a complex health services management problem within your workplace or within a health care setting.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Faculty of Medicine, Nursing and Health Sciences

The Faculty is also home to a number of leading medical and biomedical research institutes and groups, and has contributed to advances in many crucial areas: in vitro fertilisation, obesity research, drug design, cardiovascular physiology, functional genomics, infectious diseases, inflammation, psychology, neurosciences and mental health.

Notwithstanding the relatively short history of our University, the Faculty is ranked in the top 50 in the world for its expertise in life sciences and biomedicine by the Times Higher Education and QS World University 2012 benchmarks.

Courses offered by the Faculty include medicine, nursing, radiography and medical imaging, nutrition and dietetics,emergency health studies, biomedical sciences, physiotherapy, occupational therapy, and social work. A range of research and coursework postgraduate programs is also offered.

The Faculty takes pride in delivering outstanding education in all courses, in opening students to the possibilities offered by newly discovered knowledge, and in providing a nurturing and caring environment.

Further details may be found at: http://www.med.monash.edu.au/about.html

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/health-services-management-m6008?domestic=true#making-the-application

Read less

Show 10 15 30 per page



Cookie Policy    X