• University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Worcester Featured Masters Courses
Ulster University Featured Masters Courses
Imperial College London Featured Masters Courses
Loughborough University Featured Masters Courses
"fractal"×
0 miles

Masters Degrees (Fractal)

  • "fractal" ×
  • clear all
Showing 1 to 6 of 6
Order by 
Mathematics is at the heart of advances in science, engineering and technology, as well as being an indispensable problem-solving and decision-making tool in many other areas of life. Read more
Mathematics is at the heart of advances in science, engineering and technology, as well as being an indispensable problem-solving and decision-making tool in many other areas of life. This MSc course enables you to delve deeply into particular aspects of pure and applied mathematics, through a wide choice of modules in fascinating areas such as fractal geometry, coding theory and analytic theory. You’ll complete your MSc with a piece of independent study, exploring the history of modern geometry, advances in approximation theory, variational methods applied to eigenvalue problems, or algebraic graph theory and culminating in a dissertation on the topic of your choice.

Key features of the course

•Ideal for mathematically inclined scientists and engineers as well as mathematicians
•Extends your knowledge and refines your abilities to process information accurately, and critically analyse and communicate complex ideas
•Develops an enhanced skill set that will put you at an advantage in careers as diverse as mathematics, education, computer science, economics, engineering and finance.
•The most popular MSc in mathematics in the UK.
This qualification is eligible for a Postgraduate Loan available from Student Finance England. For more information, see Fees and funding

Course details

You can take a number of different routes towards your qualification - see the full module list for all options.

Modules

The modules in this qualification are categorised as entry, intermediate and dissertation. Check our website for start dates as some modules are not available for study every year.

Entry:

• Calculus of variations and advanced calculus (M820)
• Analytic number theory I (M823)

Intermediate:

• Nonlinear ordinary differential equations (M821)
• Applied complex variables (M828) - next available in October 2017 and following alternate years
• Analytic number theory II (M829) - next available in October 2018 and following alternate years
• Approximation theory (M832) - next available in October 2018 and following alternate years
• Advanced mathematical methods (M833) - next available in October 2017 and following alternate years
• Fractal geometry (M835) - next available in October 2017 and following alternate years
• Coding theory (M836) - next available in October 2018 and following alternate years
• Dissertation: Dissertation in mathematics (M840)

Module study order:

•You must normally pass at least one entry level module before studying an intermediate module.
•You must pass Analytic number theory I (M823) before studying Analytic number theory II (M829).
•You must normally pass four modules before studying the Dissertation in mathematics (M840).
•Some topics for the dissertation have prerequisite modules

Otherwise within each category modules may be studied in any order, and you may register for a module while studying a pre-requisite for that module (i.e. before you know whether you have passed the pre-requisite module or not).

To gain this qualification, you need 180 credits as follows:

150 credits from this list:

Optional modules

• Advanced mathematical methods (M833)
• Analytic number theory I (M823)
• Analytic number theory II (M829)
• Applied complex variables (M828)
• Approximation theory (M832)
• Calculus of variations and advanced calculus (M820)
• Coding theory (M836)
• Fractal geometry (M835)
• Nonlinear ordinary differential equations (M821)

Plus

Compulsory module

Dissertation in mathematics (M840)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

For this qualification, we do not allow you to count credit for study you have already done elsewhere.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Stochastic Processes. Theory and Application at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Stochastic Processes: Theory and Application at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MRes in Stochastic Processes: Theory and Application is delivered through optional modules for the taught element followed by a large research project that contributes to the field in an explicit way, rather than merely applying existing knowledge.

The Department of Mathematics hosts one of the strongest research groups in probability theory, especially in stochastic processes, in the UK. The senior members of this group are world leaders in their fields.

The Department’s research groups include:

Algebra and Topology Group
Areas of interest include: Noncommutative geometry, Categorical methods in algebra and topology, Homotopy theory and homological algebra and others.

Analysis and Nonlinear Partial Differential Equations Group
Areas of interest include: Reaction-diffusion and reaction-diffusion-convection equations and systems, Navier–Stokes equations in fluid dynamic, Complexity in the calculus of variations and others.

Stochastic Analysis Group
Areas of interest include: Functional inequalities and applications, Lévy-type processes, Stochastic modelling of fractal, multi-fractal and multi-scale systems, Infinite dimensional stochastic analysis and others.

Mathematical Methods in Biology and Life Sciences Group
Areas of interest include: Mathematical pharmacology; heat and mass transfer models for plant cooling; modelling cellular signal transduction dynamics; mathematical oncology: multi-scale modelling of cancer growth, progression and therapies, and modelling-optimized delivery of multi-modality therapies; multi-scale analysis of individual-based models; spreading speeds and travelling waves in ecology; high performance computing.

Key Features

The Department of Mathematics hosts one of the strongest research groups in probability theory, especially in stochastic processes, in the UK. The senior members of this group are world leaders in their fields.

