• Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Cranfield University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Vlerick Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Leeds Featured Masters Courses
"fossil"×
0 miles

Masters Degrees (Fossil)

We have 61 Masters Degrees (Fossil)

  • "fossil" ×
  • clear all
Showing 1 to 15 of 61
Order by 
The University of Birmingham, as a partner in The Midlands Energy Graduate School (MEGS), has launched a new taught Masters in Efficient Fossil Energy Technologies. Read more
The University of Birmingham, as a partner in The Midlands Energy Graduate School (MEGS), has launched a new taught Masters in Efficient Fossil Energy Technologies.

Consisting of core and optional modules, delivered by experts from the universities of Nottingham, Birmingham and Loughborough, this MSc will encourage and embed excellence in fossil energy technologies, carbon capture and efficient combustion. It will prepare future leaders and industrial engineers with knowledge and skills to tackle the major national and international challenges of implementing new fossil-based power plant and processes more efficiently, with near zero emissions and CO2 capture.

This course provides expert teaching from three leading universities in the UK a unique partnership to allow students to benefit from a wide range of expertise. Modules studied represent the academic specialism offered by each university and the research project, taken at the university where you register, will focus on specific aspects of fossil energy technologies: Birmingham specialises in managing chemical reactions, plant design and carbon capture technologies; Loughborough in materials technologies for power generation and high-temperature applications; and Nottingham will focus on combustion technologies, power generation, environmental control and carbon capture. It is therefore important to select your choice of university carefully. Full details of these options and specialisms are in the Modules section of the Course Details tab and all enquiries are welcome.

Chemical Engineering is dynamic and evolving. It provides many solutions to problems facing industries in the pharmaceutical, biotechnological, oil, energy and food and drink sectors. It is vital to many issues affecting our quality of life; such as better and more economical processes to reduce the environmental burden, and more delicious and longer lasting food due to the right combination of chemistry, ingredients and processing.

Birmingham is a friendly, self-confident, School which has one of the largest concentrations of chemical engineering expertise in the UK. The School is consistently in the top five chemical engineering schools for research in the country.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This MSc is part of the Midlands Energy Graduate School (MEGS), a partnership between the universities of Nottingham, Birmingham and Loughborough. Read more
This MSc is part of the Midlands Energy Graduate School (MEGS), a partnership between the universities of Nottingham, Birmingham and Loughborough. Most modules taught by the universities of Nottingham and Loughborough are available either via state-of-the-art video-conferencing facilities, so students do not usually need to attend the other university in person. However, should any student wish to travel to partake directly in some lectures, advice can be provided on appropriate travel and accommodation.
Many of the core modules are delivered in one-week intensive blocks. Coupled with the major research project, the core modules will promote enquiry-based learning which will be supplemented by a range of optional technical and contextual/managerial modules.

Before you apply

You must be sure of the university within the MEGS consortium that you wish to study this MSc before you make an application. This will be dependent on the type of research project you are most interested in, you will apply to the university where you wish to undertake your research project.

We will help you asses which university is the most appropriate based on the above. Please contact the course director Dr Cheng-gong Sun, providing your degree subject and university and an outline of the fossil energy topics that interest you, we will then get back to you to advise where your application should be submitted.

Read less
What does it mean to be human? What are the origins of our species? Archaeological and palaeontological discoveries help us answer these fundamental questions and provide insights into human cognition, behaviour and life ways. Read more
What does it mean to be human? What are the origins of our species? Archaeological and palaeontological discoveries help us answer these fundamental questions and provide insights into human cognition, behaviour and life ways.

On this course you'll study human evolution by evaluating the ultimate source of information – the fossil record.

We'll teach you to think critically and train you in the analytical techniques required to describe and interpret the fossil evidence for early hominid and human evolution.

Our approach is both science- and humanities-based. You'll explore themes such as the evolution of bipedalism, cognition and the origins of modernity, providing you with a unique combination of biological anthropology, human and comparative anatomy, primatology and hominid palaeontology.

The course also offers an introduction to the use of innovative technologies for 2D and 3D imaging of skeletal and fossil materials in palaeoanthropological research. It's designed to appeal to those who want to create a strong platform for doctoral research in palaeoanthropology, as well as those who just want to deepen their understanding of our extinct ancestors.

You'll get unlimited access to excellent lab facilities and extensive collections of skeletons and replica casts of modern humans, primates and fossil hominins. A wide range of up-to-date resources are available in the department's palaeoanthropology and osteology teaching laboratories.

Core modules

The programme offers a range of closely integrated core modules in human anatomy and comparative osteology which enable you to develop your knowledge and understanding of the palaeoanthropological record.

