• Aberystwyth University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
University of Leicester Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Portsmouth Featured Masters Courses
"freshwater"×
0 miles

Masters Degrees (Freshwater)

We have 63 Masters Degrees (Freshwater)

  • "freshwater" ×
  • clear all
Showing 1 to 15 of 63
Order by 
Aquatic ecosystems and species are under intense anthropogenic threats. These threats directly affect services such as sustainable fisheries, drinking water or ecosystem resilience. Read more

Aquatic ecosystems and species are under intense anthropogenic threats. These threats directly affect services such as sustainable fisheries, drinking water or ecosystem resilience. To adequately respond to these 21st century challenges and conserve these goods and services, a fundamental understanding of the biodiversity and ecosystem processes is needed, as without knowledge there can be no application or effective management.

Considering both freshwater and marine ecosystems and species, we have designed a programme to equip you with the interdisciplinary practical skills and theoretical understanding to pursue a career in aquatic research, consultancy or environmental protection, and give you a good understanding of applying scientific understanding to science policy. 

This programme balances the latest in ecological theory, conservation biology and evolutionary biology with practical application. You will take part in three residential field-courses (Dorset, Cumbria and Cape Verde) for practical, hands-on training.

You will be supervised by research-active scientists, becoming part of their research groups. We support links with a range of NGOs or potential employer organisations and strongly encourage you to publish your project work.

Programme highlights

  • Balances the latest in ecological theory with practical application
  • Residential field courses for practical, hands-on training in the field
  • Access to analytical, mesocosm and temperature-controlled facilities within the Centre for the Aquatic and Terrestrial Environment
  • Strong foundation for employment with environmental protection and conservation agencies, the water industry and environmental consultancies or PhD research 

Research and teaching 

You will have access to analytical research facilities within our Centre for the Aquatic and Terrestrial Environment, developed from an investment of £1.8 million in analytical equipment and specialist laboratory facilities. You will also have access to the Freshwater Biological Association’s River Laboratory on the River Frome in Dorset, via our River Communities Group, and to mesocosm and temperature controlled facilities at QMUL. Furthermore you can make use of our network of partner NGOs, research labs and industries to create further opportunities.

By choosing to study at a Russell Group university, you will have access to excellent teaching and top-class research. You can find out more about our research interests and view recent publications on the School of Biological and Chemical Science's Aquatic Ecology Research group page.

Centre for the Aquatic and Terrestrial Environment (CATE)

(CATE) at Queen Mary is an interdisciplinary collaboration between the School of Biological and Chemical Sciences and the School of Geography.

CATE builds on existing research strengths in areas of environmental research such as biogeochemistry, freshwater and marine ecology, terrestrial ecology and conservation. These facilities are used either in the formal teaching of this programme or are available for individual research projects.

Dorset Field Facilities

The Aquatic Ecology Group has a complementary unit (the River Communities Group) who do applied research, based at the River Laboratory of the Freshwater Biological Association in Dorset. We have a suite of ponds, 50% of which are heated above ambient temperatures, in which run long-term climate change experimentation. You will have the opportunity to conduct both field work and lab projects at this site.

Structure

  • Ecosystem Structure and Function: Ecosystems are under continued and growing threat from human activity (e.g. habitat loss, invasive species and diffuse pollution) and if we seek to preserve them then we need to understand how ecosystems function and how they respond to either enforced or natural change. Here we focus on the structural and functional elements of many ecosystems, from shallow lakes to tropical forests, with a particular focus on contrasting aquatic environments.
  • Statistics and Bioinformatics: Covers core statistics methods, within the R statistical computing environment. R has become the de facto environment for downstream data analysis and visualisation in biology, thanks to the hundreds of freely available R packages that allow biological data analysis solutions to be created quickly and reliably.
  • Quantitative Techniques for Surveying and Monitoring in Ecology: In the first week, there will be a series of lectures, workshops and practical data analyses classes where you will learn the theory behind designing and initiating surveys and monitoring campaigns for research projects and also for conservation & management. In the subsequent week, you will be able to put the theory into practice in the field at a location such as Lake Windermere and environs: here you will undertake electrofishing and hydroacoustic surveys for fish populations, zooplankton and benthic invertebrate surveys, a census for aquatic birds, and camera-trapping for aquatic mammals. Other skills such as the use of the modern telemetric tools will be demonstrated.
  • Science into Policy and Management – includes week in Dorset: Here a broad spectrum of human environmental impacts and their mitigation will be explored. The first half of the module will bring the student ‘face to face’ with potential regulators, practitioners and potential employers (typically Defra, Environment Agency, Natural England) through a series of guest lectures. These topics are then explored and summarised through an unpacking and feedback workshop. The second half is field based with current practitioners working directly in the field of bioassessment and biomonitoring. National and international legislation and directives are introduced through a series of case studies to look at the link between successful science and policy.
  • Marine Mammals and Turtles – field course to Cape Verde: The module focuses on the diversity, behaviour, ecology, physiology, conservation and management of cetaceans (whales and dolphins), and marine turtles. It covers such issues as the life history and migrations of turtles, their diving ability and behaviours, the social behaviour of dolphins, and the conservation of whales. It also includes (even though they are not mammals or reptiles!) a brief look at the sea-birds and sharks that will likely also be seen during field excursions. For part of the module you will be taught in the archipelago of Cape Verde, with boat trips for whales and shark observations, sea turtle monitoring. Mornings will be dedicated to lectures and workshops while afternoons and evening will be dedicated to hands-on practical experience.
  • Tropical Ecology and Conservation – field course, usually to either Borneo or Cape Verde


Read less
This programme is delivered in close collaboration with our advisory board of representatives from the water industry, and provides fundamental and applied training in the science and management of freshwater environments. Read more

Overview

This programme is delivered in close collaboration with our advisory board of representatives from the water industry, and provides fundamental and applied training in the science and management of freshwater environments. Combining hydrology, geomorphology, biogeochemistry and ecology, the degree is designed to produce outstanding scientists capable of developing interdisciplinary environmental solutions to priority water resource and catchment issues. It involves fieldwork at our research sites including the near-natural Tagliamento River, Italy, and heavily impacted rivers within London and the south-east of England.

