• Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Dundee Featured Masters Courses
University of Leeds Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of Bath Featured Masters Courses
"fuel" AND "cell"×
0 miles

Masters Degrees (Fuel Cell)

We have 29 Masters Degrees (Fuel Cell)

  • "fuel" AND "cell" ×
  • clear all
Showing 1 to 15 of 29
Order by 
Get paid to do a Masters with the. Centre for Global Eco-Innovation. at. Lancaster University. and. Ames Goldsmith (UK) Ltd. One year enterprise-led funded Masters by Research, Ref. Read more

Get paid to do a Masters with the Centre for Global Eco-Innovation at Lancaster University and Ames Goldsmith (UK) Ltd.

One year enterprise-led funded Masters by Research, Ref. No. 85

·        Get paid £15,000 tax-free

·        Have your tuition fees reduced. Your partner company pays £2,000 towards your fees, meaning UK/EU students pay £2,260, and International students pay £15,945.

·        Be part of the multi award winning Centre for Global Eco-Innovation with a cohort of 50 talented graduates working on exciting business-led R&D.

·        The Centre is based at Lancaster University, so you will gain your Masters from a Top Ten University, recognised as The Sunday Times University of the Year 2018.

·        Finish in a strong position to enter a competitive job market in the UK and overseas.

New energy systems and promoting a transition to a circular economy are amongst the greatest challenges of the current generation. 

This project offers the opportunity to gain a masters qualification working in collaboration with a leading supplier of precious metals. Understanding gained through this project will be in high demand as vehicle manufacturers seek to innovate to make fuel cell technology affordable. The project degree fees are sponsored, and you are paid a stipend whilst undertaking the research.

Fuel cells are becoming increasingly vital sources of power, with predictions for markets to surge in the next 20 years. A fuel cell includes a membrane impregnated with precious metals using Proton Exchange Membrane (PEM) technology. Applications include electrolysers, trains, stationary power and fuel cell vehicles.

The aim of this project is to explore methods of recycling fuel cell membranes (MEA) safely in order to separate the reusable precious metal content from other products that may damage the environment. Currently, precious metals can only be recovered through a process of burning and releasing hazardous compounds. Fuel cells and electrolysers are part of the green energy revolution. This project aims to provide a recycling solution that will recover more useful valuable metals that can feed directly back into the production process.

The successful applicant has the opportunity to explore the leaching and deposition kinetics of some of the components not previously studied, such as iridium. This will likely involve techniques and equipment such as rotating discs, ring disc electrodes and electrochemical quartz crystal microbalance. The team will use this work to design a process / reactor, which allows the validation of the performance.

This project would suit a chemical engineering or chemistry graduate.

Enterprise and collaborative partners

This Masters by Research is a collaborative research project between Lancaster University and Ames Goldsmith (U.K.) Limited. Supervised by Dr Richard Dawson and Dr Fabrice Andrieux of Lancaster University and colleagues from Ames Goldsmith (U.K.) Limited and Ceimig Limited. Ames Goldsmith is a major supplier of silver-based products and refining services to the electronics, medical, photographic, mirror, waste treatment and catalyst industries.

Apply Here

To apply for this opportunity please email with:

·    A CV (2 pages maximum)

·    Application Form

·    Application Criteria Document

·    Reference Form

This project is part funded by the European Regional Development Fund and is subject to confirmation of funding. For further information about the Centre for Global Eco-Innovation, please see our website.

 

Deadline:           Midnight Tuesday 19th June 2018

Start:                    October 2018



Read less
This programme falls within the theme Sustainable Power Generation and Supply of the Research Councils’ Energy Programme, the first of its kind in the UK. Read more

This programme falls within the theme Sustainable Power Generation and Supply of the Research Councils’ Energy Programme, the first of its kind in the UK. It provides a systematic knowledge and understanding of hydrogen, fuel cells and their applications, including developments and problems at the forefront of the discipline.