Human Evolution: Theory & Practice in Research
Quantitative methods in anthropology and archaeology
Research design: planning, execution and presentation
Human anatomy
Human osteology
Evolutionary anatomy
Dissertation in Palaeoanthropology
Optional modules

Optional modules are available in philosophy, linguistics and other topics. Examples include:

Archaeobotany
Archaeozoology

If you study part-time, you'll take two 15-credit modules in each semester during Year 1 and Year 2, and either a dissertation or placement module over the summer of Year 2. We arrange for you to attend two days a week but we try to be as flexible as possible.

Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

We can supervise MPhil projects in topics that relate to our main areas of research, which are:

Bio-energy

Our research spans the whole supply chain:
-Growing novel feedstocks (various biomass crops, algae etc)
-Processing feedstocks in novel ways
-Converting feedstocks into fuels and chemical feedstocks
-Developing new engines to use the products

Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.

We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.

Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including:
-The application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines
-Domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils
-Biowaste methanisation
-Biomass and biowaste combustion, gasification
-Biomass co-combustion with coal in thermal power plants
-CO2 capture and storage for thermal power systems
-Trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy)
-Engine and power plant emissions monitoring and reduction technology
-Novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.

Key areas of research include:
-Biomineralisation
-Liquid organic hydrides
-Adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources

Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.

We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.

Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Facilities

As a postgraduate student you will be based in the Sir Joseph Swan Centre for Energy Research. Depending on your chosen area of study, you may also work with one or more of our partner schools, providing you with a unique and personally designed training and supervision programme.

You have access to:
-A modern open-plan office environment
-A full range of chemical engineering, electrical engineering, mechanical engineering and marine engineering laboratories
-Dedicated desk and PC facilities for each student within the research centre or partner schools

Read less
The environmental impact from the use of fossil fuels and the uncertainties in their sources of supply has led to many alternative energy sources being proposed and investigated. Read more
The environmental impact from the use of fossil fuels and the uncertainties in their sources of supply has led to many alternative energy sources being proposed and investigated. However, of the non-fossil fuel sources, only nuclear fission power is at present sufficiently developed to provide an economically viable alternative to fossil fuels.

The aim of this programme – which began in 1956 – is to provide the necessary background, both in breadth and in depth, for anyone wishing to enter the nuclear industry. The areas of study and degree of specialisation involved have changed considerably to reflect the increasing sophistication of the field, and yet the overall breadth of the course has been maintained, because we feel that only in this way can new entrants to the field obtain a perspective which will be of continuous help in future careers.

Studentships are sponsored by the nuclear industry in the UK, and these provide excellent and effective entry routes into careers in this stimulating field for physicists, mathematicians, metallurgists or engineers.

A taught element from September to May is followed by a 14-week project, usually undertaken within the industry.

About the School of Physics and Astronomy

We are one of the largest physics departments in the country with a high profile for research both in the UK and internationally, covering a wide range of topics offering exciting challenges at the leading edge of physics and astronomy. Our student satisfaction rating of 96% in 2016 demonstrates the quality of our teaching.
The School of Physics and Astronomy’s performance in the Research Excellence Framework (REF), the system for assessing the quality of research in the UK higher education institutions, has highlighted that 90% of research outputs in the School were rated as world-leading or internationally excellent.
Our research portfolio is wide-ranging, and covers three principal themes: Particle and Nuclear Physics; Quantum Matter and Nanoscale Science; and Astronomy and Experimental Gravity. We have over 120 academic and research staff together with 120 graduate students with around 50 technical and clerical support staff. Our annual research income is over £8 million and more than 250 research publications are produced each year.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This programme is for students who are passionate about early life, dinosaurs, mass extinctions, macroevolution, fossil preservation and understanding the palaeobiology of extinct organisms. Read more
This programme is for students who are passionate about early life, dinosaurs, mass extinctions, macroevolution, fossil preservation and understanding the palaeobiology of extinct organisms. It examines quantitative aspects of the fossil record and the history of life. The research-oriented MSc bridges the biology-geology divide and will provide you with a strong background for independent research to PhD level or for a career in museums, libraries, management or the media.

This interdisciplinary programme is taught mainly in the School of Earth Sciences, along with some archaeology and biology units. You will engage in current debates in evolutionary biology, systematics and palaeobiology.

You will learn how to analyse problems quantitatively, and design experimental approaches to resolving questions in macroevolution and in the study of ancient organisms. First-hand training in research methods in palaeobiology involves laboratory techniques. In addition, you will learn a range of advanced skills throughout the programme, such as computer software use, numeracy, planning research, problem-solving and communication skills. You will learn multimedia techniques, including presentation of palaeontological data through talks, posters and formal written reports. A key aspect of the programme is preparing your projects for publication, and we provide continuing support to ensure as many projects as possible are published in leading international journals.

Programme structure

The first half of the programme consists of lectures, practical classes, tutorials and visiting speakers, designed to provide a firm foundation in the theory and methodology of the subject.