This programme:

- facilitates networking within the water and environmental sectors
- lets you develop core understanding of freshwater environmental systems and the key policy and legal frameworks that underpin their management
- provides hands-on training in flood estimation and inundation modelling using industry-standard software
- allows you to broaden your skills and knowledge in the monitoring and management of pollutants, nutrient levels and greenhouse gas emissions in aquatic systems
- provides training in river assessment methods
- develops your skills and knowledge in the theory and practice of river restoration
- learn transferable skills in field and lab methods, project management, statistical analysis, Geographical Information Systems (GIS) and the use of remotely sensed data, report writing, problem solving and presenting
- follow in the footsteps of our graduates who have secured positions in the water and environmental sectors including Jacobs, Halcrow Group, JBA Consulting, River Trusts, Thames Water, Environment Agency, Parish Geomorphic and ESIS Inc.

Why study at QMUL Geography?

- Professional and friendly environment: We are recognised as an international centre for excellence in teaching and research. Our work is at the forefront of human geography, shaping debates and providing significant new insight and understanding. We are also known for our friendly, collegial and welcoming ethos and are home to many of contemporary human geography's best known scholars.
- Research excellence: Almost 80 per cent of our research outputs (books and articles) are rated as world-leading (4*) or internationally excellent (3*) placing us 5th in the UK for this measure. Our research scores increased across all areas in the latest UK score of research excellence (REF 2014) and we're ranked joint 11th for geography in the UK overall. We're also proud to feature in the top 100 departments in the world to study geography (QS World University Rankings by Subject 2016)
- Employability: 94% of respondents from our postgraduates were in work or further study six month after graduation; 91% at graduate level (DLHE 2015).
- You will develop knowledge and understanding relevant to employment in organisations such as Environment Agency, Defra, Natural England, Centre for Ecology and Hydrology, British Geological Survey and environmental consultancies.

Funding:

A bursary of up to £4,000 is available from the Worshipful Company of Water Conservators for this programme. Contact Dr Gemma Harvey at to find out more.

Fieldwork

Students visit our researchers' site at the near-natural Tagliamento River in Italy as well as heavily-impacted rivers in London and the south east of England.

Read less
Aquatic ecosystems are under continued and growing threats such as habitat loss, invasive species and pollution. Read more

Aquatic ecosystems are under continued and growing threats such as habitat loss, invasive species and pollution. To conserve, manage and provide responsible and sustainable solutions to these threats requires a fundamental understanding of the structural and functional elements of ecosystems, from shallow lakes to the open oceans.

Our Aquatic Ecology by Research programme provides comprehensive practical training by application in the laboratory or field, rather than by formal tuition in the lecture theatre. This format places special emphasis on developing practical skills and the transferal of science to hands-on conservation and applied research. QMUL is home to a leading research group in aquatic ecology, which means you will receive expert supervision and have access to advanced research facilities.

You will take three taught modules and conduct a nine-month extended project, an integral part of this programme as it will help you develop the skills required to progress onto further academic or applied research. During the research project you will be co-supervised by either established PhD students or potential employer organisations. You will also be encouraged to publish your project work.

Research and teaching 

You will have access to analytical research facilities within our Centre for the Aquatic and Terrestrial Environment, developed from an investment of £1.8 million in analytical equipment and specialist laboratory facilities. You will also have access to the Freshwater Biological Association’s River Laboratory on the River Frome in Dorset, through our River Communities research group, and to mesocosm and temperature controlled facilities at QMUL. 

By choosing to study at a Russell Group university you will have access to excellent teaching and top class research. You can find out more about our research interests and view recent publications on the School of Biological and Chemical Science's Aquatic Ecology Research group page.

MSc students on a recent aquatic field trip:

Facilities and events

Centre for the Aquatic and Terrestrial Environment (CATE)

CATE at QMUL is an interdisciplinary collaboration between the School of Biological and Chemical Sciences and the School of Geography.

CATE builds on existing research strengths in areas of environmental research such as biogeochemistry, freshwater and marine ecology, terrestrial ecology and conservation. These facilities are used either in the formal teaching of this programme or are available for individual research projects.

Dorset Field Facilities 

The Aquatic Ecology Group has a complementary unit (the River Communities Group) who do more applied research, based at the River Laboratory of the Freshwater Biological Association in Dorset. For example, we have a suite of ponds, 50% of which are heated above ambient temperatures, in which we run long-term climate change experimentation. You will have the opportunity to conduct both field work and lab projects at this site.

Aquatic Science lectures in London

You will also be able to benefit from the wealth of world-leading aquatic sciences research and lecture series taking place in London, including the following:

  • QMUL Aquatic and Whole Organism Biology Group seminar series
  • Queen Mary Geography seminar series
  • UCL Centre for Ecology and Evolution
  • London Freshwater Group
  • Institute of Fisheries Management
  • The Linnean Society

You will receive a programme of relevant lectures by email.



Read less
Why choose this course?. This course is accredited by the Institution of Environmental Sciences. Gain an in-depth and holistic understanding and knowledge of contaminated land and freshwater environments, as well as strategies to prevent, manage, and control contamination of these environments. Read more

Why choose this course?

This course is accredited by the Institution of Environmental Sciences

Gain an in-depth and holistic understanding and knowledge of contaminated land and freshwater environments, as well as strategies to prevent, manage, and control contamination of these environments

You'll have the opportunity to undertake a work placement to experience working with employers in a range of settings, from practical-based training to practitioner-based learning

This course will prepare you to apply the knowledge gained to real world situations and critically evaluate the outcomes to make strategic decisions

This course provides study aspects that develop an insight and skills for professionals in the government, industry, consultancy, academia, and other statutory bodies within the UK and overseas to evaluate contaminated land and freshwater management policies and strategies to achieve effective governance of these environments

We offer a learning approach suitable for recent graduates seeking a full-time study approach, and mature students in current employment a part-time route to suit their time commitments.