Chemical Engineering is dynamic and evolving. It provides many solutions to problems facing industries in the pharmaceutical, biotechnological, oil, energy and food and drink sectors. It is vital to many issues affecting our quality of life; such as better and more economical processes to reduce the environmental burden, and more delicious and longer lasting food due to the right combination of chemistry, ingredients and processing.  

Birmingham is a friendly, self-confident, School which has one of the largest concentrations of chemical engineering expertise in the UK. The School is consistently in the top five chemical engineering schools for research in the country. It also has a first-class reputation in learning and teaching, and regularly ranks highly in league tables.

Course details

This programme falls within the theme ‘Sustainable Power Generation and Supply’ of the Research Councils’ Energy Programme, the first of its kind in the UK. 

Masters graduates will have a systematic knowledge and understanding of hydrogen, fuel cells and their applications, including developments and problems at the forefront of the discipline. They will be able to evaluate current research critically, and be original in the application of their knowledge, proposing new hypotheses as appropriate. 

Typical Masters graduates will be able to deal with complex issues, making sound judgements in the absence of complete information, and will be able to communicate their conclusions clearly to specialist and non-specialist audiences. They will be self-motivating and able to act autonomously, and will have the qualities and transferable skills necessary to exercise initiative and personal responsibility, to make decisions in complex and unpredictable situations, and to have the independent learning ability required for continuing professional development. 

Their high level of numeracy and skills in problem solving, team working, communication and information technology will equip them for successful careers outside as well as within the process and allied industries. 

The MRes in Hydrogen, Fuel Cells and their Applications:

  • Demonstrates the exciting future promise of hydrogen, fuel cells and their applications in a zero-emission world
  • Shows that industry supports the developments and that jobs are plentiful
  • Stresses the international nature of the course, with travel overseas
  • Emphasises the high quality nature of the teaching in top grade RAE Schools
  • Supports entrepreneurial spirit, with three spin-out companies in hydrogen and fuel cells founded during the past 12 months at the University of Birmingham

Programme content

The programme will focus on taught modules (60 credits) in science, engineering and team building, as well as business and management, and a dissertation. 

The programme can be studied full-time over one year, or part-time over two or three years. Modules are also available individually to fulfil continuing professional development needs.

Dissertation

The research thesis will focus on any of the following areas: Solid Oxide Fuel Cell Systems, Solid Oxide Fuel Cell Stack Engineering for Domestic Applications, Hydrogen Proton Exchange Membrane Fuel Cell (PEMFC) Stack Engineering for Automotive, Hybrid Vehicular Systems, Membrane Electrode Assembly (MEA) & Electrocatalyst development, Direct Methanol Fuel Cell (DMFC) Stack Engineering for Portable Applications, Alkaline Polymer Electrolyte Fuel Cells, Discovery of New Nano-Materials for Hydrogen Production & Storage, Discovery of non-PGM alloys Materials, Hydrogen Production from Biomolecules by Novel Methods, Development of Novel Pd Alloy Thin-films for Use in High temperature Hydrogen Membrane Reactors. 

Successful Masters students will have the opportunity to study for the PhD with Integrated Study in Hydrogen, Fuel Cells and their Applications.

Related links

Learning and teaching

The programme will focus on taught modules (60 credits) in science, engineering and team building, as well as business and management, and a dissertation. 

Employability

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

We can supervise MPhil projects in topics that relate to our main areas of research, which are:

Bio-energy

Our research spans the whole supply chain:
-Growing novel feedstocks (various biomass crops, algae etc)
-Processing feedstocks in novel ways
-Converting feedstocks into fuels and chemical feedstocks
-Developing new engines to use the products

Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.

We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.

Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including:
-The application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines
-Domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils
-Biowaste methanisation
-Biomass and biowaste combustion, gasification
-Biomass co-combustion with coal in thermal power plants
-CO2 capture and storage for thermal power systems
-Trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy)
-Engine and power plant emissions monitoring and reduction technology
-Novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.

Key areas of research include:
-Biomineralisation
-Liquid organic hydrides
-Adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources

Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.