The programme comprises five core units which all students take, and a number of optional units of which students choose four. We recommend that biologists take some of the more geologically-orientated optional units, and that geologists take some of the biological optional units.

Core units
-Current Controversies in Palaeobiology and Macroevolution
-Scientific Communication
-Phylogenetic Methods in Palaeobiology
-Literature Review
-Research Methods in Palaeobiology

Optional units
-Biomechanics and Functional Morphology
-The Cambrian Explosion: the origin of animal body plans
-Early Human Origins
-Evolutionary Biology*
-Evolution of the Biosphere
-Geology for Research Palaeobiologists**
-Micropalaeontology
-Tree of Life
-Vertebrate Palaeobiology and Evolution

*Mandatory for non-biologists
**Mandatory for non-geologists

Careers

The degree is research-based, and about half the graduates go on to academic careers, usually starting with a PhD. The MSc is focused on methods, and you will learn the latest techniques in phylogenetics, biomechanics, and macroevolution training, which is highly sought after by PhD supervisors across the world.

The training in professional skills, including writing scientific papers, is also highly regarded. Some students have used the MSc as a means to go on to careers in museums, the media and education and now hold senior positions as curators and collection managers in national and regional museums. Graduates also work in making scientific documentaries, or are involved in science education at all levels.

Finally, some graduates have gone into commercial work in marketing, the oil industry and computing, where their practical skills in palaeobiology and communication have proved invaluable.

Read less
The concept of the German “Energiewende” – literally, energy transition – has gained international attention. It includes a variety of measures that aim at making Europe’s largest economy free of fossil fuels and nuclear energy. Read more

Program Background

The concept of the German “Energiewende” – literally, energy transition – has gained international attention. It includes a variety of measures that aim at making Europe’s largest economy free of fossil fuels and nuclear energy. In order to attain this, all areas of energy production and consumption will have to go through a transition process. Besides mobility and industry, buildings are therefore one of the key factors for a successful Energiewende.

Most of all, this implies re-directing from a mainly fossil-fueled energy supply towards renewable energies and a much more energy-efficient use of energy in buildings and urban areas. This is one of the largest and most urgent challenges of current urban development and other social disciplines.

Finding solutions to such a complex challenge means that a multitude of actors from business, society, and public administration take part in the process and influence it with their differing and often conflicting interests. Resulting from this is the need for skilled workers who both understand all stakeholders and are able to work with them.

Building Sustainability

Strategic concepts for communication and cooperation in large-scale projects are crucial for their success. Whereas, “simply” building a house has become a manageable task, things become much more complicated when considering the urban environment and wider interests such as energy efficiency. The Master program, Building Sustainability focuses therefore, not only on technical and economic perspectives, but also aims at imparting relevant knowledge from other disciplines. This means that the scope of the program is both broad and specific at the same time. The combination of technology, management and sustainability-related topics is therefore a unique opportunity for young professionals to extend their skills.

The MBA program Building Sustainability – Management Methods for Energy Efficiency will teach students skills, methods and concepts to consider different approaches, to understand them and to align them for reaching sustainable solutions. Such competences are not only important in the context of the Energiewende but they are indispensable in every building, construction and real estate project that takes energy efficiency and other sustainability criteria into account.

The idea is that sustainable project results that consider economic, ecological and social aspects can only be achieved in extensive cooperation of all stakeholders. Managing and moderating such a cooperation is one of the major challenges of implementing sustainability in building projects of all scales. The program aims therefore on enabling students to understand the complexity of planning and management processes and to develop according solutions. This will happen in modules with different approaches: some will teach facts and numbers, others will facilitate connections between different fields and the softer skills of mediating between them and some are designed to apply these competences to practical projects.

The TU-Campus EUREF is located on the EUREF (European Energy Forum) campus in Berlin-Schöneberg. This former industrial area has been developed into a research hub for energy efficiency, renewable energies and smart grids. Students will gain insight into the numerous real-life examples of building sustainability without having to leave the campus.

Students and graduates

The program addresses a broad group of professionals with varying academic backgrounds, mostly in engineering and technology, management, economics, architecture and urban or environmental planning. However, applicants with other academic backgrounds coupled with working experience in a related field are also encouraged to apply, personal motivation plays an important role in the selection process. Class diversity is one of its greatest assets, as students will not only learn from lecturers with science and business backgrounds, but also from each other.
Graduates will be able to moderate and manage complex projects in the construction, real estate, and planning sector. They will be able to assess the project from technical, ecological and economic perspectives and find solutions which take all stakeholders into account.

Curriculum

The first semester focuses on the basis for successful and sustainable projects. Two comprehensive modules in the fields of building technology and project management will allow students to work on their first, closely guided group project. A lecture series about the sustainable reorganization of building and urban structures with special regard to energy management and the energy market accompanies these modules.

