• Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
King’s College London Featured Masters Courses
University of Leeds Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"fuel" AND "cells"×
0 miles

Masters Degrees (Fuel Cells)

We have 44 Masters Degrees (Fuel Cells)

  • "fuel" AND "cells" ×
  • clear all
Showing 1 to 15 of 44
Order by 
This programme falls within the theme ‘Sustainable Power Generation and Supply’ of the Research Councils’ Energy Programme, the first of its kind in the UK. Read more
This programme falls within the theme ‘Sustainable Power Generation and Supply’ of the Research Councils’ Energy Programme, the first of its kind in the UK.

Masters graduates will have a systematic knowledge and understanding of hydrogen, fuel cells and their applications, including developments and problems at the forefront of the discipline. They will be able to evaluate current research critically, and be original in the application of their knowledge, proposing new hypotheses as appropriate.

Typical Masters graduates will be able to deal with complex issues, making sound judgements in the absence of complete information, and will be able to communicate their conclusions clearly to specialist and non-specialist audiences. They will be self-motivating and able to act autonomously, and will have the qualities and transferable skills necessary to exercise initiative and personal responsibility, to make decisions in complex and unpredictable situations, and to have the independent learning ability required for continuing professional development.

Their high level of numeracy and skills in problem solving, team working, communication and information technology will equip them for successful careers outside as well as within the process and allied industries.

The MRes in Hydrogen, Fuel Cells and their Applications:

Demonstrates the exciting future promise of hydrogen, fuel cells and their applications in a zero-emission world
Shows that industry supports the developments and that jobs are plentiful
Stresses the international nature of the course, with travel overseas
Emphasises the high quality nature of the teaching in top grade RAE Schools
Supports entrepreneurial spirit, with three spin-out companies in hydrogen and fuel cells founded during the past 12 months at the University of Birmingham
Programme content

The programme will focus on taught modules (60 credits) in science, engineering and team building, as well as business and management, and a dissertation.

Further core modules deal with topics such as:

Materials for Hydrogen and Fuel Cell Technologies
The Energy System
Marketing and TQM
Effective Project Management
Business Methods, Economics and Strategy
Optional modules

A wide range of optional modules enables you to gain specific knowledge relating to hydrogen energy and fuel cell technology. You may also choose to study business, management and public engagement modules, or develop mathematical modelling skills.

The programme can be studied full-time over one year, or part-time over two or three years. Modules are also available individually to fulfil continuing professional development needs.

Dissertation

The research thesis will focus on any of the following areas: Solid Oxide Fuel Cell Systems, Solid Oxide Fuel Cell Stack Engineering for Domestic Applications, Hydrogen Proton Exchange Membrane Fuel Cell (PEMFC) Stack Engineering for Automotive, Hybrid Vehicular Systems, Membrane Electrode Assembly (MEA) & Electrocatalyst development, Direct Methanol Fuel Cell (DMFC) Stack Engineering for Portable Applications, Alkaline Polymer Electrolyte Fuel Cells, Discovery of New Nano-Materials for Hydrogen Production & Storage, Discovery of non-PGM alloys Materials, Hydrogen Production from Biomolecules by Novel Methods, Development of Novel Pd Alloy Thin-films for Use in High temperature Hydrogen Membrane Reactors.

Successful Masters students will have the opportunity to study for the PhD with Integrated Study in Hydrogen, Fuel Cells and their Applications.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
Summary. This academically challenging programme introduces engineering, science and mathematics graduates to incumbent and modern energy technologies for sustainable power generation. Read more

Summary

This academically challenging programme introduces engineering, science and mathematics graduates to incumbent and modern energy technologies for sustainable power generation. You will learn to design and assess the performance of fuel cells and photovoltaic systems, wind power and hybrid propulsion systems.

Modules

Compulsory modules: Introduction to Energy Technologies, Environment and Sustainability; Fuel Cells and Photovoltaic Systems 1 and 2; Nuclear Energy Technology; Renewable Energy from Environmental Flows; Sustainable Energy Systems, Resources and Usage; MSc Research Project

Optional modules: Two from: Cryogenics and Superconductivity; Thermofluid Engineering for Low Carbon Energy; Offshore Engineering and Analysis; Waste Resource Management; Bioenergy; Energy Performance Assessment of Buildings; Advanced Electrical Systems

Visit our website for further information.