About this course

This is a creative programme that addresses human intervention strategies towards problem-solving in the real world, on examples such as flood defence, through the processes involved in decision-making at local authorities. This will be achieved by linking with external organisations to include practical experience through field and laboratory work, and practitioner training through placements.

Aspects of contaminated land will include legislation and regulation, identification, analysis and remediation, and human health exposure assessment through a case study approach using research informed teaching, as well as practitioner training. Within the water aspects of our course, you will focus on the environmental monitoring and assessment of freshwater, legislation and regulatory aspects, management of freshwater towards prevention and control of contamination, drinking water quality and human health, and a focus on flood defence.

A number of factors ensure you are prepared for the workforce you will seek to join on completion of the programme; these include placement experience with employers, and field and laboratory skills. Additionally, the course is currently undergoing accreditation with the Institution of Environmental Sciences (IES), meaning students could be studying on a professional body accredited course with free student membership of the professional body and eligibility to apply for higher levels of membership upon completion.

Face-to-face delivery of modules and placements will aid your development of transferrable soft leadership and management, and communication skills required to meet the demands of current employers. Most of our student employment will be within collaborative and multi-disciplinary teams. Moreover, you will be supported in your PDP through reflection upon your own learning, performance and achievement, and planning for your personal, educational, and career development.



Read less
What you will study. Tropical Ecology- 20 credits (Optional). This module encompasses dive training; a 16-day excursion (variable destinations, e.g. Read more

What you will study

  • Tropical Ecology- 20 credits (Optional)
  • This module encompasses dive training; a 16-day excursion (variable destinations, e.g. Borneo, Honduras, Philippines); one-week tropical forest surveys, one-week coral reef diving – organism identification and surveying.
  • Environmental Management and Legislation - 10 credits
  • We look at how legislation protects the environment, planning laws and policies, environmental economics and cost-benefit analysis.

  • Wildlife Surveying - 10 credits
  • You will conduct pond and river water quality surveys (BMWP and PSYM methods) and river habitat surveys (RHS). You will learn freshwater invertebrate identification skills and plant identification.

  • Tools for Sustainable Development - 20 credits (Optional)
  • This 100% coursework module includes a four-day workshop. We look at energy use/resources and climate change. We also investigate sustainable alternatives to current lifestyles, consumerism, fossil fuel use and the implications for conservation policy and practices, plus how to obtain funding for community and sustainability projects.

  • Restoration Ecology - 20 credits
  • In this module we study ecology and biodiversity; re-wilding: beaver, lynx, wolf reintroduction; restoration approaches for various habitats and tropical forest management.
  • Terrestrial and Aquatic Conservation - 20 credits
  • You will study protected areas and their management; the impact of climate change on terrestrial habitats; agricultural systems and impact on conservation; the 
  • ecology of rivers, lakes and marine habitats; the human impacts on freshwater habitats and identifying freshwater life.

  • European Field Expedition - 20 credits
  • You will study vegetation surveys (forest structure surveys, thermal zone assessment, various transect techniques, habitat mapping); land use and management issues; bird survey methods (bird identification skills); offshore marine surveys and measurements.

  • Work Based Learning Project - 20 credits (Optional)
  • The optional Work Based Learning module enables our students to gain 60 hours work experience under the supervision of an employer. You will also be assigned an academic supervisor who will advise you on a suitable employer based on your area of interest. Recent organisations who have hosted our students include Capita Symonds, Natural Resources Wales, Wales Heritage Coastal Path and Warwickshire Wildlife Trust.

  • MSc Project - 60 credits 
  • This project is often done in co-operation with conservation organisations such as National Parks; English Nature / Countryside Council for Wales; National Botanic Garden; Environment Agency and Wildlife Trusts. Examples of recent projects include coral reef conservation in the Bahamas; feeding habits of Groupers off Honduras; deforestation in SE Asia; invasive species in Cardiff Bay; biodiversity increase with organic farming; butterfly reintroduction and habitats; recognition of Japanese Knotweed by remote sensing.

  • Tropical Environmental Monitoring - 20 credits (Optional)
  • This module is all about conservation and wildlife / safari management. We look at field monitoring techniques and identification skills, and animal tracking on both foot and by vehicle.
  • Applied Geospatial Analysis - 20 credits
  • This offers a practical introduction to Geographical Information Systems and their use in environmental management. We will look at remote sensing techniques; animal population modelling; pollution modelling and the use of statistical software for parametric and non-parametric analysis, correlation, regression and ANOVA analysis. 

Teaching

Full-time students spend two days at University, usually Wednesday and Thursday, and around 12 hours per week in lectures and practical sessions.

Part-time students attend one day per week. First year part-time students attend on Wednesdays and second years attend on Thursdays.

We teach using a combination of lectures, laboratory sessions, problem solving tutorials, video presentations and practicals. You will also undertake fieldwork excursions within the UK and overseas (additional costs apply). The number of hours of formal teaching will vary depending on your module choice. You will also be encouraged to take responsibility for your own learning by completing guided reading and various interactive computer packages. Based on individual circumstances the MSc Project may be extended into your third year of study and will be agreed as part of a discussion with the course leader. Please note some field trips will take place on weekdays besides Wednesdays and Thursdays.

Assessment

You will be assessed through a range of methods depending on your module choice, these include: examinations, coursework such as writing reports of field excursions. You will also analyse case studies, undertake presentations, participate in workshops and analyse data.



Read less
This program is pending final approval by the Ministry of Advanced Education. The Program is designed to train marine and freshwater scientists to undertake basic and applied research that will help foster healthy marine and freshwater ecosystems and sustainable resource use. Read more

This program is pending final approval by the Ministry of Advanced Education.

The Program is designed to train marine and freshwater scientists to undertake basic and applied research that will help foster healthy marine and freshwater ecosystems and sustainable resource use. Students will broaden their interdisciplinary expertise and acquire professional experience in areas including fisheries science, aquatic ecology, environmental physiology, natural resource economics, marine governance, and climate change.

