• Coventry University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
Middlesex University Featured Masters Courses
Cranfield University Featured Masters Courses
Ulster University Featured Masters Courses
University of Worcester Featured Masters Courses
Bath Spa University Featured Masters Courses
"formula"×
0 miles

Masters Degrees (Formula)

  • "formula" ×
  • clear all
Showing 1 to 15 of 26
Order by 
The MSc in Motorsport Engineering course provides a unique preparation for work in the motorsport industry. Read more
The MSc in Motorsport Engineering course provides a unique preparation for work in the motorsport industry. Our location in the heart of UK motorsport valley with close proximity of the majority of Formula 1 teams and their supply chain gives our Department unrivalled access to motorsport companies.This informs and directs development and delivery of the programmes, benefiting from contribution by a range of experts with noteworthy track record in the motorsport industry. It also offers students opportunities to undertake industry-based projects, often in conjunction with our high-standing research based around state-of-the-art automotive test equipment in a purpose-designed engineering building.

Our students also have an opportunity to implement their theoretical knowledge by joining Oxford Brookes Racing, our acclaimed Formula Student team to gain an understanding of racing culture and an environment where winning race cars are built.

Why choose this course?

We are known as a premier institution for Motorsport education - our motorsport legacy is recognised worldwide and many of our graduates progress to work with leading motorsport companies, including all of F1 teams, Formula E and major suppliers to motorsport industry. Our programme has been developed with and delivered in collaboration with the motorsport industry: you will be taught in laboratories that include a four-post test rig, four state-of-the-art engine test cells, analytical and mechanical test equipment and the latest 3D printing technology, in addition to a range of racing cars. Our staff have exceptional expertise in the field of motorsport engineering and include winning F1 race car designers and world-leading sustainable vehicle engineering researchers.

Visiting speakers from business and industry provide professional perspectives, preparing you for an exciting career, for more information see our invited research lectures. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from motorsport industry. They put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website. Regular visits to F1 teams, Formula E teams and major suppliers to the motorsport industry provide students with opportunities to explore technical challenges and the latest technology - to get the flavour of activities at our department see 2015 highlights.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and and The Institute of Engineering and Technology as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The Motorsport Engineering MSc is structured around three time periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the end of September.

To qualify for a master degree you must pass the compulsory modules, two optional modules and the dissertation.

Compulsory modules:
-Advanced Vehicle Dynamics
-Advanced Vehicle Aerodynamics
-Laptime Simulation and Race Engineering
-Advanced Engineering Management

Optional modules (choose two):
-Vehicle Crash Engineering
-Computation and Modelling
-CAD/CAM
-Advanced Strength of Components
-Advanced Materials Engineering and Joining Technology
-Data Acquisition Systems
-Engineering Reliability and Risk Management

You also take:
The Dissertation is an individual project on a topic from motorsport engineering, offering an opportunity to specialise in a particular area of motorsport. In addition to developing high level of expertise in a particular area of motorsport, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. Dallara, VUHL, Base Performance, McLaren, AVL), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures, seminars to provide a sound theoretical base, and practical work, designed to demonstrate important aspects of theory or systems operation. Visiting speakers from business and motorsport industry provide valuable insights.

Careers and professional development

The department’s employability record is consistently above 90%, which is significantly above sector average. Graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in the motorsport industry.

Many of our students go on to work with leading motorsport companies, including directly into F1 teams and their suppliers. Our notable alumni include William Morris, founder of Morris cars (Lord Nuffield) and Adrian Reynard, motorsport driver and entrepreneur whilst honorary graduates include Sir John Surtees, Adrian Newey and Dr Pat Symonds.

Read less
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. Read more
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. The programme is designed to produce highly-skilled graduates who are ready to undertake advanced design roles with major engine manufacturers and their supply chain.

The UK is a world leader in motorsport and high performance engines industry - many of the world's most advanced high-performance engines are designed not far from our location in the UK motorsport valley. The department’s unrivalled access to motorsport industry informs and directs development and delivery of the programme.

In addition to the strong theory-based modules, graduates gain a comprehensive understanding of how winning engines are created. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

We are known as a premier institution for Motorsport education - our motorsport legacy is recognised worldwide and many of our graduates progress to work for most advanced high-performance engine manufacturers, such as Ferrari and Mercedes HPP, all of F1 teams and major suppliers to motorsport industry, such as Riccardo, Xtrac, Prodrive, and Hewland. Our programme has been developed with and delivered in collaboration with the automotive and motorsport industry: you will be taught by staff with many years of racing engine experience, from performance road cars, Rally, IRL, Kart and F3 right up to F1 and equipped with state-of-the-art equipment, that include four engine test cells, analytical and mechanical test equipment and the latest 3D printing technology, in addition to a range of racing cars. Industrial aspect of delivery is enhanced by our visiting speakers from business and industry, providing professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule.