We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.

Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Facilities

As a postgraduate student you will be based in the Sir Joseph Swan Centre for Energy Research. Depending on your chosen area of study, you may also work with one or more of our partner schools, providing you with a unique and personally designed training and supervision programme.

You have access to:
-A modern open-plan office environment
-A full range of chemical engineering, electrical engineering, mechanical engineering and marine engineering laboratories
-Dedicated desk and PC facilities for each student within the research centre or partner schools

Read less
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. Read more
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. This course is designed with an engineering focus that deals with applications, combined with the business element; applicable whether you work for a large organisation or a small to medium-size enterprise.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-The programme provides hands-on skills in 3D CAD and solid modelling, FEA and CFD analysis, Polysun and WindPRO simulations using industry-standard software.
-You can undertake a wide range of challenging and interesting sponsored and non-sponsored projects in the specific areas of wind power, solar power, biofuels and fuel-cells-related technologies.
-Excellent career progression and internship with leading renewable companies: around 80% of students who have graduated from this programme have been recruited by the relevant industries as a consultant such as Atkins, Alstom Power, Inditex, Vattenfall, Shell, SGS UK Ltd and many others.
-Completion of this programme would be an ideal progression to PhD level of research studies if you are interested in following an academic or research career in novel areas of renewable energy.

What will you study?

The course provides an in-depth knowledge of renewable energy systems design and development, commercial and technical consultancy and project management within the sustainable engineering environment.

You will gain technical skills in and knowledge of solar power, wind power, biofuel and fuel cell technologies, as well as renewable energy business and management. In addition, you will gain practical skills in up-to-date computer-aided simulation technologies such as Polysun for solar energy applications, WindPRO for wind farm applications and ECLIPSE for biomass applications.

Option modules enable you to specialise in project engineering and management, as well as risk management or engineering design and development. Advanced topics, such as 3D solid modelling, computer-aided product development and simulation, and computational fluid dynamics (CFD) analysis and simulation allow you to gain further practical and theoretical knowledge of analytical software tools used in product design.

Assessment

Coursework, exams, individual project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

If you start this course in January, you will complete the same modules as students who started in September but in a different format – please contact us at for more information.

Core modules
-Biomass and Fuel Cell Renewable Technology
-Solar Power Engineering
-Wind Power Engineering
-Project Dissertation

Option modules (choose one)
-Engineering Projects and Risk Management
-Computational Fluid Dynamics for Engineering Applications
-Computer Integrated Product Development

Read less
The MPhil and PhD programmes in Chemical Engineering attract students from diverse disciplinary backgrounds such as statistics, maths, electrical engineering, chemistry and physics. Read more
The MPhil and PhD programmes in Chemical Engineering attract students from diverse disciplinary backgrounds such as statistics, maths, electrical engineering, chemistry and physics. You may work on multidisciplinary research projects in collaboration with colleagues across the University or from external organisations.

Research in the School of Chemical Engineering and Advanced Materials is cross-disciplinary and our strategy is to ensure that our research groups grow and provide a balanced portfolio of activities for the future. This is achieved in part through MPhil and PhD supervision.

Advanced materials

Every article, instrument, machine or device we use depends for its success upon materials, design and effective production. We work on a wide range of materials topics including:
-New material development
-Optimising of materials processing
-Testing and evaluation at component scale and at high spatial resolution
-Modelling
-Failure analysis

Much of our work relates to materials and processes for renewable energy generation, energy efficiency, carbon capture and storage. We also use biological and bio-inspired processes to develop new functional materials.

The Group Head is Professor Steve Bull, Cookson Group Chair of Materials Engineering – high spatial resolution mechanics. His research focuses on development and testing of compliant and porous materials, and the use of sustainable materials. Professor Bull is the 2013 recipient of the Tribology Silver Medal presented by the Tribology Trust, the top national award in this area.