Course Content

As a student on the MRes Stochastic Processes programme you will study a range of topics for the taught element including:

Stochastic Calculus based on Brownian Motion
Levy processes and more general jump processes
The advanced Black-Scholes theory
Theory and numerics of parabolic differential equations
Java programming

The Stochastic Processes: Theory and Application course consists of a taught part (60 credits) and a research project (120 credits). Students will have a personal supervisor for their research project from the start of their studies.

Research projects could be of a theoretical mathematical nature, or they could be more applied, for example in financial mathematics or actuarial studies. Some of the research projects will be of an interdisciplinary character in collaboration with some of Swansea's world class engineers. For such projects it is likely that EPSRC funding would be available.

Facilities

The Aubrey Truman Reading Room, located in the centre of the Department of Mathematics, houses the departmental library and computers for student use. It is a popular venue for students to work independently on the regular example sheets set by their lecturers, and to discuss Mathematics together.

Our main university library, Information Services and Systems (ISS), contains a notably extensive collection of Mathematics books.

Careers

The ability to think rationally and to process data clearly and accurately are highly valued by employers. Mathematics graduates earn on average 50% more than most other graduates. The most popular areas are the actuarial profession, the financial sector, IT, computer programming and systems administration, and opportunities within business and industry where employers need mathematicians for research and development, statistical analysis, marketing and sales.

Some of our students have been employed by AXA, BA, Deutsche Bank, Shell Research, Health Authorities and Local Government. Teaching is another area where maths graduates will find plenty of career opportunities.

Research

The results of the Research Excellence Framework (REF) 2014 show that our research environment (how the Department supports research staff and students) and the impact of our research (its value to society) were both judged to be 100% world leading or internationally excellent.

All academic staff in Mathematics are active researchers and the department has a thriving research culture.

Read less
Choosing to take a Master of Science in Mathematics and Statistics at Acadia will deepen your mathematical knowledge, and develop your research and analytical skills. Read more
Choosing to take a Master of Science in Mathematics and Statistics at Acadia will deepen your mathematical knowledge, and develop your research and analytical skills. At the same time, you can earn your degree while gaining experience working and researching in industry.

Acadia's graduate program in mathematics and statistics offers you an exciting opportunity to earn your degree and tackle a significant research problem while also participating in our award-winning co-operative education option and gaining industry work experience. You will take courses that will broaden your knowledge and also prepare you to work on your chosen research project. Our co-operative education option allows you to gain eight months of industry experience work terms or internships. A special feature of the program is to be able to align your work experience and research project, allowing you to more deeply understand the importance and relevance of the research problem.

Be Inspired

In our program, you will benefit from the small school advantage – close contact with your supervisor and a program best-suited to your interests – while also being able to participate in a wide range of research that Acadia faculty conduct. In our department, you can pursue research into tidal energy in the Bay of Fundy, fractal images, games on graphs, statistical learning, big data, computer experiments, cryptography, number theory, scheduling theory, and statistical applications in agriculture, biology, and medicine.

Our department is associated with the Acadia Centre for Mathematical Modeling and Computation, ACENet and Compute Canada, which provide expertise and resources for applying computational resources towards solving problems in the mathematical sciences. The Statistical Consulting Centre creates opportunities to support local projects, and to consult on other research projects at the institution. Acadia's faculty engage in projects with local businesses, federal and provincial government agencies, the local tidal power and agricultural industries, and a variety of businesses nationally and internationally.

Research Interests

-Hugh Chipman: Tree models, variable selection, Bayesian methodology, data mining
-Nancy Clarke: Graph theory, combinatorics, design theory and game theory
-Eva Curry: Digital representations for vectors and connections to wavelet theory, iterated function systems, probability, and number theory
-Jeff Hooper: Algebraic number theory, cryptography
-Richard Karsten: Models of ocean circulation, climate modelling
-Wilson Lu: Survey sampling, replication methods, survey confidentiality, computer experiment design
-Franklin Mendivil: Image processing, stochastic optimization, fractal analysis
-Jianan Peng: Order restricted inference, multiple comparisons, nonparametric statistics
-Pritam Ranjan: Computer experiments, sequential designs, combinatorial designs
-Paul Stephenson: Machine scheduling, optimization algorithms
-Holger Teismann: PDE, control theory, non-linear optics
-Ying Zhang: Statistical computing, time series analysis, applied statistical modelling

Read less
Take advantage of one of our 100 Master’s Scholarships to study Mathematics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Mathematics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

As an MSc by Research in Mathematics student you will be guided by internationally leading researchers and will carry out a large individual research project.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research-led University and the Mathematics Department makes a significant contribution, meaning that as a postgraduate Mathematics student you will benefit from the knowledge and skills of internationally renowned academics.

In the Department of Mathematics at Swansea you will find friendly teaching staff that are fully committed to providing you with a supportive teaching and learning environment. This includes outstanding student support.

All postgraduate Mathematics programmes at Swansea will equip you with skills relevant for a rewarding career in a range of diverse fields. You will also further develop your communication, presentation and analytical skills.