The second semester focuses on the interdisciplinary aspects of building sustainability. It addresses real estate economics and the issue of energy-efficient societies in a global context. Together with the knowledge and skills attained in the first semester, students will conduct a comprehensive and interdisciplinary group project. At the same time, specialization starts and students can choose between deepening their knowledge in either technology and innovation management or in Smart Buildings.

The specialization continues in the third semester, either by completing the technology and innovation module or the technical module with the follow-up course Integration of Renewable Energies. All students take a module in Life Cycle Analysis to complete the holistic approach of sustainability and write their Master thesis. Graduates will earn a degree awarded from the Technische Universität Berlin.

Read less
Sustaining a growing population on our dynamic planet requires deep understanding of geological and geophysical processes within the Earth, and of how they interact with the atmosphere, hydrosphere, and biota. Read more
Sustaining a growing population on our dynamic planet requires deep understanding of geological and geophysical processes within the Earth, and of how they interact with the atmosphere, hydrosphere, and biota. The Master's Programme in Geology and Geophysics trains you to address pressing questions concerning our home planet's evolution, its role as the source of raw materials needed by modern civilisation, and environmental issues. Key questions include:
-How can we decode Earth’s rock record to reveal the evolution of Earth’s crust and mantle over billions of years?
-How do we make natural resource exploration and extraction more sustainable and environmentally friendly?
-What can the Earth’s history tell us to help us forecast the impacts of climate change?
-Where can we safely construct power plants or store nuclear waste?

The programme includes four specialist options: Petrology and Economic Geology; Hydrogeology and Environmental Geology; Palaeontology and Global Change; and Solid Earth Geophysics.

Upon completion of the programme, you will have gained expertise in a number of scientific and professional skills, including, depending on your specialist option:
-Assessment of geological materials (minerals, rock types, bedrock, groundwater).
-Understanding the genesis and sustainable use of mineral commodities.
-Sustainable use of the environment from the Earth Science perspective.
-Palaeontology and modelling global change using the geological record.
-The physical evolution of the Earth (plate tectonics, interplay of the mantle and crust).
-Independent and team-driven project research.
-High-level scientific writing (M.Sc. thesis and related work).
-Presentation of scientific results to scientists, students, and the general public.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

At the beginning of the advanced studies, you will familiarise yourself with the central research methods in the field. The studies consist of intensive learning in small groups on practical work courses, guided laboratory work on specialised courses, and tailored short-term courses led by international and Finnish experts. In addition, you will be able to take part are a variety of field courses and excursions (in Finland and beyond) to familiarise yourself with research topics in their natural surroundings.

Selection of the Major

As a student in the Master’s Programme in Geology and Geophysics, you are free to choose among the four specialist options offered:
In Petrology and Economic Geology you will study solid rock, mineral material and associated fluid systems, with targets ranging from the microscopic (and submicroscopic) scale to continents. The focus is on study of magmatic systems (volcanic and plutonic); the composition, lithology and structure of bedrock; evolution of continental crust and mantle; and the origin and assessment of economically important commodities in rock systems.

Hydrogeology and Environmental Geology combines understanding of earth surface systems such as 3D sedimentary environments, groundwater and low temperature geochemistry. The specialist option is based on practical training using top-notch analytical facilities and survey methods in cooperation with industry and authorities. In addition to basic research, the line aims to build your expertise for future careers.

Palaeontology and Global Change deals with the changing conditions and evolution of life on Earth. Research topics include fossil mammals and their environments during the last 25 million years, the environmental and evolutionary context of early humans in Africa, and the history of climate change and ecosystems during the last 100,000 years. The effect of humankind on the biosphere is a multidisciplinary topic.

Solid Earth Geophysics combines geology with geophysics to study the structure of the Earth’s interior and the physical processes related to its evolution. These ideas are not only crucial for understanding phenomena such as earthquake and volcanic activity related to Plate Tectonics, but also important for exploration of natural resources, environmental studies and engineering, for example.

Programme Structure

A Master’s degree in Geology and Geophysics requires 120 credits (ECTS) and is designed to be completed in two years of full-time study. The study requirements are:
-Advanced studies in your specialist option (60-70 credits).
-Joint studies in topics related to your specialist option (25-30 credits).
-Master’s thesis (30 credits).

Career Prospects

Expert geoscientists are in demand and employed in a range of fields nationally and internationally. Recent graduates have gone on to pursue:
-Employment in the mining and mineral resource exploration industry.
-Work as environmental and groundwater scientists in private companies and in the public sector.
-Doctoral studies in geoscience or geophysics both in Finland and abroad.
-Research work on the geology of Finland at the Geological Survey of Finland (GTK).
-Work as experts in the field of engineering geology and applied mineralogy.