Read less
Summary. This programme is suitable for engineering, mathematics or physical science graduates who want to specialise in this vibrant strand of engineering. Read more

Summary

This programme is suitable for engineering, mathematics or physical science graduates who want to specialise in this vibrant strand of engineering. The academically challenging course provides exposure to modern issues in advanced mechanical engineering science, with the opportunity to specialise in mechatronics. You will learn to confidently use advanced electrical systems and understand both the impact and use of control systems, instrumentation and sensors. You will also gain in-depth knowledge of the relevant fundamental science, methods, analysis and engineering applications.

Modules

Compulsory modules: Introduction to Advanced Mechanical Engineering Science; Control and Instrumentation; Advanced Sensors and Condition Monitoring; Advanced Electrical Systems; Advanced Control Design; MSc Research Project

Optional modules: Automotive Propulsion; Advanced Computational Methods I; Finite Element Analysis in Solid Mechanics; Fuel Cells and Photovoltaic Systems I, Fuel Cells and Photovoltaic Systems 2; Engineering Design with Management; Numerical Methods; Advanced Management

Visit our website for further information.



Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

We can supervise MPhil projects in topics that relate to our main areas of research, which are:

Bio-energy

Our research spans the whole supply chain:
-Growing novel feedstocks (various biomass crops, algae etc)
-Processing feedstocks in novel ways
-Converting feedstocks into fuels and chemical feedstocks
-Developing new engines to use the products

Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.

We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.

Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including:
-The application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines
-Domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils
-Biowaste methanisation
-Biomass and biowaste combustion, gasification
-Biomass co-combustion with coal in thermal power plants
-CO2 capture and storage for thermal power systems
-Trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy)
-Engine and power plant emissions monitoring and reduction technology
-Novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.

Key areas of research include:
-Biomineralisation
-Liquid organic hydrides
-Adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources

Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.

We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.

Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Facilities

As a postgraduate student you will be based in the Sir Joseph Swan Centre for Energy Research. Depending on your chosen area of study, you may also work with one or more of our partner schools, providing you with a unique and personally designed training and supervision programme.

You have access to:
-A modern open-plan office environment
-A full range of chemical engineering, electrical engineering, mechanical engineering and marine engineering laboratories
-Dedicated desk and PC facilities for each student within the research centre or partner schools

Read less
Materials Engineering includes the development, specification and engineering applications of new and existing materials. Your research will focus on understanding the physical and chemical descriptions that underlie materials performance, and develop property and performance models of materials. Read more
Materials Engineering includes the development, specification and engineering applications of new and existing materials. Your research will focus on understanding the physical and chemical descriptions that underlie materials performance, and develop property and performance models of materials.

As a postgraduate researcher in Materials Engineering you will be based in the School of Chemical Engineering and Advanced Materials. Our research areas include kinetics and formation mechanisms of new materials, and predictive modelling based upon mechanistic understanding. Work covers the production, property measurement and performance assessment of:
-Ceramics
-Polymers
-Metals
-Composites

We focus on developing new materials for advanced engineering applications, including microelectronics, optics and power transmission.

Current research projects include:
-Developing novel surface engineering processes and materials (such as fullerene-like coating materials)
-Energy-based methods for performance modelling
-Nanomaterials and nanocharacterisation techniques
-Novel materials for intensified processes

A major research strength is the measurement and modelling of the mechanical response of materials at high-spatial resolution, particularly in microelectronic and optical devices. A combination of unique equipment and interdisciplinary expertise supports this.

Another research focus is the materials requirements for the sustainable development and use of key resources, in particular water and energy. We have significant research into the generation of energy from novel sources, low carbon and renewable technologies and the clean-up of effluent and wastewater.

Our major areas of research are:
-Fuel cells and energy systems
-Gasification
-Cold plasma gasification
-Bio-fuel cells
-Bio-diesel production
-Gas and water treatment
-Nano-structured polymer composites for pollution control
-Sustainable and environmental electrochemical systems
-Photochemical processes and electrochemical synthesis

The School of Chemical Engineering and Advanced Materials runs a postgraduate training programme that is compulsory for all new students and involves selected taught modules. You also receive research training from the Science, Agriculture and Engineering Graduate School that covers professional/key skills, personal development and research techniques. You have the opportunity to supplement your income by undertaking laboratory demonstrating and tutorial classes.

Read less
Summary. Suitable for engineering, mathematics or physical science graduates, this course provides exposure to modern issues in advanced mechanical engineering science, with the opportunity to specialise in material properties, their limitations and engineering context. Read more

Summary

Suitable for engineering, mathematics or physical science graduates, this course provides exposure to modern issues in advanced mechanical engineering science, with the opportunity to specialise in material properties, their limitations and engineering context. It offers a sound understanding of the relevant fundamental science, methods, analysis and engineering applications.