The Mathematics Department’s research groups include:

Algebra and Topology Group

Areas of interest include: Noncommutative geometry, Categorical methods in algebra and topology, Homotopy theory and homological algebra and others.

Analysis and Nonlinear Partial Differential Equations Group

Areas of interest include: Reaction-diffusion and reaction-diffusion-convection equations and systems, Navier–Stokes equations in fluid dynamic, Complexity in the calculus of variations and others.

Stochastic Analysis Group

Areas of interest include: Functional inequalities and applications, Lévy-type processes, Stochastic modelling of fractal, multifractal and multiscale systems, Infinite dimensional stochastic analysis and others.

Mathematical Methods in Biology and Life Sciences Group

Areas of interest include: Mathematical pharmacology; heat and mass transfer models for plant cooling; modelling cellular signal transduction dynamics; mathematical oncology: multi-scale modelling of cancer growth, progression and therapies, and modelling-optimized delivery of multi-modality therapies; multi-scale analysis of individual-based models; spreading speeds and travelling waves in ecology; high performance computing

Employability

The ability to think rationally and to process data clearly and accurately are highly valued by employers. Mathematics graduates earn on average 50% more than most other graduates. The most popular areas are the actuarial profession, the financial sector, IT, computer programming and systems administration, and opportunities within business and industry where employers need mathematicians for research and development, statistical analysis, marketing and sales.

Facilities

The Aubrey Truman Reading Room, located in the centre of the Department of Mathematics, houses the departmental library and computers for student use, and is a popular venue for students to work independently on the regular exercise sheets set by their lecturers, and to discuss mathematics together.

The main university library, the Learning and Information Centre (LIC), contains a notably extensive collection of mathematics books.

As part of our expansion, we are building the Computational Foundry on our Bay Campus for computer and mathematical sciences. This development is exciting news for Swansea Mathematics who are part of the vibrant and growing community of world-class research leaders drawn from computer and mathematical sciences.

Research

The results of the Research Excellence Framework (REF) 2014 show that our research environment (how the Mathematics Department supports research staff and students) and the impact of our research (its value to society) were both judged to be 100% world leading or internationally excellent.

All academic staff in Mathematics are active researchers and the department has a thriving research culture.

Read less
To gain this qualification, you need 180 credits as follows. Stage 1. 60 credits from List A. List A. optional modules. Advanced routing - CCNP 1 (T824). Read more

Modules

To gain this qualification, you need 180 credits as follows:

Stage 1

60 credits from List A:

List A: optional modules

• Advanced routing - CCNP 1 (T824)
• Capacities for managing development (T878)
• Conflict and development (T879)
• Development: context and practice (T877)
• Environmental monitoring and protection (T868)
• Finite element analysis: basic principles and applications (T804)
• Institutional development (TU872)
• Making environmental decisions (T891)
• Managing for sustainability (T867)
• Managing systemic change: inquiry, action and interaction (TU812)
• Managing technological innovation (T848)
• Manufacture materials design (T805)
• Multilayer switching - CCNP 3 (T826)
• Network security (T828)
• Optimising networks - CCNP 4 (T827)
• Problem solving and improvement: quality and other approaches (T889)
• Strategic capabilities for technological innovation (T849)
• Thinking strategically: systems tools for managing change (TU811)

Plus 30 credits from List B:

List B: optional modules

• Advanced mathematical methods (M833)
• Advanced routing - CCNP 1 (T824)
• Analytic number theory I (M823)
• Analytic number theory II (M829)
• Applied complex variables (M828)
• Approximation theory (M832)
• Calculus of variations and advanced calculus (M820)
• Capacities for managing development (T878)
• Coding theory (M836)
• Conflict and development (T879)
• Data management (M816)
• Developing research skills in science (S825)
• Development: context and practice (T877)
• Digital forensics (M812)
• Environmental monitoring and protection (T868)
• Finite element analysis: basic principles and applications (T804)
• Fractal geometry (M835)
• Information security (M811)
• Institutional development (TU872)
• Making environmental decisions (T891)
• Managing for sustainability (T867)
• Managing systemic change: inquiry, action and interaction (TU812)
• Managing technological innovation (T848)
• Manufacture materials design (T805)
• Multilayer switching - CCNP 3 (T826)
• Network security (T828)
• Nonlinear ordinary differential equations (M821)
• Optimising networks - CCNP 4 (T827)
• Problem solving and improvement: quality and other approaches (T889)
• Project management (M815)
• Researching mathematics learning (ME825)*
• Software development (M813)
• Software engineering (M814)
• Space science (S818) NEW1
• Strategic capabilities for technological innovation (T849)
• Thinking strategically: systems tools for managing change (TU811)

* 60-credit module of which only 30 credits count towards this qualification

Plus 30 credits from:

Compulsory module

Team engineering (T885)

Stage 2

60 credits from:

Compulsory module

Research project (T802)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

Credit transfer is not permitted for the MSc except for any awarded as part of the Postgraduate Diploma in Engineering.
For further advice and guidance, please email us.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X