Electrochemical engineering science

Electrochemical Engineering Science (EES) arose out of the pioneering fuel cell research at Newcastle in the 1960s. We are continuing this research on new catalyst and membrane materials, optimising electrode structures and developing meaningful fuel cell test procedures.

We are investigating electrochemical methods for surface structuring, probing and testing at the micron and nanoscale. More recently, we have been using electrochemical analysis to understand cellular and microbial catalysis and processes.

Applications of our research are in:
-Energy production and storage
-Micro and nanoscale device fabrication
-Medical and health care applications
-Corrosion protection

The Group Head is Professor Sudipta Roy. Professor Roy's research focuses on materials processing, micro/nano structuring and corrosion.

Process intensification

Process intensification is the philosophy that processes can often be made smaller, more efficient and safer using new process technologies and techniques, resulting in order of magnitude reductions in the size of process equipment. This leads to substantial capital cost savings and often a reduction in running costs.

The Group Head is Professor Adam Harvey. Professor Harvey's research focuses on Oscillatory Baffled Reactors (OBRs), biofuel processing and heterogeneous catalysis.

Process modelling and optimisation

Our goal is to attain better insight into process behaviour to achieve improved process and product design and operational performance. The complexity of the challenge arises from the presence of physiochemical interactions, multiple unit operations and multi-scale effects.

Underpinning our activity is the need for improved process and product characterisation through the development and application of process analytical techniques, hybrid statistical and empirical modeling and high throughput technologies for chemical synthesis.

The Group Head is Professor Elaine Martin. Professor Martin's research focuses on Process Analytical Technologies, Statistical and Empirical Process Data Modelling, and Process Performance Monitoring.

Read less
Why this course?. As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques. Read more

Why this course?

As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques.

This course is for graduates in naval architecture, offshore engineering, mechanical engineering and related disciplines who want to gain advanced knowledge of subsea systems, designs and installation. This includes systems and equipment such as:

  • pipelines
  • wellheads
  • drilling rigs
  • riser & mooring systems

You’ll study

Your course will be made up of three components:

  • Instructional modules
  • Group project
  • Individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

You’re required to attend an induction prior to the start of the course.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30 to 40% course work and 60 to 70% examination.

Careers

Offshore hydrocarbon activities are moving into area of water depths exceeding 2000m. Subsea drilling, production and control systems are becoming much more important. Therefore, subsea engineers are in great demand world-wide.

Job titles include:*

  • Drilling Fuel specialist
  • I-Drill Engineer
  • Junior Riser Engineer
  • Subsea Engineer
  • Well Engineer
  • Project Engineer

Employers include:*

  • 2H Offshore
  • Aker Solutions
  • BP
  • ENI Saipem
  • Subsea7
  • Talisman Energy
  • Technip
  • Schlumberger

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).



Read less
Climate change and limited fossil fuel reserves are creating an unprecedented demand for renewable energy and Hull, on the Humber - Britain's energy estuary, is the ideal location to study energy engineering. Read more

Climate change and limited fossil fuel reserves are creating an unprecedented demand for renewable energy and Hull, on the Humber - Britain's energy estuary, is the ideal location to study energy engineering.

This MSc will prepare you for specialised industry roles in energy engineering or allow you to advance to specialist PhD study in energy and sustainability engineering.

A strong emphasis is placed on the practical application of knowledge. The University has strong, direct links with industry, providing you with opportunities to work on real-world engineering projects.

There are two pathways leading to the following awards:

MSc Energy Engineering: Energy Technologies in Building

A mainly design-based programme, involving energy consumption analyses in building, building services (heating, ventilation, air conditioning and refrigeration) systems design, as well as renewable energy (solar, ground soil, wind, biomass and fuel cell) application in buildings. The projects are specifically tailored to solve practical problems.

MSc Energy Engineering: Renewable Energy Technologies

An opportunity to study a range of technologies from PV and solar thermal to biomass, wind and tidal. Students will have access to experimental facilities in all of these areas as well as the possibility to investigate resource modeling and design of novel harvesting devices.