Research Focus

There are many ongoing interdisciplinary research projects in the Faculty of Science. These projects are conducted in active cooperation with research institutes on the Kumpula Science Campus, as well as with other faculties, universities, and private industry.

The field of Geosciences is broad, and our research focus covers multiple branches of it. Some of the main interests at the moment include environmental topics related to groundwater and contaminated soils, the genesis of plutonic and volcanic igneous rocks, evolutionary palaeontology of mammals based on fossil teeth, and the structure and evolution of the continental crust. We are focusing on scientific research that makes it possible to understand geological processes and the structure of the Earth using our modern and diverse laboratory infrastructure.

Read less
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics. Read more
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics.

Who is it for?

Wherever you are, energy has an implication. This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Energy and Environmental Technology and Economics students will care for the environment as a sustainable system and ultimately have a desire to improve conditions for the wider population.

Students come from a range of backgrounds including engineering, finance and economics – and from within the energy industry itself.

Objectives

This Masters degree has been designed to give you a wide perspective when it comes to analysing and forecasting the future for energy, environmental technology and economics. We engage with the industry so you gain a real-world understanding of the problems that exist, and we consider our own ethical responsibilities in relation to energy use.

Imagine a Grade 1-listed building such as the Guildhall in London. As an energy consultant your task is to analyse the site to make it more efficient. But there is a caveat: you cannot make any structural changes to the walls or the windows. The MSc Energy and Environmental Technology and Economics course gives you the tools to examine and address these kinds of challenges.

The MSc Energy and Environmental Technology and Economics course is not about learning academic theories. Instead we focus on the breadth of the subject in the real world. By engaging with practising businesses and trade associations we identify a range of perspectives, and look at the influence of a myriad of other forces at play, from regulation and government funding, to behavioural psychology and emerging technologies. Here are some of the questions the course poses:
-Does this new form of technology operate as it should?
-How does the UK relate to other European countries when it comes to energy efficiency?
-How does organisational psychology affect energy use within a company?
-How do you decide which energy contract to choose?
-What is the impact of a consumer society on personal energy use?

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their dissertation research within a company or within their part of the world. A recent student investigated the future of coal-fired generation in Turkey, and another student is combining a work placement at The World Energy Council with their dissertation.

Academic facilities

As part of the University of London you can become a member of Senate House Library for free with your student ID card.

Teaching and learning

Teaching is organised into modules comprising four consecutive day courses taken at a rate of one a month or so. This format makes the programme accessible for students who want to study part time while working.

Full-time students are also welcome. Whether you choose to take the course as a part-time or full-time student, we will offer a great deal of support when it comes to helping you prepare for the modules and project work. You will be expected to devote a significant part of your non-taught hours to project work as well as private study.

Our course is led by an exceptional group of experts in energy, supply, demand management and policies. As an example, one of our module leaders leads the UK contribution to writing international energy management standards and informing policy through the European Sector Forum for Energy Management. This forum looks at methodologies across the continent. There is also input to global standards development through the International Standards Organisation (ISO). At City we bring on board people with well-established academic careers as well as leaders from the energy industry. The programme has strong links with industry and commerce and involves many visiting lecturers who hold senior positions in their fields.

The Energy and Environmental Technology and Economics MSc gives you the opportunity to consider the role of International Energy Management Standards. You will explore the opportunities these standards provide for global service users and providers in relation to reducing energy costs and the environmental impact of energy use.

You will discover the range of current European and International Standards, explore why they are needed and how they are developed, and examine the benefits they deliver through case studies.

The UK has had a leading role in developing these standards in terms of both their writing and implementation. For example the Energy Audit standard, which forms part of the EU Energy Efficiency Directive, Article 8, mandates audits for private sector, non-SME organisations. In the UK this has been implemented as the Energy Savings Opportunities Scheme (ESOS).

Modules

Each course module is taught over four consecutive days of teaching with one module each month. Alongside the teaching you will have coursework to complete for each module. The modules run from October to April, and in the remaining time, you will concentrate on your dissertation, which forms a significant part of the programme.

The dissertation gives you the opportunity to create your own questions and to decide on your own area of interest. It should be a detailed investigation into a subject on energy supply and/or demand, with your own analysis and conclusions outlining the way forward. You may see the focus of your dissertation as a future career path, but whatever your area of study, these final few months of the degree should embody your vision of the future.

You will take four core modules and have six elective modules from which you can choose four topics from diverse subjects relating to energy supply and demand. These include energy in industry and the built environment, renewables, energy markets from the purchaser’s perspective and water supply and management. The latter has close parallels, and directly engages, with energy. You start the course with an introduction to energy and environmental issues and energy policies and economic dimensions in the first term, but you do not need to follow the course in any particular order from this point onwards.