Modules

Compulsory modules: Introduction to Advanced Mechanical Engineering Science; Microstructural Engineering for Transport Applications; Surface Engineering; Failure of Materials and Components; microstructural and Surface Characterisation; MSc Research Project

Optional modules: Manufacturing and Materials; Biomaterials; Finite Element Analysis in Solid Mechanics; Composites Engineering Design and Mechanics; Experimental Mechanics; Aircraft Structural Design; Advanced Electrical Systems; Bio, Nano and Modelling Aspects of Tribology; Aircraft Propulsion; Fuel Cells and Photovoltaic Systems I; Fuel Cells and Photovoltaic Systems 2; Advanced Management

Visit our website for further information.



Read less
This is a one-year postgraduate course designed to provide civil engineers and other suitably qualified professionals with a good understanding of energy management and efficiency as well as sustainable energy generation. Read more

Introduction:

This is a one-year postgraduate course designed to provide civil engineers and other suitably qualified professionals with a good understanding of energy management and efficiency as well as sustainable energy generation. The course will further advanced knowledge in efficiency techniques, sustainable energy technologies and energy management systems and strategies. It will include theory and practice along with economics, current legal requirements and standards. The course will be of particular interest to those already in employment as part of ongoing professional training as well as leading to the widening of new job opportunities for its graduates. The Diploma award is based on a combination of the results of two examination papers and an individual project. Students must pass each paper and the project and neither of these can be deferred.

Course Content:

The course consists of 3 taught modules each carrying 20 ECTS credits.

Module 1: Energy management and efficiency will introduce topics such as energy physics, energy resources, climate change and environment. Energy demand and energy management will be detailed sectorally in terms of energy in buildings; in transport and in industry. There will be a focus on measures for energy reduction and energy efficiency along with assessment procedures. Topics in energy economics, policy, embodied energy and life cycle analysis and finally energy legislation and energy markets will be addressed.

Module 2: Sustainable energy technologies will introduce energy generation and conversion. It will concentrate on renewable energy generation technologies (and include lectures on wind, wave, tidal, biomass, biofuels, geothermal, hydro, solar, waste to energy) and low carbon technologies (nuclear energy, hydrogen, fuel cells). Grid integration and energy storage will be addressed as well as the future of fossils including clean coal and carbon capture and storage.

Module 3: Individual project is a key element of the course where the theoretical and technical aspects of Sustainable Energy which have been presented, analysed and discussed in the other two modules are brought into practical and innovative focus. Each student will be expected to engage in a piece of original study to reveal a novel aspect of sustainable energy.

Lectures will be held on Friday evenings and Saturday mornings each week throughout the two semesters (September to April), with laboratories or site visits scheduled for Saturday mornings. In addition to attending lectures, students are required to prepare and submit individual original pieces of coursework relating to the subject matter of each of the modules. Assessment is by examination and coursework.

Read less
Summary. This MSc is designed for engineering, mathematics or physical science graduates. It provides an opportunity to specialise in the engineering sciences key to the design, monitoring and analysis of propulsion and engine systems.You will learn to confidently analyse and design advanced electrical systems. Read more

Summary

This MSc is designed for engineering, mathematics or physical science graduates. It provides an opportunity to specialise in the engineering sciences key to the design, monitoring and analysis of propulsion and engine systems.You will learn to confidently analyse and design advanced electrical systems.

Modules

Compulsory modules: Introduction to Advanced Mechanical Engineering Science; Advanced Electrical Systems; Aircraft Propulsion; Automotive Propulsion; MSc Research Project

Optional modules: Tribological Engineering and Engine Tribology; Advanced Sensors and Condition Monitoring; Applications of CFD; Thermo fluid Engineering for Low Carbon Energy; Microstructural Engineering for Transport Applications; Failure of Materials and Components; Spacecraft Propulsion; Environmental and Transportation Noise; Fundamentals of Acoustics; Fuel Cells and Photovoltaic Systems I; Transport Economics; Engineering Design with Management; Microstructural and Surface Characterisation; Advanced Management

Visit our website for further information.



Read less
Do you want to help power the world? We’re running out of fossil fuels fast and it’s more important than ever to find new sustainable and renewable sources of energy. Read more
Do you want to help power the world? We’re running out of fossil fuels fast and it’s more important than ever to find new sustainable and renewable sources of energy. This involves meeting challenges such as engineering new technologies and considering how these technologies can be integrated into power distribution networks.

This course will offer you advanced knowledge of a diverse range of sustainable energy technologies, including wind, tidal, solar, fuel cells and biomass. From the fundamental principles to the latest developments in these technologies, you’ll learn about key enabling technologies for energy storage (electrical, electrochemical, mechanical and thermal) and power distribution.