What makes the program unique?

The Program will be the only M.Sc. program in BC, indeed in Canada, that offers both 18-credit thesis and 12-credit thesis streams, and is interdisciplinary in providing training in both ocean and fisheries science.

Career options

The Program will produce uniquely trained highly qualified personnel with the research capacity and knowledge translation skills necessary for influential careers in academia, industry, government, consulting, and civil society, among others. The graduate students will gain exposure to potential future careers and develop professional connections through cooperation and continual interaction with a diverse partner group in industry (e.g., fishermen’s organizations such as the United Fishermen and Allied Workers Union), consulting (e.g., LGL Limited), government (e.g., Fisheries and Oceans Canada (DFO), B.C. Ministry of the Environment), and non-governmental organizations (e.g., Suzuki Foundation, Hakai Institute), and through public engagement.



Read less
The world’s aquatic ecosystems and environment are increasingly under threat. Pollution, overfishing, global climate change and many other impacts have highlighted the importance for us to understand their function at all levels, from the molecular to the global. Read more

Why take this course?

The world’s aquatic ecosystems and environment are increasingly under threat. Pollution, overfishing, global climate change and many other impacts have highlighted the importance for us to understand their function at all levels, from the molecular to the global.

This is what our course sets out to do and thanks to our close proximity to many types of temperate marine habitats and internationally protected conservation areas, we offer the perfect location for investigation.

What will I experience?

On this course you can:

Research at our internationally-renowned Institute of Marine Sciences or carry out microbiological work at the University’s Field Centre for Environmental Technology at Petersfield Sewage Works
Rear coldwater species for restocking programmes or trial fish food at Sparsholt College’s National Aquatics Training Centre
Study abroad through Erasmus or various other conservation and research schemes

What opportunities might it lead to?

You’ll be taught by leading international researchers and the course has been designed with strong input from outside agencies including environmental consultancies, a range of government bodies and industry. This ensures your training links directly to UK and international employment opportunities.

Here are some routes our graduates have pursued:

Consultancy work
Government-based research
Conservation
Teaching
Further study

Module Details

You will cover a variety of topics in advanced laboratory and field skills, and choose from units that cover marine ecology, aquaculture, ecotoxicology and pollution, and scientific journalism. A large amount of your time will also be spent on the research project that will enable you to apply the skills and knowledge you have gained.

Core units are:

• Research Toolkit: This covers a range of key professional skills for research methods (communication skills, ethics and report writing), advanced field skills (boat sampling, taxonomy, and marine and freshwater sampling methods), advanced laboratory skills (genomics, monitoring and pollution monitoring methods) and remote sensing technology (such as GIS).

• Research Project: Your final project allows you to select from a range of marine and freshwater projects provided by staff within the School, government research laboratories, NGOs and private research companies. During the project you will write literature reviews and develop skills in data analysis and presentation.

Then choose any three optional units from:

• Ecotoxicology and Pollution: This provides an introduction to environmental toxicology using model and non-model organisms.

• Aquaculture: This unit focuses on the principles of aquaculture production, global production and diversity of aquaculture species. It is taught by academic staff and staff from the National Aquatics Training Centre at Sparsholt College. Areas covered include larval culture, diseases and pathology, feeding and growth, reproductive manipulation, and business and management.

• Marine Policy, Planning and Conservation: Planning and Conservation: This unit explores contemporary debates on coastal and marine management with a specific focus on marine policy, planning and conservation.

• Science and the Media: Science communication is increasingly becoming an important part of science. This unit firstly addresses the skills required by scientists to effectively communicate with the media and general public and secondly, provides an understanding of the skills needed for a career in science journalism.

• Subtidal Marine Ecology: Selected topics of current interest in marine ecology, incorporating both theory and applied aspects, culminating in a week-long practical field course in the Mediterranean Sea. The unit carries an additional cost for the field trip, and requires a minimum level of training and experience in SCUBA diving to participate.

Programme Assessment

Hands-on laboratory-based work teamed with field trips means that practical learning underpins the theory learned in lectures, seminars, tutorials and workshops. You’ll also find that some aspects of your course may be taught online using our virtual learning environment.

You will be assessed using a range of methods from exams to coursework and presentations, with great opportunities to present your final-year projects to industry and researchers from other departments and organisations.

Student Destinations

Once you have completed this course, you will be particularly well placed to enter a wide range of interesting and rewarding careers in the UK and abroad. We will ensure you have all the relevant knowledge and skills that employers require, giving you the opportunity to either pursue a scientific career, enter the teaching profession, or further study should you want to continue your research.

Read less
Environmental issues such as eutrophication, habitat degradation and climate change threaten the sustainability of our aquatic resources. Read more

Environmental issues such as eutrophication, habitat degradation and climate change threaten the sustainability of our aquatic resources. Responding to these threats the Aquatic Science MSc equips students with an interdisciplinary understanding of the structure and functioning of aquatic environments, encompassing lakes, ponds, rivers, wetlands, groundwaters, estuaries and shallow seas.

About this degree

Students focus on integrated freshwater and coastal systems and gain extensive training in field sampling, study design and species identification. Distinctive features include: integration of aquatic ecology with hydro-geomorphology, aquatic landscape ecology, analysis of sediment cores for environmental change reconstruction, design of aquatic monitoring programmes and modelling of aquatic system dynamics. Students come away with a sound knowledge of current-day links between aquatic science, legislation and conservation.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation (60 credits).

A Postgraduate Diploma - four core modules and four optional modules all 15 credits (120 credits, full-time nine months, part-time two years) is offered.

A Postgraduate Certificate - four core modules only at 15 credits each (60 credits, full-time twelve weeks, part-time two years) is offered.