If you are interested in sustainability, you have the option of taking up to two elective modules from the MSc in Environmental Strategy offered by the University of Surrey.

Completing eight modules and four examinations and four modular assessments will lead to a Postgraduate Diploma. Completing four core and four elective modules and a dissertation will lead to a Masters degree. If you are interested in this course may also be interested in the MSc Renewable Energy and Power Systems Management.

Core modules
-Introduction to energy and environmental issues (15 credits)
-Energy policies and economic dimensions (15 credits)
-The energy market from the purchaser's perspective (15 credits)
-Corporate energy management (15 credits)

Elective modules
-Energy, consumer goods and the home (15 credits)
-Transport energy and emissions (15 credits)
-Energy in industry and the built environment (15 credits)
-Renewable energy and sustainability (15 credits)
-Risk management (15 credits)
-Water supply and management (15 credits)

Career prospects

The story of energy is now part of public debate and climate change drives the international agenda. In the UK, there are additional energy supply issues, through the decline of existing nuclear capacity, growing imports of fossil fuels and challenging medium-term targets for renewables and low carbon supply.

Our priority is to make you employable in a range of sectors in which effective energy supply and demand side management has become an important consideration.

You will graduate with economic and market-based skills relevant to complying with relevant legislation and technical and engineering skills related to energy generation and management.

With strong industry links and working level experience from our exceptional team of expert lecturers, as well as the diverse modules on offer, you will be equipped to become a leader and entrepreneur in your chosen area of specialisation within the realm of energy management, supply or policy making.

Our graduates have gone on to hold high-ranking positions as energy consultants, data analysts and directors of corporate sustainability working within organisations including:
-AK Home Energy
-Enelco Environmental Technology
-Energy Institute
-Equinoxe Services Ltd
-Log Tech Consultancy
-Ofgem
-Peckham Power
-RWE NPower Renewables
-SCFG

Read less
Climate change, the global consumption of energy and the use of fossil fuels to provide us with heat, power and transportation are all engineering challenges which need addressing now and in the future. Read more
Climate change, the global consumption of energy and the use of fossil fuels to provide us with heat, power and transportation are all engineering challenges which need addressing now and in the future. It is clear that solutions to these long-term problems ­– ensuring the best use of resources, and developing new more sustainable ways to produce and use energy – will require graduates who can work in an increasingly multidisciplinary environment.

This course will offer you the knowledge and expertise you will need in relation to sustainable energy and the environmental impact of energy systems.

The distinctive features of the programme include:

• The opportunity for students to learn in a research-led teaching institution serviced by staff rated in the highest possible category by independent Government assessment.

• The opportunity to work in facilities commensurate with a top-class research unit.

• The opportunity for students to undertake project work in a successful, research-based environment.

• The programme has been designed to provide technical and managerial skills needed by industry, academia and the public sector.

• The substantial industrial input to the programme through invited lecturers and where appropriate offer industrially-based projects.

• A variety of specialist modules on offer.

• An open and engaging culture between students and staff, with student representatives as full members on School committees.

Structure

The programme is presented as a two-year part-time Master's level programme, and is also available in full-time mode over one year.

The programme is presented in two stages: In Stage 1 students follow taught modules to the value of 120 credits, with a limited amount of choice between optional modules. Stage 2 consists of a Dissertation module worth 60 credits.

Core modules:

Risk and Hazard Management in the Energy Sector
Energy Management
Energy Studies
Fuels and Energy Systems
Sustainable Energy and Environment Case Study
Dissertation: Sustainable Energy and Environment

Optional modules:

Earth and Society
Low Carbon Footprint
Environmental Fluid Mechanics
Advanced Power Systems & High Voltage Technology
Condition Monitoring, Systems Modelling and Forecasting
Alternative Energy Systems
Thermodynamics and Heat Transfer 1
Thermodynamics and Heat Transfer 2
Waste Management and Recycling

Teaching

A wide range of teaching styles are used to deliver the diverse material forming the curriculum of the programme. You will be required to attend lecture-, lab- and tutorial-based study during the semesters, and later undertake an individual research project.

While a 10-credit module represents 100 hours of study in total, typically this will involve 24–36 hours of contact time with teaching staff. The remaining hours are intended to be for private study, coursework, revision and assessment. Therefore all students are expected to spend a significant amount of time (typically 20 hours each week) studying independently.

At the beginning of Stage 2, you will be allocated a project supervisor. Dissertation topics are normally chosen from a range of project titles proposed by academic staff in consultation with industrial partners, usually in areas of current research or industrial interest. You are also encouraged to put forward your own project ideas.

