• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
University of Reading Featured Masters Courses
Ulster University Featured Masters Courses
Coventry University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"friction"×
0 miles

Masters Degrees (Friction)

  • "friction" ×
  • clear all
Showing 1 to 5 of 5
Order by 
Student research degrees in Metallic Materials are based within a vibrant research group, which is one of the largest in the UK. The research encompasses all aspects of metals alloys and composites, including their design, processing, forming, joining and performance. Read more
Student research degrees in Metallic Materials are based within a vibrant research group, which is one of the largest in the UK. The research encompasses all aspects of metals alloys and composites, including their design, processing, forming, joining and performance.

Research Focus

The research extends from fundamental science, and the `blue skies' development of novel technologies and techniques, to the very applied, with the aim of improving our understanding of the basic governing principles, process simulation and physical modelling. While our research is broad ranging, we focus on light alloys for aerospace and transport applications, high-temperature materials for aeroengines and power generation, and metal composites, as well as the failure of metallic materials, their environmental degradation and surface treatment. The research is supported by state of the art equipment for materials characterisation, testing, simulation and processing.

Examples of recent student PhD projects include; Microstructure Modelling for Friction Stir Welding, Laser Surface treatment of Aerospace Alloys, Advanced Strain Mapping for Structural Integrity application, Dynamic Grain Growth in Super Plastic Forming, Dynamics and Morphology of Stress Corrosion Cracking Using 3D X-ray Tomography, and Laser Depositioning of Nickel Base Superalloys.

Industry links

We have strong links with industry and the funding councils and sponsorship from global companies, including; Airbus, Alcan, Alcoa, British Energy, Rolls Royce, BNF and Jaguar. Major initiatives include the £6M EPSRC-Manchester Portfolio Partnership in Light Alloys for Environmentally Sustainable Transport and the Materials Performance Centre, a research alliance established with Nexia Solutions (supported by the NDA) in 2002, and partnered with British Energy, Serco Assurance, EDF and Westinghouse.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less
Student research degrees in Metallic Materials are based within a vibrant research group, which is one of the largest in the UK. The research encompasses all aspects of metals alloys and composites, including their design, processing, forming, joining and performance. Read more
Student research degrees in Metallic Materials are based within a vibrant research group, which is one of the largest in the UK. The research encompasses all aspects of metals alloys and composites, including their design, processing, forming, joining and performance.

Research Focus

The research extends from fundamental science, and the `blue skies' development of novel technologies and techniques, to the very applied, with the aim of improving our understanding of the basic governing principles, process simulation and physical modelling. While our research is broad ranging, we focus on light alloys for aerospace and transport applications, high-temperature materials for aeroengines and power generation, and metal composites, as well as the failure of metallic materials, their environmental degradation and surface treatment. The research is supported by state of the art equipment for materials characterisation, testing, simulation and processing.

Examples of recent student PhD projects include; Microstructure Modelling for Friction Stir Welding, Laser Surface treatment of Aerospace Alloys, Advanced Strain Mapping for Structural Integrity application, Dynamic Grain Growth in Super Plastic Forming, Dynamics and Morphology of Stress Corrosion Cracking Using 3D X-ray Tomography, and Laser Depositioning of Nickel Base Superalloys.

Industry links

We have strong links with industry and the funding councils and sponsorship from global companies, including; Airbus, Alcan, Alcoa, British Energy, Rolls Royce, BNF and Jaguar. Major initiatives include the £6M EPSRC-Manchester Portfolio Partnership in Light Alloys for Environmentally Sustainable Transport and the Materials Performance Centre, a research alliance established with Nexia Solutions (supported by the NDA) in 2002, and partnered with British Energy, Serco Assurance, EDF and Westinghouse.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less
Summary Suitable for engineering, mathematics and physical sciences graduates, this course is led by world-class experts from the national Centre for Advanced Tribology (nCATS). Read more

Summary

Summary Suitable for engineering, mathematics and physical sciences graduates, this course is led by world-class experts from the national Centre for Advanced Tribology (nCATS). This programme provides a comprehensive and academically challenging exposure to modern issues in advanced mechanical engineering science. You may specialise in any relevant aspect of tribology, from the traditional concepts of friction and wear to the cutting-edge development in surface engineering and bioengineering.

Modules

Compulsory modules: Introduction to Advanced Mechanical Engineering Science; Surface Engineering; Bio, Nano and Modelling Aspects of Tribology; Microstructural and Surface Characterisation; MSc Research Project

Optional modules: further module options are available

Visit our website for further information...



Read less
MA Communication Design at Falmouth is a transformative, intensive studio based course, enabling you to develop your individual critical voice in communication design. Read more
MA Communication Design at Falmouth is a transformative, intensive studio based course, enabling you to develop your individual critical voice in communication design. The course prepares you for the demands of a rapidly changing, complex media world, where the ability to create meaningful and effective ideas is paramount.

Benefits:
- Learn from leading global design provocateurs and teachers in project challenges and study set
- Gain commercial experience through internships
- Work in a multi-million pound studio environment that mirrors leading contemporary design studios
- Specialist skills training, relevant for your project interests
- Final semester London show
- Digital final exhibition for global recognition and launch

Visit the website https://www.falmouth.ac.uk/communication-design-ma

How the course is taught

The course is structured over 45 weeks, across three semesters: deconstruction, reconstruction and reinvention.