Core modules

  • Aquatic Systems
  • Aquatic Monitoring (includes field-trip to Scottish Highlands)
  • Environmental Data Acquisition and Analysis
  • Scientific Basis for Freshwater and Coastal Conservation (field-based module in Norfolk, England)

* modules running are dependent on staff sabbaticals

Optional modules

Students choose four of the following:

  • Lakes
  • Coastal Change
  • Politics of Climate Change
  • Marine Conservation
  • Surface Water Modelling
  • Wetlands
  • Aquatic Macrophytes (field-based module in Dorset, England)
  • Climate Risks to Hydro-ecological Systems
  • Biological Indicators of Environmental Change
  • Non-biological Indicators for Environmental Reconstruction
  • Environmental GIS
  • Ocean Circulation and Climate Change

* modules running are dependent on staff sabbaticals

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 12,000 words. Dissertation placement positions are offered linked to external conservation bodies and research-orientated consultancies.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, practical classes, laboratory sessions, case-studies and residential field classes. Assessment is through coursework and the dissertation, which includes an oral presentation of the research proposal.

Fieldwork

Field classes around the UK, these may include trips to Norfolk, Suffolk and the Scottish Highlands.

Optional module Aquatic Macrophytes - approximately £200

Further information on modules and degree structure is available on the department website: Aquatic Science MSc

Careers

This programme provides an ideal foundation for PhD research, or for employment with environmental protection and conservation agencies, the water industry and environmental consultancies.

Recent career destinations for this degree

  • Catchment Partnerships Officer, South East Rivers Trust
  • Land Use Adviser, Natural England
  • Education Officer, Norfolk Wildlife Trust
  • PhD in Pond Conservation, UCL
  • PhD in the Macroecology of Deep Sea Jelly Fish, University of Southampton

Employability

The MSc provides students with the science background and practical skills necessary for a career working in aquatic conservation and environmental protection agencies, environmental consultancies and stakeholder agencies. The MSc is also an ideal platform for further PhD study. We aim to expose students to potential employers from the outset and students receive expert tuition in field sampling and monitoring programme design, conservation biology, taxonomy of key species groups, knowledge of important conservation principles and legislation and working with stakeholders.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The Aquatic Science MSc is run by UCL Geography which enjoys an outstanding international reputation for its aquatic environmental research and teaching. The degree has a strong emphasis on field working with three major residential classes to the North Norfolk Coast, Scottish Highlands and Dorset.

The programme is taught by world-leading researchers specialising in Recent Environmental Change & Biodiversity and Environmental Modelling and Observation which has specialist input from the Thames Estuary Partnership

Speakers from environmental organisations including the UK Environment Agency, the Rivers Trusts, Wildfowl & Wetlands Trust, the UK Wildlife Trusts, National Trust and Natural England lecture on the programme and take part in fieldwork. By bringing together students, researchers and practitioners, a vibrant and informal academic environment is created encouraging mutual discovery and ongoing debate.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Geography

81% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Several agencies at a national and international level are required to manage our environment sustainably by implementing policy and legislation. Read more
Several agencies at a national and international level are required to manage our environment sustainably by implementing policy and legislation. The study of Applied Environmental Science is critical for establishing policies in environmental assessment, evaluating potential change in environmental quality in response to various land use and other activities, and in the development of management and conservation strategies, as well as contributing to policy formulation.

This programme provides graduates with a thorough knowledge of Environmental Science and there is a heavy emphasis on practical training in fieldwork, laboratory analyses, information sourcing, data analysis,planning, reporting and communication. You will work with an interdisciplinary team of experts covering the key aspects of Environmental Science, encompassing marine, freshwater and terrestrial systems, to make this an exceptionally practical multidisciplinary programme.

Key Fact

This Applied Environmental Science course has been running for over 20 years, it’s the only such MSc in Ireland to include a major input from civil engineering, relating particularly to water quality, hydrology and waste treatment processes. This MSc also offers a 2 month work placement in the environmental sector providing relevant work experience.

Core Modules

Samples of modules include:
• Water Resources Engineering
• Vegetation Ecology
• Environmental Impact Assessment
• Geographic Information Systems (GIS) and Data Analyses
• Freshwater Resources Assessment
• Remote Sensing
• Global Change Ecology
• Ecological Modelling
• Wildlife & Resources Management
• Integrated Municipal Solid Waste
• Marine/Coastal Ecology
• Soil Ecology
• Water, Waste & Environment Modelling
• Environmental Geology
• Ecotoxicology & Air Quality Monitoring


The course gives due consideration to key legislative requirements and policy developments. Modules and topics shown are subject to change and are not guaranteed by UCD.

Career Opportunities

Our graduates are building successful varied careers in environmental resources assessment, management and protection. A considerable number have been employed in consultancy positions and some are also with the Inland Fisheries Ireland, the Department of the Environment and the Environmental Protection Agency (EPA). Some graduates have also continued their studies at PhD level in the areas of fisheries, biomass fuels, soil, water engineering and invertebrate ecology.

Facilities and Resources

The School of Biology and Environmental Science has 14 state-of the-art research laboratories that are equipped to support a very wide range of research activities at the cellular or whole organism level. The UCD Rosemount Environmental Research Station can also support glasshouse or field-based experiments.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Environmental Biology. Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Environmental Biology: Conservation & Resource Management at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc Environmental Biology: Conservation and Resource Management course focuses on the relationships between living organisms and the terrestrial, freshwater and marine environments, coupled with the interactions that result from natural and anthropogenic processes.

On the Environmental Biology: Conservation and Resource Management course you will benefit from advanced training in the interpretation of local and global environmental issues, field and theoretical aspects of biology and ecology, and in analytical techniques. You will also develop the skills necessary to work confidently in vocational areas such as conservation, environmental impact assessment, environmental management, monitoring and education, and foster an objective, scientific and realistic approach to environmental biological issues that you may have to face in a professional capacity.

Graduates from the Environmental Biology: Conservation and Resource Management course go on to work for government agencies such as CCW, Environment Agency, English Nature, Scottish Heritage, Fisheries Research Services, CEFAS. Other organisations include zoos, wildlife parks and reserves, national parks, environmental departments, research and development of SMEs as well as large companies. Graduates also go on to do postgraduate research.