Our close industry links can also be seen through research projects and consultancies that enable us to feed the latest technology and developments into our teaching as well as providing opportunities for students to undertake projects with neighbouring companies, also based in the UK Motorsport Valley, whilst our well-funded research programmes in areas of current concern such as vehicle end-of-life issues, modern composite materials and electric vehicles offer. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from motorsport industry. You can put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website. You will have an opportunity to work on our novel V-twin engine design and also select this as your dissertation topic, which may lead to the possibility of furthering their studies towards a PhD research degree.

Regular visits to F1 teams, Formula E teams and major suppliers to the motorsport industry provide students with opportunities to explore technical challenges and the latest technology -- to get a flavour of the activities within our department see our 2015 highlights.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three time periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the dissertation.

Compulsory modules:
-Racing Engine Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules:
-Advanced Powertrain Engineering
-Computation and Modelling
-CAD/CAM
-Data Acquisition Systems

The Dissertation (core, triple credit) is an individual project on a topic from race engineering, offering an opportunity to specialise in a particular area related to high performance engines. In addition to developing your expertise in a highly specialised field, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. McLaren, AVL, VUHL etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation. .

Please note: As our courses are reviewed regularly, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work to demonstrate important aspects of theory or systems operation. Visiting speakers from business and industry provide valuable insights.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading motorsport companies, including directly into F1 teams and suppliers.

Read less
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Read more
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Being in the heart of one of Europe’s highest concentration of high-tech businesses provides opportunities for industry-focused studies.You will take charge of your career by building on your undergraduate degree and developing your professional skills. It introduces you to research, development and practice in advanced engineering design and equips you for professional practice at senior positions of responsibility.You will gain the skills to take complex products all the way from idea to fully validated designs. Using the most advanced CAD packages, you will learn the techniques required to analyse and test your designs followed by full design implementation. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught by staff with exceptional knowledge and expertise in their fields, including world-leaders in research on sustainable engineering, materials and joining technology and design engineers leading development of novel products such as carbon and bamboo bike. Our research projects and consultancies are done with partners such as Siemens, Yasa Motors, Stannah Stairlifts, 3M etc. using our facilities including analytical and mechanical test equipment, scanning electron microscope and the latest 3D printing technology. Well-funded research programmes in areas of current concern such as modern composite materials, vehicle end-of-life issues and electric vehicles.

Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Visiting speakers from business and industry provide professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule. Our close industry links facilitate industrial visits, providing you with opportunities to explore technical challenges and the latest technology - to get a flavour of activities within our department see 2015 highlights.

You will have the opportunity to join our acclaimed Formula Student team (OBR), where you have a chance to put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the Dissertation.

Compulsory modules
-Advanced Mechanical Engineering Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules
-Computation and Modelling
-CAD/CAM
-Advanced Materials Engineering and Joining Technology
-Sustainable Engineering Technology
-Noise, Vibration and Harshness
-Vehicle Crash Engineering
-Engineering Reliability and Risk Management

The Dissertation (core, triple credit) is an individual project on a topic from motorsport engineering, offering an opportunity to specialise in a particular area of motorsport. In addition to developing a high level of expertise in a particular area of motorsport, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. Far-Axon, Clayex/Dymola, Tranquillity Aerospace, Norbar, etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work designed to demonstrate important aspects of theory or systems operation.

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in a wide range of industries.

Read less
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Read more
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Our applied approach to design, manufacture and testing of automotive products ensures that our graduates are ready for automotive industry, with excellent employability prospects. In addition, our location is in the heart of one of Europe's biggest concentrations of high-tech businesses and the UK motorsport valley. This offers unrivalled opportunities for students to collaborate with automotive industry and their supply chain. It keeps students abreast with the current developments in automotive technologies, production methods, processes and management techniques. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught in a purpose-designed engineering building, by staff with exceptional knowledge and expertise in their fields. Lecturers include world-leaders in research on sustainable vehicle engineering, and those with experience of designing and working with major automotive manufacturers such as TATA, MAN and BMW. Our visiting speakers from business and industry provide professional perspective, preparing you for an exciting career; for more information see our industrial lecture series schedule. We have close links with industry including the BMW MINI plant in Oxford, Porsche, Ford, MAN, MIRA and other national and international partners. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures.