Study information

This MSc will prepare specialists with advanced skills in distinct areas of energy engineering. A very strong emphasis is placed on the practical application of theory.

The programme comprises a combination of lectures, practical/design exercises, tutorials, computer-based process simulation and optimisation, and resource-based, problem-based and enquiry-led learning.

Semester one comprises core modules that will provide you with a general background knowledge of the energy industry, including economics, policy and impact assessment as well as a technical overview.

Core modules:

  • Energy Technologies
  • Environmental Management and Policy
  • Research Management and Research Skills

Students will then follow their specialist path, selecting three further modules from options including:

  • Renewable Energy in Buildings
  • Built Energy System Design and Practice
  • Power distribution, storage and control
  • Sustainable Waste Management
  • Energy in Buildings: Load Analysis

You will develop competence and confidence in the application of engineering knowledge and techniques to a range of industrial and real-world energy-related problems.

You will develop a good theoretical and practical understanding that balances the core fundamentals with the latest industry and research practice.

A final project and dissertation will enable you to identify and apply theory and practice to the analysis and solution of complex engineering problems.

* All modules are subject to availability.

Future prospects

The energy engineering industry is expanding rapidly and employment opportunities are high. An increased focus on renewable energy projects is creating demand for sector specialist engineers.

This programme provides you with the skills, competencies and knowledge to be successful in the workplace or will prepare you to advance to specialist PhD study in energy and sustainability engineering.

There are many opportunities to work with energy companies during the programme, enhancing your employability.

This MSc has a host of industry advisors from companies and organisations likely to offer employment opportunities to students completing the programme.

Our industry partners include Spencer Group and NPS Humber Limited. The Humber is the largest Renewable Enterprise Zone in the UK. Green Port Hull, a collaboration between Hull City Council, East Riding of Yorkshire Council and Associated British Ports, promotes investment and development of the renewable energy sector in the region.



Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more

Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes

• Microelectronics

• Micro-mechanics

• MSE design laboratory I

• Optical Microsystems

• Sensors

• Probability and statistics

• Assembly and packaging technology

• Dynamics of MEMS

• Micro-actuators

• Biomedical Microsystems

• Micro-fluidics

• MSE design laboratory II

• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems

• Design and simulation

• Life sciences: Biomedical engineering

• Life sciences: Lab-on-a-chip

• Materials

• Photonics

• Process engineering

• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems

• Analog CMOS Circuit Design

• Mixed-Signal CMOS Circuit Design

• VLSI – System Design

• RF- und Microwave Devices and Circuits

• Micro-acoustics

• Radio sensor systems

• Optoelectronic devices

• Reliability Engineering

• Lasers

• Micro-optics

• Advanced topics in Macro-, Micro- and Nano-optics

Design and Simulation

• Topology optimization

• Compact Modelling of large Scale Systems

• Lattice Gas Methods

• Particle Simulation Methods

• VLSI – System Design

• Hardware Development using the finite element method

• Computer-Aided Design

Life Sciences: Biomedical Engineering

• Signal processing and analysis of brain signals

• Neurophysiology I: Measurement and Analysis of Neuronal Activity

• Neurophysiology II: Electrophysiology in Living Brain

• DNA Analytics

• Basics of Electrostimulation

• Implant Manufacturing Techologies

• Biomedical Instrumentation I

• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip

• DNA Analytics

• Biochip Technologies

• Bio fuel cell

• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials

• Microstructured polymer components

• Test structures and methods for integrated circuits and microsystems

• Quantum mechanics for Micro- and Macrosystems Engineering

• Microsystems Analytics

• From Microsystems to the nano world

• Techniques for surface modification

• Nanomaterials

• Nanotechnology

• Semiconductor Technology and Devices

MEMS Processing

• Advanced silicon technologies

• Piezoelectric and dielectric transducers

• Nanotechnology

Sensors and Actuators

• Nonlinear optic materials

• CMOS Microsystems

• Quantum mechanics for Micro- and Macrosystems Engineering

• BioMEMS

• Bionic Sensors

• Micro-actuators

• Energy harvesting

• Electronic signal processing for sensors and actuators

Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.