Learning Central, the Cardiff University virtual learning environment (VLE), will be used extensively to communicate with students, support lectures and provide general programme materials such as reading lists and module descriptions. It may also be used to provide self-testing assessment and give feedback.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for a third to a half of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving 60% may be awarded a Merit and for those achieving a 70% average a Distinction may be awarded. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma of Higher Education for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate of Higher Education for the achievement of at least 60 credits.

Career prospects

Graduates typically gain employment in large energy-focussed companies, the public sector, consultancies, research and development, or set up their own companies. A number also go on to undertake PhD study.

Read less
Chemistry plays a pivotal role in determining the quality of modern life. The chemicals industry and other related industries supply us with a huge variety of essential products, from plastics to pharmaceuticals. Read more
Chemistry plays a pivotal role in determining the quality of modern life.

The chemicals industry and other related industries supply us with a huge variety of essential products, from plastics to pharmaceuticals.

However, these industries have the potential to seriously damage our environment.

This has resulted in a growing demand from society for a reduced reliance on fossil fuels and for greener manufacturing processes.

There is also a need for future innovations to be built on more sustainable foundations.

Green chemistry therefore serves to promote the design and efficient use of environmentally benign chemicals and chemical processes.

This course is designed to introduce you to all aspects of sustainable chemical practices, with nine months dedicated to a research project in a green chemistry area.

Graduates of this course can expect to have all the necessary skills and experience to apply green chemical technologies in either commercial or academic laboratories, the research project in particular equipping them admirably for PhD studies.

Read less
Renewable Energy Systems and the Environment is one of the pathways offered in the Sustainable Engineering programme. This course examines the design and operation of the energy systems that provide the environments in which people live and work. Read more

Why this course?

Renewable Energy Systems and the Environment is one of the pathways offered in the Sustainable Engineering programme.

This course examines the design and operation of the energy systems that provide the environments in which people live and work. It explores how quality of life can be balanced by the need for conservation of world resources.

You’ll learn about different energy resources:
- renewable
- fossil
- nuclear

You’ll look at the systems that are employed to control these resources such as:
- combined heat & power schemes
- heat pumps
- solar capture devices
- high efficiency condensing boilers
- advanced materials
- adaptive control systems

You’ll explore the impact energy has on the environment and how it can be reduced.

Our course has been running for over 20 years and has over 400 graduates. External examiners consistently refer to our beneficial links with industry and the high quality of our project work.

Study mode and duration:
- MSc:12 months full-time, up to 36 months part-time
- PgDip: 9 months full-time

See the website https://www.strath.ac.uk/courses/postgraduatetaught/sustainableengineeringrenewableenergysystemstheenvironment/

You’ll study

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

You must take three specialist modules if you’re studying for the Postgraduate Certificate and up to five if you’re studying for a Postgraduate Diploma or MSc.

Successful completion of six modules leads to the award of a Postgraduate Certificate.

Major projects

- Group project
This usually involves four or five students working together. Each project focuses on a particular energy/environment system and includes a technical appraisal, and, where appropriate, an assessment of its cost effectiveness and environmental impact.
At the end of the project, students perform a presentation during the University’s Knowledge Exchange week to invited guests from industry. This event provides an important networking opportunity for students.

- Individual project
The individual project is an opportunity for students to work independently on an energy topic with a more in-depth analysis than the group project.

Accreditation

The course is approved by the Energy Institute, the Institution of Mechanical Engineers and the Royal Aeronautical Society and meets the academic requirements for Chartered Engineer (CEng) status.
Students are encouraged to take up free membership of these professional organisations.

Facilities

Students have access to departmental laboratories with a range of testing equipment. For example, a recent MSc project included the use of sophisticated thermal measurement of thermal storage materials undertaken in the Advanced Materials Research Laboratory.

Student competitions

Students can enter a number of competitions, which vary year-to-year. Recent examples include:
- District Heating and Cooling (DHC+) Student Competition
- Chartered Institution of Building Services Engineers Simulation Group Award for Best MSc Dissertation

- Guest lectures
Students are regularly invited to talks by research visitors from the Energy Systems Research Unit. Talks on career options are also given by representatives of the Energy Institute.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course comprises compulsory technical modules, a choice of broader generic modules, which are recommended by accrediting professional bodies, group projects with industry input, and individual projects.

Teaching methods are varied, and include lectures, discussions, group work, informal reviews, on-line questionnaires, and computer modelling laboratories.

Assessment

Assessment of taught modules are by written assignments and exams. Group projects are assessed by project websites and presentations. Individual projects are assessed on the submitted thesis.

Careers

- Where are they now?
100% of our graduates are in work or further study.*

Job titles include:
- Artificial Intelligence Engineer
- Biomass Engineer
- Renewable Energy Consultant
- Renewable Energy Development Officer
- Technical Analyst

Employers include:
- Greenspan
- Mott Macdonald
- Natural Power
- SSE
- Scottish Power Energy Networks
- The Campbell Palmer Partnership
- RSP Consulting Engineers

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
visit course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017. Taxonomy and systematics provide the foundation for studying the great diversity of the living world. Read more

Open Day

visit course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017.