Modules

Modules on the Environmental Biology: Conservation & Resource Management MSc include:

Core Science Skills and Research Methods

Conservation of Aquatic Resources

Term papers in Environmental Biology

Environmental Assessment and Management

Ecosystems

Remote sensing of the changing environment

Geographical Information Systems

Research Project

Please visit our website for a full description of modules for the Environmental Biology: Conservation & Resource Management programme.

Facilities

As a student on the MSc Environmental Biology: Conservation & Resource Management programme, you will benefit from a range of facilities such as:

Our excellent facilities include a unique built Animal Movement Visualisation Suite (£1.35m), incorporating an electronic wall linked to a computer-tesla cluster for high-speed processing and visualisation of complex accelerometry and magnetometry data derived from animals. Coupled with this facility is the Electronics Lab with capacity for research, development and realisation of animal tags with new capacities (sensors, energy-harvesting systems, miniaturization, 3-D printing of housings etc.); a custom-designed 18m on coastal research vessel; a recent investment of £4.2m on a new suite of state-of-the art Science laboratories; and the £2m unique Centre for Sustainable Aquatic Research (CSAR) with a 750 m2 controlled environment building, with programmable recirculating aquatic systems, unique within the UK’s higher-education sector. These are tailored for research on a diverse range of organisms, ranging from temperate to tropical and marine to freshwater. Coupled with this are nutrient and biochemical analytical capabilities.

Student profiles

“I’ve spent four years as a student at Swansea University, three years as an undergraduate studying Marine Biology and a year as a postgraduate undertaking the MSc in Environmental Biology: Conservation and Resource Management. Whether studying or partying I can honestly say I had a fantastic time the whole way through! It was through my undergraduate study that I realised how amazingly diverse the marine ecosystem is, but also how vulnerable it can be and the level of exploitation it endures. This prompted me to undertake the MSc, which furthered my knowledge in many aspects of conservation and environmental issues around the world on sea and land. With my experience and expertise gained from studying at Swansea I have secured a job working with WWF Cymru in Cardiff as Marine Policy Officer where I am helping work towards a sustainable future for the Welsh marine environment.”

David Parker

BSc Marine Biology

MSc Environmental Biology: Conservation & Resource Management

Marine Policy Officer, WWF Cymru, Cardiff

Research

We are 7th in the UK and top in Wales for research excellence (REF 2014)

93.8% of our research outputs were regarded as world-leading or internationally excellent and Swansea Biosciences had the highest percentage of publications judged ‘world-leading’ in the sector. This is a great achievement for the Department, for the College of Science and indeed for Swansea University.

All academic staff in Biosciences are active researchers and the department has a thriving research culture.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Biosciences at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Biosciences at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes in Biosciences programme will provide you with research training in one or more of our Research Pathways and you will benefit from training in our Specialist Research Facilities. Research staff will share their expertise and assist you in developing the skills necessary to do independent research, leading to a dissertation written as a scientific paper.

All research students in Biosciences undertake taught modules followed by a major research project under the guidance of academic staff in one or more of our Research Pathways, and benefitting from training in our specialist research facilities.

The MRes Biosciences is a one-year programme. All research students undertake taught modules followed by a major research project under the guidance of academic staff in one or more of our Research Pathways , and benefiting from training in our Specialist Research Facilities.

Biosciences at Swansea has a good relationship with a wide range of external partners, including SMEs, Government Agencies, Local Government, UK and overseas research institutes and universities.

Research Pathways

1) Behavioural and Movement Ecology

Studying adaptations, and the selective pressures in the social and ecological environment that bring them about. We specialise in the movement ecology of individuals and collectives and can provide specialist research training to understand the role of the environment in structuring the properties of animal movement and behaviour.

2) Evolutionary and Molecular Biology

Understanding the diversity of life from a molecular perspective. We use the latest genetic and genomics techniques to address key questions in ecology, behaviour and conservation from an evolutionary perspective in a range of non-model organisms, from fungi to plants and animals.

3) Marine Biology, Fisheries and Aquaculture

From developing new techniques in fish husbandry and rearing of commercially important aquaculture species, to research in food and fuel security, low carbon technologies, biogeochemical cycles and climate change. Specialist research training can be provided on a diverse range of temperate to tropical aquatic organisms, from microplankton to invertebrates to fish, inhabiting marine to freshwater environments.

4) Mathematical and Statistical Ecology

Research that complements the full range of our academic expertise, from theoretical investigations of ecosystem complexity, stoichiometric ecology, pattern formation and animal movement, to practical agricultural applications and the operation of micro-algal biotechnology.

5) Population and Community Ecology

Combining experimental and theoretical approaches to develop our understanding of how species interactions with their environment (including other species) generate the spatial-temporal biodiversity patterns we observe in nature. Study systems include plankton ecosystems, coastal ecosystem functioning, disease control, conservation, and the impact of spatial-temporal environmental variation on community dynamics.

6) Whole Organism Biology

Our staff comprises world-leading experts on a range of organisms studied around the world, and welcome students who want to develop projects around such species.

7) Wildlife Diseases and Pest Control

Research focused on developing natural agents and solutions for the control of wildlife diseases and invertebrate pests that impact on food security and human and animal health. Research training provided in disease detection methods, disease management, and the socioeconomic benefits of pest control.

Facilities

As a student on the MRes Biosciences programme, you will benefit from a range of facilities such as:

Our excellent facilities include a unique built Animal Movement Visualisation Suite (£1.35m), incorporating an electronic wall linked to a computer-tesla cluster for high-speed processing and visualisation of complex accelerometry and magnetometry data derived from animals. Coupled with this facility is the Electronics Lab with capacity for research, development and realisation of animal tags with new capacities (sensors, energy-harvesting systems, miniaturization, 3-D printing of housings etc.); a custom-designed 18m on coastal research vessel; a recent investment of £4.2m on a new suite of state-of-the art Science laboratories; and the £2m unique Centre for Sustainable Aquatic Research (CSAR) with a 750 m2 controlled environment building, with programmable recirculating aquatic systems, unique within the UK’s higher-education sector. These are tailored for research on a diverse range of organisms, ranging from temperate to tropical and marine to freshwater. Coupled with this are nutrient and biochemical analytical capabilities.