Read less
Why this course?. This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering. Read more

Why this course?

This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering.

It provides you with practical knowledge of offshore floating systems. You’ll look at their conceptions, design and installation. You’ll also gain a sound basis of mathematical and engineering fundamentals.

With the world-wide search for offshore oil and gas moving into increasingly hostile areas of ocean and deep and ultra-deep water, floating systems are becoming more widely used. Floating systems must be designed and built to withstand harsh environments with innovative methods and techniques being adopted to develop robust as well as economically efficient and safe structures. In meeting these challenges, concern for the environment is of increasing importance.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

The programme consists of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • towing/wave tank exclusively for teaching purposes
  • marine engine laboratory
  • hydrogen fuel cell laboratory
  • cutting-edge computer facilities
  • industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST).

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70 examination marks.

Careers

Graduates will be well-prepared for a challenging career in all sectors of offshore engineering dealing not only with offshore floating systems but also fixed marine structures.



Read less
Why this course?. This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering. Read more

Why this course?

This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering.

Marine engineering involves the systems and equipment onboard marine vehicles including:

  • design
  • construction
  • installation
  • support

There’s a particular emphasis on propulsion and control systems.

High efficiency and low environmental impact of marine engines are the key factors in assuring economical operation and environmental protection in maritime transportation. This has important implications for both economic success and environmental impact.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

The programme consists of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It'll give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by a survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of the aspects learned from other modules within a specific topic. This'll be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in the form of formal lectures supported with tutorials and laboratory experiments.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is exam assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70% exam marks.

Careers

As a graduate you’ll be prepared for a wide range of challenging and rewarding careers in the marine and related industries.

These include:

  • marine engineering machinery & system design
  • surveying
  • technical superintendence
  • project management
  • safety management
  • support services
  • classification societies
  • consultancy services


Read less
Why this course?. This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures. Read more

Why this course?

This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures.

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines.

You'll be introduced to ultimate strength, fatigue and design concepts for structural components of ships and offshore floating systems. You'll also gain the knowledge of material behaviour together with factors influencing the dynamic behaviour of offshore installations.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities, which will expand your career opportunities in naval architecture, marine, offshore oil and gas industries.

You'll study

Your course is made up of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Career destinations include:

  • Naval Architect
  • Marine Engineer
  • Graduate Engineer
  • Marine Surveyor
  • Offshore Renewables Engineer
  • Project Engineer


Read less
Why this course?. The Faculty of Engineering runs a multidisciplinary postgraduate course entitled Sustainable Engineering with a number of different themes, one of which is offshore renewable energy. Read more

Why this course?

The Faculty of Engineering runs a multidisciplinary postgraduate course entitled Sustainable Engineering with a number of different themes, one of which is offshore renewable energy.

This flexible programme combines study in specialist, advanced engineering technologies underpinned with training in sustainability. The programme has been developed with direct industrial involvement to provide you with a solid understanding of modern, sustainable engineering. As well as gaining an understanding of how sustainable engineering applies to offshore renewable energy, this programme will also provide you with key transferable skills to aid your employability.

The course is designed for experienced or newly qualified engineers in:

  • Naval Architecture
  • Marine Engineering
  • Mechanical Engineering
  • Civil Engineering
  • Electrical Engineering or related disciplines

The Department of Naval Architecture, Ocean & Marine Engineering, a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

Studying at least three generic classes will meet the key requirements to attain Chartered Engineer status.

You must take three specialist classes if you are studying for the Postgraduate Certificate and up to five if you are studying for a Postgraduate Diploma or MSc.

Successful completion of six classes leads to the award of a Postgraduate Certificate.

Group project

You’ll work with a group of students from different pathways of the Sustainable Engineering programme. You’ll produce sustainable solutions to real-life industry problems. This project will include site visits, field trips and progress reports to industry partners.