In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Regular visits to automotive industry and their supply chain provide students with opportunities to explore technical challenges and the latest technology - to get a flavour of the activities within our department see 2015 highlights. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from automotive and motorsport industry. You will put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website: https://obr.brookes.ac.uk/

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, one of two alternative-compulsory modules and one optional module, along with the dissertation.

Compulsory modules
-Advanced Vehicle Dynamics
-Sustainable Engineering Technology.
-Advanced Engineering Management

Alternative-compulsory modules (you must pass at least one of these):
-Noise, Vibration and Harshness
-Vehicle Crash Engineering

Optional modules (you take one of these, unless you take both alternative-compulsory modules above):
-Advanced Vehicle Aerodynamics
-Engineering Reliability and Risk Management
-CAD/CAM
-Advanced Powertrain Engineering

The Dissertation (core, triple credit) is an individual project on a topic from automotive engineering, offering an opportunity to develop a high level of expertise in a particular area of automotive engineering, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. MAN (Germany), VUHL (Mexico), McLaren (UK), AVL (Austria), Arctic Truck (Iceland) etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading automotive or motorsport companies in the UK and worldwide.

Read less
Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. This continually evolving course has been running for over 40 years and is well supported by the UK Engineering and Physical Sciences Research Council (EPSRC). Read more

About the course

Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. This continually evolving course has been running for over 40 years and is well supported by the UK Engineering and Physical Sciences Research Council (EPSRC).

The core modules provide you with the basic skills you’ll need to become a control and systems engineer. You’ll take advanced modules in current areas of interest and complete a research-level dissertation project.

Push yourself further

We have cutting edge facilities and technology, including: advanced control
and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Advanced Industrial Control; Control Systems Project and Dissertation.

Examples of optional modules

Intelligent and Vision Systems; Nonlinear and Hybrid Systems; Robotic and Autonomous Systems; Multisensor and Decision Systems.

Project work

You can use our award-winning take-home lab kits to explore core concepts at home. It supports our teaching, giving you the chance to learn by doing, when you want to, not just in classes. You’ll work on a major project of your own as part of your final assessment and there are chances to contribute to other projects throughout the course.

Teaching and assessment

You can expect a mix of lectures, tutorials, laboratory work and individual assignments. All the lectures and tutorials are for our systems and control students only. This helps you to bond with your fellow students, so you can learn from each other. You’re assessed on exams, coursework assignments and a project dissertation.

Read less
Motorsport is one of the world's most dynamic, competitive industries - and engineers that master their craft have almost unlimited career opportunities. Read more

About the course

Motorsport is one of the world's most dynamic, competitive industries - and engineers that master their craft have almost unlimited career opportunities.

This MSc in Automotive Motorsport Engineering at Brunel equips graduates with the qualities and transferable skills they need to flourish at a senior level in an exacting industry.

The comprehensive curriculum covers a wide range of specialist skills sought within the industry – including core modules in:

Research methods and sustainable engineering
Racing team management and vehicle testing
Advanced vehicle dynamics, IC engines, materials and manufacturing

You’ll gain practical experience through a team project, and complete a dissertation of your choice, typically covering a design, experimental, computing or analysis subject.

Aims

The speed of change in motorsport is relentless -and engineers need to inovate to succeed. From F1 pit lane mechanics to testing specialists, engine and aerodynamics maestros to team managers and financial controllers, graduates from this course have a host of exciting and varied career options open to them.

The MSc programme at Brunel University helps you develop imagination and creativity to follow a successful engineering career with a mix of modules covering automotive and motorsport engineering topics, which delivers an integrating layer on top of subject specific first degree or professional skills.

Its primary focus is to create Master's degree graduates who are well equipped with the knowledge and skills to work in a multi discipline subject area, typically encountered in the automotive and motorsport engineering industry.

Course Content

The course will allow students the option of specialising in automotive engineering or motorsport engineering, both in the optional modules and the dissertation.

Every student also produces a group project, usually carried out with four or five other students. The group project involves the design, manufacture, assembly, and testing of a single seater racing vehicle, that will take part in the annual Formula Student competition in July with over 70 teams competing in the event.