Theoretical/mathematical research uses advanced university computing facilities that includes high-end graphics workstations, high-speed network links and the Blue Ice supercomputer located at the Mike Barnsley Centre for Climatic Change Research.

Several dedicated Bioscience labs housed within our grade 2 listed Wallace Building recently benefitted from a £4.2 million renovation programme, providing world-class research facilities that includes a specialist molecular ecology lab and a dedicated arthropod facility.

Research

We are 7th in the UK and top in Wales for research excellence (REF 2014)

93.8% of our research outputs were regarded as world-leading or internationally excellent and Swansea Biosciences had the highest percentage of publications judged ‘world-leading’ in the sector. This is a great achievement for the Department, for the College of Science and indeed for Swansea University.



Read less
The programme encompasses the following key ideas. ·        . Understanding complex marine systems from a range of standpoints. Read more

The programme encompasses the following key ideas:

·        Understanding complex marine systems from a range of standpoints. Establishing a core body of knowledge about the marine environment and the physical, chemical, ecological and anthropogenic processes operating on a range of spatial and temporal scales.

·        Multidisciplinary approaches. Creating a multidisciplinary approach to understanding and managing the marine environment through integrated field, laboratory and theory-based learning and examine this in the context of the relevant legislative framework and global policy changes.

·        Understanding the impacts of both natural and anthropogenic factors on the marine environment alongside environmental change. Using a multidisciplinary approach to the development of applied solutions to managing marine resources and biodiversity in an ever changing situation.

·        Use of big marine data. The collection of rigorous scientific data; formulating and testing hypotheses through carrying out scientific investigations and communicating information in a variety of formats to a range of audiences.

·        Professional practice and application to real world situations. Understanding the links between scientific ideas and their application to solving marine environmental problems by working with professionals from a range of scientific disciplines. In addition, using industry-standard approaches, equipment and analysis to collect, analyse and report on ecological and environmental data from field and laboratory investigations in the relevant format to inform the public, practitioners in the field, policy makers and scientists.

Themes

The programme allows the progression of students along two main pathways with different core modules to allow for specific career and skill development. Those wishing to pursue a career in fisheries science can follow the MSc Marine Environmental Management (Fisheries) pathway where those students who wish to follow the more ecological route can follow the MSc Marine Environmental Management (Ecology)  route.

Example modules:

  • Applied Fisheries Science and Management. Fisheries ecology, economics and social science; understanding of fundamental fisheries management tools and concepts, comparing/contrasting freshwater and marine systems. Students are trained in the use of Ecopath with Ecosim and traditional numeric fisheries management tools.
  • Applied Benthic Ecology.  The use of industry-standard approaches, equipment and analysis to collect, analyse and report on marine ecological and environmental data from field and laboratory investigations.  During a 1 week field trip students are trained in survey design using sublittoral sampling equipment and then tasked as a group designing a question and supervising the operation of a survey boat for a day. Samples will be worked up (quantified, taxonomic work and mapping) and analysed on return the university.
  • Operational Oceanography.  Desktop oceanography using the myriad of open source “big data” sources available, students will learn to use a range of recognised resources to model and analyse contemporary and future oceanographic situations and issues.
  • Research Design.  Identifying aspects of environmental problems amenable to qualitative and quantitative study, questionnaire design, programmes of monitoring and experimental study. The scientific method: formulating and testing hypotheses through carrying out scientific investigations using primary and secondary data from field, laboratory, computer and desk-based study.  To support thier analytical abilities students take part in a 3-day intensive R programming course.
  • Dissertation in fisheries ecology or management using extensive links with industry.  These can be data based or field based in nature.

Optional modules

  • Principles of GIS.  Practical use of the most widely available GIS system ArcGIS on real-world environmental problems; development of a wide range of special analysis and problem-solving skills.
  • Environmental Impact Assessment.  Introduction to EIA/EcIA; scoping and valuation; key ecological receptors; characterising impacts of urbanisation or industrial development; determining significance; presenting an EcIA to consultees.
  • Ecotoxicology.  Knowledge of the impacts of persistent and ephemeral pollution on marine and estuarine systems)
  • Scientific Diving.  Training to or towards this HSE recognised professional qualification and an understanding of the regulatory and legal framework in which such activities sit). Student divers will carry out a research project to give them an opportunity to more fully understand the opportunities and limitations of this research approach.


Read less
Novel formulations of bioplastics will be generated in this project with different characteristics of the ones reported in literature. Read more

Novel formulations of bioplastics will be generated in this project with different characteristics of the ones reported in literature. These novel bioplastics can have special interest as more ecologically friendly packaging materials with a low production cost. Moreover, the test results could inform as to the suitability of the materials for other applications such as surface treatment technologies, or encapsulation of bacteria or pharmaceuticals. Specifically, the project will set out to:

  1. Formulate organic bioplastics with incorporation of alternative marine collagen arising from waste products of the fish and shellfish industries.
  2. Characterise the marine bioplastics with physicochemical approaches and evaluation of their potential degradation and durability.
  3. Assess the biosafety and biodegradation of the marine bioplastics in the soil and sea/freshwater.
  4. Evaluate the deterioration of food stuffs using the novel marine bioplastics.

Further information

These projects are funded under the President’s Research Fellowship Programme of the Institute, with the college fees and research materials and consumables covered. A small student stipend will also be provided. The successful candidates will work in the enviroCORE, which is the Institute’s environmental research centre, in a team of research supervisors and postgraduate students.

Applicants should have a primary honours degree (Level 8) in an appropriate discipline (Biosciences, Microbiology, Genetics, Biology, Bioinformatics, Zoology, Environmental Science etc.). They must also hold a minimum of a Second Class Honours Grade 1 (2.1) undergraduate degree. The successful candidates are expected start in the postgraduate positions no later than September 2018.