Successful completion of eight modules and the group project leads to the award of a Postgraduate Diploma.

Individual project

MSc students will study a selected topic in depth and submit a thesis.

Successful completion of eight classes, the group project and an individual project leads to the award of an MSc.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

Accreditation

This course is accredited by the Royal Institute of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the UK Engineering Council.

Student competitions

Naval Architecture, Ocean & Marine Engineering supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years our students have been triumphant in the following high profile competitions:

  • Science, Engineering & Technology Student of the Year (SET Awards)
  • Best Maritime Technology Student (SET Awards)
  • Double winner of BP’s Ultimate Field Trip Competition
  • Strathclyder of the Year

Learning & teaching

There are two teaching semesters of 11 weeks each.

Each year about 15 experts from the industry give talks and seminars on wide-ranging topics. Industrial visits are made to a variety of companies.

You’re required to attend an induction prior to the start of the course.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Job titles include:

  • Graduate Design Engineer
  • Project Engineer
  • Renewable Energy Consultant
  • Thermal Performance Engineer

Employers include:

  • Arup
  • Eaton
  • Esteyco Energua
  • Granite Services International
  • Moorfield International
  • Mott Macdonald


Read less
The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. Read more

The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. This wide range of industries includes transport, conventional and renewable power generation.

About this degree

Students study analysis and design of conventional and renewable machinery systems and the use of computers in their advanced engineering analysis. Students gain knowledge of electrical and mechanical engineering principles, quantitative methods, and mathematical and computer modelling alongside an awareness of the codes of practice, standards and quality issues within the modern industrial world. They also take modules in project management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), one optional module (15 credits) and a research project (75 credits).

Core modules

  • Power Transmission and Auxiliary Machinery Systems
  • Electrical Machines and Power Electronic Drives
  • Electrical Power Systems and Electrical Propulsion
  • New and Renewable Energy Systems
  • Project Management
  • Group Project

Optional modules

  • Applied Thermodynamics and Turbomachinery
  • Vibrations, Acoustics and Control
  • Advanced Computer Applications in Engineering

Dissertation/report

All students undertake an independent research project which culminates in a project report and oral presentation. In many cases the work has some input from industry.

Teaching and learning

This dynamic programme is delivered through lectures, tutorials, individual and group projects, practical laboratory work and coursework assignments, (including computational analysis). Assessment is through written, oral and viva voce examinations and coursework (including the evaluation of laboratory reports, technical and project reports, problem-solving exercises, computational and modelling skills and oral presentations).

Further information on modules and degree structure is available on the department website: Power Systems Engineering MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The Power Systems Engineering MSc has been accredited by the Engineering Council as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake onwards.

Recent career destinations for this degree

  • PhD Research Assistant in Electromagnetic Engineering, Forschungszentrum J゚lich (J゚lich Research Centre)
  • Business Development Associate, Enviromena Power Systems
  • Graduate Electrical Engineer, Mott MacDonald
  • Graduate Project Manager, EDF Energy
  • Power Engineer, General Electric (GE)

Employability

Delivered by leading research and academic staff from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas through cross-fertilisation with collaborating companies and governmental bodies such as BAE Systems, Rolls Royce, Lloyds Register and TfL who provide specialised lectures and are key to our research success. We will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: EPSRC, EU, Wellcome Trust, the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAe Systems, Cosworth Technology, Ebara, Jaguar Cars, Shell, and BP.

The Power Systems Engineering MSc is accredited under UK-SPEC by the Institution of Mechanical Engineers (IMechE), Institute of Engineering and Technology (IET), and the Institute of Marine Engineering Science and Technology (IMarEST). This programme also constitutes in part the requirement to obtain Chartered Engineering status.

UCL Mechanical Engineering has seen, in recent years, unprecedented activity in refurbishing and re-equipping our laboratories. Highlights of this include an extensive workshop, four engine test cells of the highest specification, a fuel cell laboratory, an electrical power laboratory and a new fluid mechanics laboratory.