Compulsory modules:

Research Methods and Sustainable Engineering
Racing Team Management and Vehicle Testing
Advanced Vehicle Dynamics, IC Engines, Materials and Manufacturing
Major Group Project
Dissertation

Optional Modules
Students choose two of the four modules below:

Advanced Modelling and Design
Advanced Thermofluids
Racing Legislation, Finance and Sponsorship
Racing Vehicle Design and Performance

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Brunel Automotive Lecture Series
Brunel’s Automotive Lecture Series is a special feature of the taught programmes in the areas of automotive and motorsport engineering. The Series consists of talks on technology and careers by industry leaders, alumni and expert technologists appropriate not only for late stage undergraduate and postgraduate students but also for researchers in the these areas. Topics include themes from the broader automotive and motorsport industry and its technologies including advanced powertrains, vehicle testing and advanced components.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The Automotive and Motorsport Engineering MSc at Brunel University is accredited by the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment. For the final four months (June to September), students will conduct an individual project and prepare a dissertation, allowing the opportunity to undertake original research relating to the automotive and motorsport engineering fields.

The group project is conducted throughout the year and is assessed by means of project logbooks, oral presentations and final project reports.

Read less
This masters is recognised as a world-leading course for those wanting to enter Formula One as aerodynamicists and CFD engineers. Read more

Summary

This masters is recognised as a world-leading course for those wanting to enter Formula One as aerodynamicists and CFD engineers. It emphasises the fundamentals of aerodynamics and centres on the analysis, computation and measurement of turbulent flows associated with high performance race cars. It suits graduates or qualified individuals from engineering, scientific and mathematical backgrounds wishing to specialise in aerodynamics.

Modules

Compulsory modules: Applications of CFD; Experimental Techniques for Aerodynamics; Race Car Aerodynamics; Race Car Design/GDP; Turbulence: Physics and Modelling; MSc Research Project

Optional modules: further module options are available

Visit our website for further information...



Read less
-Are you keen to apply your interest and skills in economics to the study of financial markets?. -Do you want to combine a rigorous training in core economics with a solid introduction to the key theoretical techniques used in finance?. Read more
-Are you keen to apply your interest and skills in economics to the study of financial markets?
-Do you want to combine a rigorous training in core economics with a solid introduction to the key theoretical techniques used in finance?
-Do you plan to work as a portfolio manager, risk management consultant, or financial analyst?

The demand for highly skilled experts in financial economics continues to increase rapidly in the modern economy. This demand exists in the public sector (central banks, international organisations, academic institutions) and especially in the private sector (commercial banks and insurance companies). This course is designed to meet this demand for those students who seek a quantitative degree in financial economics, by combining a solid training in microeconomic and macroeconomic principles, as well as the quantitative methods and theory needed for the analysis of financial markets.

Financial Economics is a fascinating area, having a history marked by outstanding achievements. A remarkable feature of this discipline is that its theoretical highlights (such as the Black-Scholes formula) turned out to be extremely important in practice. Fundamental ideas and tools of Financial Economics that were developed at the interface between Mathematical Economics and Finance created new markets essentially based on concepts suggested by academics. A central goal of the course is to demonstrate the use of these ideas and tools in contexts where they are indispensable and widely exploited. The course will expose students to quantitative techniques and theory that will be useful to anyone in the financial industry - a portfolio manager, risk management consultant, or financial analyst.

Teaching and learning

Part-time students complete the full-time programme over two years. There are NO evening or weekend course units available on the part-time programme.

You must first check the schedule of the compulsory modules and then select your optional modules to suit your requirements.
Updated timetable information will be available from mid-August and you will have the opportunity to discuss your module choices during induction week with your Course Director

Coursework and assessment

Assessment is usually by written examination at the end of each semester in which a course unit is taught. Some units may require a course work element that may be assessed. Progression to the summer dissertation element requires completion of the taught element at least at the pass-level.

Career opportunities

Employment opportunities for students in Financial Economics are traditionally very good. The high reputation of The University of Manchester, and especially its Economics division having rich historical traditions, will serve as an excellent recommendation for job applicants. The high-quality training obtained in the course of the study within the MSc in Financial Economics Programme will facilitate the future career of those who have got this degree.

Read less
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. Read more
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. The degree comprises study in analysis and design of power machinery systems, engineering structures, vibration, control and the use of computers in advanced engineering analysis.

Degree information

You will develop an advanced knowledge of mechanical engineering and associated disciplines, alongside an awareness of the context in which engineering operates, in terms of safety, environmental, social and economic aspects. Alongside this you will gain a range of intellectual, practical and transferable skills necessary to develop careers in this field.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), optional modules (15 credits), and a research project (75 credits).