You'll be in the studio most weekdays working on outcomes rooted in design process and the development of meaningful and innovative ideas. The experience is designed to be supportive yet provocative, so you can take your ideas and practice into new and exciting realms, that challenge you and the wider communications world.

Your learning is delivered across a mixture of set lectures, tutorials, workshops, and peer and tutor review.

Contact hours vary across the course, being most intensive during the first two semesters, with more self directed study as you develop your final project in the third semester. We expect some students to be away at points during the final semester, either working on research and project feedback, or attending internships.

Course outline

The course prioritises fresh and fearless thinking, developing students who see no boundaries to their work, curious to engage and discover while pursuing the highest level of innovation in communication design.

You'll gain an understanding of the global framework of communication design, and an approach to design process that delivers great ideas across diverse media platforms.

Mirroring the success of longstanding programmes at our School of Communication Design, you'll benefit from frequent industry contact, enabling you to stretch and question your practice, gaining inspiration from within and beyond your immediate boundaries.

Attracting a range of applicants, the course prepares you for independent or studio practice, in the applied creative industries, broader arts, or further academic research.

Our priority is to encourage your development by distilling and building your creative voice and ambition. We do so via three semesters, deconstruction, reconstruction and reinvention, with project outcomes mirroring a design process structure.

What you'll do

Semester 1: Deconstruction
- MACD 101: Process
(20 credits)
This module introduces the components of design process in relation to your own personal practice. Through provocation and critical debate you'll reflect on and challenge what you do, seeing how global, experiential and experimental insights can generate the most appropriate process models for a contemporary communications problem.

- MACD 102: Intersections
(20 credits)
This module examines the fundamental components to the production of design: human interaction and collaboration. Whether this interaction is between client and designer, object and user, or experience and emotion, it allows you to experience provocative challenges that hone your own standpoint. You'll learn how social engagement, polar tension or friction can inspire new thinking.

- MACD 103: Boundaries
(20 credits)
This module allows you to take more radical entry points into your understanding of practice; taking project interest into new forms or creating critical design response from more theorised or experimental catalysts.
Provocateurs will continue to challenge and stretch the limits of your enquiry, exploring new theoretical models and examining the debate of 'designer as author'; how works are translated or used; and how they or their work become the provocateur.

Semester 2: Reconstruction
- MACD 104: Curate and build
(40 credits)
You'll deep dive into your emergent interests, exploring how technology and an increasingly complex consumer and cultural landscape may effect your enquiry. Thinking by doing, you'll elect and develop skill sets and a depth of study in both practice and theory. With the module running across the whole semester, it allows you to fully prepare and test ideas and craft, sectors and media as you begin to prepare your main MA project.

- MACD 105: Compete
(20 credits)
Ahead of the final semester, you'll begin to look at avenues and insights for your own practice and from a business or funding perspective. You'll build professional skills relevant to individual need and examine components of design development including publishing, presentations, production and IP.

The module will also examine other methodologies of delivering work around the world, whether through commission or employment, working in known fields of the creative industries or with museums, arts organisations or universities and research bodies.
Student will also engage in competitive projects set by external bodies.

Semester 3: Reinvention
- MACD 106, MA project
(60 credits)
This module allows you to realise your final major project, in a largely self directed semester, bringing together practice, theory and an evaluation phase that provides reflection and potential industry or funding opportunities to be negotiated ahead of graduating.

The first phase leads to exhibiting at a key industry or cultural event, with an interim show. The second sees you gather insights, industry or critical feedback, or undertake an internship, or preparing for the launch of your project. This final phase sees the production of an essay or strategic report, depending on future plans.

Facilities

- Dedicated MA studio space
- Lecture theatres, design lab, break out spaces and meeting rooms
- Digital printing facilities, Risograph machine, woodblock printing and presses, workshop and negotiated access to screen-printing studios
- Apple suite, with Adobe CS and full collection of Monotype typefaces
- Extensive library facilities and digital collections
- Negotiated use of other facilities such as film, photographic, textiles and product design studios

Staff

You'll be taught by staff with backgrounds spanning design, academic, writing and research careers. They offer decades of experience teaching and working for leading studios, working with international clients, arts and cultural organisations, exhibiting and publishing work and research. They are enaged with many of the world's top creative universities and organisations as keynote speakers, external examiners and consultants. Overall they are all inspired by design, teaching, nurturing and encouraging great and motivated students.

Assessment

- Individual project briefs
- Design research journal
- Essay
- Oral presentations, individually and in groups
- Critical review or business plan

Careers

Communication design is a broad field of study, with career choices depending largely on your own personal project focus.

Options include:

- Graphic design
- Advertising
- Packaging and brand design
- Service design
- Photography and film
- Type design or illustration
- Editorial design
- Motion graphics, interactive or digital design
- Information or UX design
- Design criticism and writing
- Teaching, research or PhD study
- Allied fields: television, the heritage sector or exhibition design

Interview and selection process

Please apply via submission of an application form, an outline of your key interest or masters proposal and a portfolio. Details about our portfolio requirements can be found on the application form.

Interviews are held in person at the School, online via Skype or by phone.

Find out how to apply here - https://myfalmouth.falmouth.ac.uk/urd/sits.urd/run/siw_ipp_lgn.login?process=siw_ipp_app&code1=MACODEFC_SEP&code2=0001

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X