Read less
Why this course?. This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to acquire advanced knowledge in a broad range of subjects of ship and offshore technologies. Read more

Why this course?

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to acquire advanced knowledge in a broad range of subjects of ship and offshore technologies.

This two-year course is offered jointly with Hamburg University of Technology (TUHH) in Germany. Year 1 is completed at Strathclyde and Year 2 in Hamburg. The award is made in the name of both universities.

Facilities

We have excellent teaching facilities at the University of Strathclyde including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

TUHH is one of Germany’s newest and most successful universities.

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

You’ll study at the University of Strathclyde in Year 1.

You'll study at Hamburg University in Year 2.

You can choose the moving date which may depend on your research project. This can be supervised in conjunction with a TUHH professor.

Lectures in Hamburg are held in English. You’ll attend lectures between October and February and then complete exams between February and March.

Following March, you’ll complete your dissertation.

Assessment

Assessment is through written examinations, coursework assignments and an individual project thesis. There are teamwork exercises assessed on a continuous basis.

Careers

There are opportunities for you to work in:

  • Oil & gas companies
  • Shipbuilding companies
  • Classification societies
  • Firms specialising in riser & mooring analysis
  • Marine consultancies


Read less
. Research profile. Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life. Read more

Research profile

Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life.

In addition to gaining research skills, making friends, meeting eminent researchers and being part of the research community, a research degree will help you to develop invaluable transferable skills which you can apply to academic life or a variety of professions outside of academia.

The Chemistry/Biology Interface

This is a broad area, with particular strengths in the areas of protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of high throughput and combinatorial approaches. We also focus on biophysical chemistry, the development and application of physicochemical techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.

Experimental & Theoretical Chemical Physics

This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectoscropy to molecular systems and the EaStCHEM surface science group, who study complex molecules on surfaces, probing the structure property-relationships employed in heterogeneous catalysis. A major feature is in Silico Scotland, a world-class research computing facility.

Synthesis

This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.

Materials Chemistry

The EaStCHEM Materials group is one of the largest in the UK. Areas of strength include the design, synthesis and characterisation of functional (for example magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices, porous solids, fundamental and applied electrochemistry polymer microarray technologies and technique development for materials and nanomaterials analysis.

Training and support

Students attend regular research talks, visiting speaker symposia, an annual residential meeting in the Scottish Highlands, and lecture courses on specialised techniques and safety. Students are encouraged to participate in transferable skills and computing courses, public awareness of science activities, undergraduate teaching and to represent the School at national and international conferences.

Facilities

Our facilities are among the best in the world, offering an outstanding range of capabilities. You’ll be working in recently refurbished laboratories that meet the highest possible standards, packed with state-of-the-art equipment for both analysis and synthesis.

For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200-800 MHz; mass spectrometry utilises EI, ESI, APCI, MALDI and FAB instrumentation, including LC and GC interfaces. New combinatorial chemistry laboratories, equipped with a modern fermentation unit, are available. We have excellent facilities for the synthesis and characterisation of bio-molecules, including advanced mass spectrometry and NMR stopped-flow spectrometers, EPR, HPLC, FPLC, AA.

World-class facilities are available for small molecule and macromolecular X-ray diffraction, utilising both single crystal and powder methods. Application of diffraction methods at high pressures is a particular strength, and we enjoy strong links to central facilities for neutron, muon and synchrotron science in the UK and further afield. We are one of the world's leading centres for gas-phase electron diffraction.

Also available are instruments for magnetic and electronic characterisation of materials (SQUID), electron microscopy (SEM, TEM), force-probe microscopy, high-resolution FTRaman and FT-IR, XPS and thermal analysis. We have also recently installed a new 1,000- tonne pressure chamber, to be used for the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within the COSMIC Centre. Dedicated computational infrastructure is available, and we benefit from close links with the Edinburgh Parallel Computing Centre.



Read less

Show 10 15 30 per page



Cookie Policy    X