To apply for a President’s Research Fellowship Scholarship, please email with the title(s) of the project being applied for, a CV and a statement (c.500 words) as to why this project is of interest to you. If applying for more than one research project, please list them in your order of preference.

Closing Date: Monday 5th June 2018



Read less
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment. Read more

The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment.

Chemical Engineering provides essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way. Chemical Engineers understand how to alter the chemical, biochemical or physical state of a substance, to create everything from health care products (face creams, shampoo, perfume, drugs) to food (dairy products, cereals, agro-chemicals) and water (desalination for freshwater) to energy (petroleum to nuclear fuels).

Your study at MSc level at Bradford will be a foundation for life aimed at developing a deep understanding of advanced technical principles, analytical tools, and competence in their application together with a wide range of management, personal and professional skills. The course will provide you with essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way.

Rankings

Top Five: Chemical Engineering at the University of Bradford is ranked 5th in the UK in the Guardian University League Table 2017.

What you will study

The aims of the MSc programme are to equip the students with the theoretical knowledge, concepts and skills necessary for original thought and problems analysis related to core chemical/petroleum/polymer engineering.

Core Modules

Option Modules

Learning and assessment

The teaching and learning strategy takes into consideration the learning outcomes, progression through the levels of study, the nature of the subject and the student intake, and the need for you to take greater responsibility for your own learning as you progress through the Programme.

Career prospects

The chemical and allied industry is expected to grow more rapidly than the average for the whole of manufacturing industry.

This, when coupled with the increasing appreciation of the value of chemical engineering in many areas such as the foodstuffs and pharmaceutical industry, metals extraction, medical science, and environmental protection, means your prospects as a graduate are bright.

Recent graduates have gained employment at organisations including: Unilever, Lorien Engineering Solutions, SUEZ UK, PLadis Global, IMI Precision Engineering, British Sugar, KPMG.

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Study support

We have a commitment to strong pastoral care for all of our students, which includes a Personal Tutor for all students, regular contact hours for tutor groups and our supportive student service teams who are always ready to help with any questions and provide the advice that you need.

In addition to standard study support through taught sessions, our Virtual Learning Environment allows students to access resources, participate in group work and submit work from anywhere in the world 24/7.

University central services are rich with support teams to assist students with every aspect of their journey through our degree programmes. From our Career and Employability Service, through our strong Students' Union, to our professional and efficient Student Finance team, there are always friendly faces ready to support you and provide you with the answers that you need.

Research

Internationally acclaimed research activities in the following areas:

  • Chemical and Petrochemical Engineering
  • Polymers
  • Energy
  • Water
  • Pharmaceutical engineering
  • Coating and advanced materials engineering


Read less
About the Programme. The Centre for Agroecology, Water and Resilience are pleased to announce the launch of our new MSc in Agroecology, Water and Food Sovereignty. Read more

About the Programme

The Centre for Agroecology, Water and Resilience are pleased to announce the launch of our new MSc in Agroecology, Water and Food Sovereignty. The programme will commence in September 2018 and January 2019 - recruitment is now open!

The Context

The new MSc is structured according to the thematic pillars of our Centre’s research and will be a multi- and transdisciplinary course introducing students to a range of different approaches to foster equitable and sustainable food and water systems.

In the context of wide-ranging and persistent global challenges to food and water security, resilience, including climate change, malnutrition and ecological degradation, this course will equip students with cutting edge knowledge in the field to enable them to critically understand the complex interactions between social and natural systems, between scientific and non-scientific knowledge, and between politics and food and water system outcomes.

The programme is designed for students from a range of disciplines, converging on agriculture, water and food systems from complementary angles that include physical and natural sciences, geography, social sciences and humanities, economics, and political sciences.

The Course

Why Agroecology, Water and Food Sovereignty?

Agroecology is the discipline that addresses practical aspects of resilient food production and natural resources management, their environmental impact as well as the governance and socio-economic challenges facing current food and farming systems.

Water and Food Sovereignty widen the focus of the course, closely linking agroecological approaches that reflect the need to address pressing global issues (i.e. access to adequate nutrition), our right to healthy and culturally appropriate food produced through ecologically sound and sustainable methods; and people’s right to define their own food, agriculture, livestock and fisheries systems.

Food Sovereignty also promotes the formulation of trade policies and practices that serve the rights of people to safe, healthy and ecologically sustainable food production.

This is a unique approach to the design and management of socio-ecologically resilient water and food systems in that it goes beyond the issue of access to natural resources, food and water, and addresses their governance locally, nationally and at global scale. 

The course includes modules which address key themes in:

  • resilient food and water systems
  • agroecological processes and practices
  • fundamental process in relation to soil and water management
  • climate change
  • governance and institutional frameworks
  • communities self-organisation for resilience
  • knowledge integration
  • gender studies
  • economics of sustainable food and water system
  • secological management of freshwater systems
  • stabilisation agriculture.

Modules

  • Policies and Institutions for Food and Water Sovereignty
  • Global Processes for Water Sustainability and Resilience
  • Community Self-Organisation and Resilience
  • Resilient Food and Water Systems in Practice
  • Participation, Power, and People’s Knowledge
  • Agroecological Techniques and Practices
  • Gender, Food Systems and Natural Resources
  • Stabilisation Agriculture
  • Project
  • Global Professional Development – Consultancy (Chartered Management Institute)

Each module involves ‘face-to-face’ contact at the university (including lectures, seminars and workshops), accompanied by directed and self-directed study. Modules are delivered both on campus as well as our Centre’s base at Ryton Organic Gardens. Transport is provided for the modules delivered at Ryton Gardens.

How to apply

To apply via the University's application page please click here. The course code is EECT008.

If you require any assistance please contact:

Liz Woodard - Administrative Assistant (Postgraduate Support) 



Read less

Show 10 15 30 per page



Cookie Policy    X