Course Overview

Taxonomy and systematics provide the foundation for studying the great diversity of the living world. These fields are rapidly changing through new digital and molecular technologies. There is ever greater urgency for species identification and monitoring in virtually all the environmental sciences, and evolutionary ‘tree thinking’ is now applied widely in most areas of the life sciences.

This course provides in-depth training in the study of biodiversity based on the principles of phylogenetics, evolutionary biology, palaeobiology and taxonomy. The emphasis is on quantitative approaches and current methods in DNA-based phylogenetics, bioinformatics, and the use of digital collections.

Location

This course is a collaboration of Imperial College London (Silwood Park) with the Natural History Museum. This provides an exciting scientific environment of two institutions at the forefront of taxonomic and evolutionary research.

The MSc in Taxonomy and Biodiversity comprises two terms of taught modules, mostly based at the Natural History Museum, and covers core areas in biodiversity, palaeobiology, phylogenetics, molecular systematics, phylogenomics and taxonomic principles. This is followed by a 16-week laboratory or field-based research project at the NHM or Imperial College’s Silwood Park or South Kensington campuses.

Modules

• Taxonomy of major groups and the Tree-of-Life: An introduction of major branches of the Tree, including identification exercises, presented by NHM experts
• Statistics and Computing: A two-week intensive course at Silwood Park
• Field course: trapping and collecting techniques for terrestrial and aquatic ecosystems
• Phylogenetic Reconstruction: the principles of building phylogenetic trees
• Molecular Systematics: generating and analysing molecular data; model-based phylogenetics
• Phylogenomics: Genomic techniques for studying evolutionary processes and biodiversity
• Biodiversity (Concepts): speciation, radiation, macroevolution
•Biodiversity (Applied): Measuring biodiversity, geospatial analysis, collection management and biodiversity informatics
• Palaeobiology: Studying the fossil record and what we can learn for biodiversity

Post Study

Students on the course will become the new generation of taxonomists in the broadest sense. They will be familiar with these new tools, as well as the wider concepts of biodiversity science, evolutionary biology and genomics. Most importantly, students gain the abilities to work as an independent scientist and researcher, to be able to solve questions about the future of biodiversity and to communicate them to peers and the public.
Students have many options for future employment in evolutionary and ecological research labs in industry, government and non-governmental organisations, conservation, and scientific publishing and the media. The courses are an excellent starting point for PhD level careers, feeding into various Doctoral Training Programmes available at NHM and Imperial, or elsewhere.

Read less
Summary. The sustainable provision and use of energy is a major challenge of the 21st century. This programme aims to equip the next generation of energy professionals with the multidisciplinary approaches required to tackle climate change issues, whilst improving energy supply and the built environment. Read more

Summary

The sustainable provision and use of energy is a major challenge of the 21st century. This programme aims to equip the next generation of energy professionals with the multidisciplinary approaches required to tackle climate change issues, whilst improving energy supply and the built environment. We enable students to view energy and sustainability challenges from multiple perspectives, which in turn will lead to

the development of rounded – and lasting solutions. Studying the MSc in Energy and Sustainability (Energy, Resources and Climate Change) will enable you to study the impact of using fossil fuels on the environment and develop alternative sustainable energy solutions.

Modules

Compulsory modules: Introduction to Energy Technologies, Environment and Sustainability; Climate Change, Energy and Settlements; Geographic Information Systems; Energy Resources and Engineering; Data Analysis and Experimental Methods for Civil and Environmental Engineering; Bioenergy; Waste Resource Management; MScResearch Project

Optional modules: one module from either Energy Performance Assessment of Buildings and Climatic Design of Buildings

Visit our website for further information.



Read less
The global energy industry faces growing demand to discover ways to extract, process and use energy sources more efficiently, and to develop cleaner technology. Read more
The global energy industry faces growing demand to discover ways to extract, process and use energy sources more efficiently, and to develop cleaner technology.

Development of environmentally-friendly energy systems requires professionals with a new mix of technological skills that encompass traditional fossil fuels and renewable energy. Our Masters in Energy Systems Engineering offers this balance, so you will learn how to provide effective and sustainable solutions to meet energy needs in different industries.

As well as traditional thermal engineering disciplines, you will study renewable energy and environmental topics, giving you a rounded appreciation of the industry. You will gain in-depth knowledge of core subject areas in energy systems engineering, as well as relevant financial, economic and regulatory issues. The course benefits from a strong research record and from industrial links established by our staff in industrial

Read less

Show 10 15 30 per page



Cookie Policy    X