You’ll also develop skills in project management, ethics, and health and safety. These skills will leave you well prepared for an active future career in the energy technology industry or further academic research in the field.

Read less
Summary. Electrochemistry and its application in electrochemical engineering is an increasingly important area of science and technology, with relevance to energy (batteries, fuel cells and solar cells), corrosion, sensors, waste treatment, metal finishing and the electronics industry. Read more

Summary

Electrochemistry and its application in electrochemical engineering is an increasingly important area of science and technology, with relevance to energy (batteries, fuel cells and solar cells), corrosion, sensors, waste treatment, metal finishing and the electronics industry. This new programme will provide students with a background in both the fundamental and applied aspects of electrochemistry, enabling them to pursue a variety of rewarding careers.

The Southampton Electrochemistry Group is known worldwide for its excellence in research and education, the latter through the Electrochemistry summer school, a one-week course that started in 1969 and has run annually since.

Visit our website for further information.



Read less
Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Read more

Why take this course?

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. This course responds to an urgent need for specialists in energy and power systems management, as well as a growing skills shortage of people with core knowledge in this field.

The course provides relevant, up-to-date skills that will equip both graduates and working professionals in the advanced concepts of sustainable electrical power and energy generation. It offers skills for operation, control, design, regulation and management of power systems and networks of the future. You will also receive training in and understanding of energy production, delivery, consumption and efficiency.

What will I experience?

On this course you will:

Benefit from experts in the industry who will deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material
Be encouraged to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature
Learn in a challenging and stimulating study environment
Develop a range of key skills by means of opportunities provided in the study units
Being an MSc course, you are encouraged and expected to be able to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature.

What opportunities might it lead to?

The course will help to maximise your career potential in this field and equips you to work as an engineer, at an advanced level, in the fields of energy and power systems management.

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry. Experts from Industry (STS Nuclear) deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material to the programme.

Here are the units you will study:

Power Systems Technology: This unit provides an in-depth overview of contemporary electrical power systems. It covers the elements of electrical power systems including generation, transmission and distribution in the mixed energy source paradigm.

Electrical Machines and drives: Provides an in-depth overview of the operational principles and physical design of DC and AC electrical machines as well as broad understanding of concepts of power electronics and power electronic converters, so that you can describe their application and selection criteria. You will develop an understanding of the issues present in converter design, including the impact of physical layout and heat dissipation.

Energy Systems: Focuses on the techniques and principles of operation of thermodynamics and combustion systems, as well as the provision and management of energy. It also focuses on power generation and combined systems, BioMass processers application of heat and fluid transfer.

Renewable and Alternative Energy: Provides an in-depth coverage of the principles of renewable and alternative energy systems: Winds, Solar, BioMass, Geothermal, Fuel Cells, Hydrogen Technologies and Nuclear Energy.

Nuclear Technology: A study of nuclear engineering including the theory of atomic and nuclear physics, methods and benefits of generating electricity from nuclear power plants, and the effects of ionising radiation. The nuclear fuel cycle and the associated environmental impacts are also considered. The development of international guidance on nuclear and radiological safety and a comparison of national regulatory structures are analysed. The importance of safety cultures, safety behaviours and safety cases is a key element throughout this module.

Energy Management: The unit is specifically designed to provide the students with the basic of economical analysis and evaluation of energy projects and asset management as well as risk and hazard assessment, comprising legislation, hazard identification and quantification, quantified risk analyses, methods of elimination/mitigation, economic appraisal of integrated renewable, and petroleum projects; with numerous pertinent case studies.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our Energy, Power systems and Electronic laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in energy and power systems management. It is an excellent preparation for a successful career in this ever expanding and dynamic field.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems. You will acquire the ability to critically evaluate methodologies, analytical procedures and research methods in energy and power systems management and in the use of state-of-the-art computational tools, the design of sustainable electrical power systems and networks and regulatory frameworks. For practicing engineers with professional business experience, the course is an opportunity to update your knowledge of current design practice and also to familiarise themselves with developments in codes and methods of analysis.

Read less
Fields of research include. Read more

Program Overview

Fields of research include: acoustics; aerodynamics and fluid mechanics; automatic controls; robotics and industrial automation; energy conversion, combustion, thermodynamics and heat transfer; vibrations and space dynamics; solid mechanics; bioengineering and biomechanics; design and manufacturing processes; industrial engineering, fuel cells, micro-electromechanical systems, mechatronics, and CAD; and naval architecture. Applicants for graduate degrees may be considered for appointment as research assistants, teaching assistants, or markers in the Department. Courses are selected in consultation with faculty.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Mechanical Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Applied Science

Program Requirements

The Master of Applied Science (M.A.Sc.) is a graduate-level study program that includes a research investigation and the writing of a thesis. Requirements for the M.A.Sc. include satisfactory completion of 30 credits of graduate-level courses (up to 6 credits may be at the undergraduate level in courses numbered 300 to 499), original research under the supervision of a faculty member, and a thesis. The thesis is assigned 6 to 12 credits and is counted as part of the coursework requirement. A typical completion time for the M.A.Sc. is 24 months. Subject to satisfactory progress and acceptance by a faculty supervisor, a successful M.A.Sc. graduate may transfer to a course of studies leading to the Ph.D.

Read less
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Read more
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Students are integrated into the research culture of the Department by joining a research group, supervised by one of our academic staff, in one of the following areas of Chemistry:

Biological:

with a focus on enzymes, nucleic acids, protein folding and misfolding, and physical techniques; with relevance to health and disease, drug discovery, sensors, nanotechnology, ageing and energy research applications.

Materials Chemistry:

including surfaces, interfaces, polymers, nanoparticles and nanoporous materials, self assembly, and biomaterials, with applications relevant to: oil recovery and separation, catalysis, photovoltaics, fuel cells and batteries, crystallization and pharmaceutical formulation, gas sorption, energy, functional materials, biocompatible materials, computer memory, and sensors.

Physical Chemistry:

including atmospheric sciences, surfaces and interfaces, materials, and physical and chemical aspects of the behaviour of biopolymers and other soft systems.

Synthetic Chemistry:

including complex molecule synthesis, synthetic catalysis, synthetic assembly, synthetic biology and medicine, new technology for efficient synthesis, green synthesis, and preparation of new materials.

Theory, Modelling and Informatics:

including quantum dynamics, modelling soft materials, protein folding and binding, biomolecules in motion, pharmacological activity, molecular switches, redox chemistry, designing bioactive molecule and drugs, chemical biology, crystallography, and simulation of spectroscopic studies.

Potential supervisors and their area of research expertise may be found at Department of Chemistry (Research): http://www.ch.cam.ac.uk/research

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcchmpmch

Course detail

Educational aims of the MPhil programme:

- to give students with relevant experience at first degree level the opportunity to carry out focussed research in the discipline under close supervision; and

- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests and a broader set of transferable skills.

Learning Outcomes

By the end of the programme, students will have:

- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research and research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

The MPhil involves minimal formal teaching. Students may attend the Department's programme of research seminars and other graduate courses, including the Transferable Skills programme that forms part of the PhD programme. Informal opportunities to develop research skills also exist through mentoring and other opportunities by fellow students and members of staff. However, most research training is provided within the research group structure and all students are assigned a research supervisor.

All graduate students receive termly reports written by their supervisors.

Assessment

The scheme of examination for the MPhil in Chemistry shall consist of a thesis, of not more than 15,000 words in length, exclusive of tables, footnotes, bibliography, and appendices, on a subject approved by the Degree Committee for the Faculty of Physics and Chemistry, submitted for examination at the end of 11 months. The examination shall include an oral examination on the thesis and on the general field of knowledge within which it falls. The thesis shall provide evidence to satisfy the Examiners that a candidate can design and carry out investigations, assess and interpret the results obtained, and place the work in the wider perspectives of the subject.

Continuing

The Department offers a PhD in Chemistry course and MPhil students can apply to continue as a graduate student on this course.

MPhil students currently studying a relevant course at the University of Cambridge will need to pass their MPhil course (if examined only by thesis) or obtain a minimum merit (if there is a marked element) in order to be eligible to continue onto the PhD in Chemistry.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Summary. This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to specialise in marine engineering systems on board ships, and offshore platforms that facilitate their functional capability. Read more

Summary

This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to specialise in marine engineering systems on board ships, and offshore platforms that facilitate their functional capability. No prior specialised knowledge of the discipline is required and an introductory module called Fundamentals of Ship Science is provided in the programme.

Modules

Compulsory modules: Fundamentals of Ship Science; MSc Research Project; Advanced Sensors and condition Monitoring; Marine Law and Management; Marine Engineering; Advanced Control Design; Advanced Electrical Systems; Marine Safety and Environmental Engineering

Optional modules: Fuel Cells and Photovoltaic Systems 1; Tribology Engineering and Engine Tribology; Advances in Ship Resistance and Propulsion; Control and Instrumentation; Maritime Robotics

For more information visit our website.



Read less

Show 10 15 30 per page



Cookie Policy    X