Core modules
-Advanced Computer Applications in Engineering
-Group Project
-Materials and Fatigue
-Vibrations, Acoustics and Control
-Project Management
-Power Transmission and Auxiliary Machinery Systems

Optional modules - one of the following subject to availability:
-Applied Thermodynamics and Turbomachinery
-Heat Transfer and Heat Systems
-New and Renewable Energy Systems

Dissertation/report
Culminating in a substantial dissertation, the research project, which often has industry input, focuses your research interests and develops high-level presentation and critical thinking skills.

Teaching and learning
This dynamic programme is delivered through a combination of lectures, seminars, tutorials and example classes all of which frequently draw upon real-life industrial case studies. Each module is assessed by coursework submission alone or a combination of examination and coursework. Some include an oral presentation of project or assignment work.

Careers

Engineering graduates with good analytical abilities are in high demand and our graduates have little difficulty gaining employment across many industries. The programme specifically aims to equip students with skills in analysis and design such that they can be employed as professional engineers in virtually any sector of the mechanical engineering industry.

Top career destinations for this degree:
-Foreign Exchange Analyst, JP Morgan
-Mechanical Engineer, Lloyds Register
-PhD Mechanical Engineering, University College London (UCL)
-Graduate Trainee Engineer, Rolls-Royce
-Mechanical Engineer, Shanghai Electric

Employability
Delivered by leading researchers from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas. Collaborating with companies and bodies such as the Ministry of Defence and industry leaders such as BAE Systems and Shell are key to our success and we will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Why study this degree at UCL?

UCL Mechanical Engineering scored highly in the UK's most recent Research Excellence Framework survey with research in such diverse areas as Formula 1, biomedical engineering and naval architecture. The department is located in the centre of one of the most dynamic cities in the world.

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAE Systems, Cosworth Technology, Shell, BP, Lloyds Register Educational Trust, and many others.

The Mechanical Engineering MSc has been accredited by the Institute of Mechanical Engineers (IMechE) and the Institute of Marine Engineering, Science & Technology (IMarEST) as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake.

Read less
This version of our flagship course includes a 12-month work placement. In the first year, you’ll take basic and advanced modules. Read more

About the course

This version of our flagship course includes a 12-month work placement. In the first year, you’ll take basic and advanced modules. In the second year, you’ll put your knowledge and skills to work.

We’ll give you training in research skills. You’ll carry out an extended research project with a dissertation. You’ll also write a report and give a presentation based on your work placement.

Push yourself further

We have cutting edge facilities and technology, including: advanced control
and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core Modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Managing Engineering Projects and Risk; Design Innovation Toolbox; Professional Responsibilities of the Engineer; Control Systems Project and Dissertation.

Examples of optional modules

Advanced Industrial Control; Robotic and Autonomous Systems; Intelligent and Vision Systems; Multisensor and Decision Systems; Nonlinear and Hybrid Systems.

Teaching and Assessment

There are lectures, tutorials, laboratory work and individual assignments. You will be assessed on examinations, coursework assignments and a project dissertation.

Read less
Over the past decade there have been a number of unanticipated adverse health events such as the 2003 SARS outbreak, the 2007 Australian equine influenza outbreak, the 2008 melamine contamination of Chinese infant formula, the 2009 influenza pandemic, and the 2014 Ebola outbreak to name but a few. Read more
Over the past decade there have been a number of unanticipated adverse health events such as the 2003 SARS outbreak, the 2007 Australian equine influenza outbreak, the 2008 melamine contamination of Chinese infant formula, the 2009 influenza pandemic, and the 2014 Ebola outbreak to name but a few. New pathogens continue to emerge and successfully cross species’ barriers to cause new disease in humans (e.g. MERS). At the same time changes to food production and consumption are creating new risks to the food chain, while scientific breakthroughs now allow for the creation of entirely new organisms not found in the natural world, prompting new security concerns and the need for new regulatory arrangements and oversight mechanisms. As several of these events have already demonstrated, the interrelationship between animal, human and plant disease-related events in a highly interconnected world are both multifaceted and complex, with potential implications for national economies, international trade, national and international security, social cohesion, political stability, and food security.

The Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI) based at the University of Sydney is committed to meeting this need by helping train a new generation of professionals develop the knowledge and skills to manage complex human, animal and plant health emergencies and the multisectoral impacts that can arise from such events.

The MHlthSec offers students an intellectually rigorous, flexible, interdisciplinary program of study and research that provides a pathway for those who are either interested in pursuing a career in health security, or are already working in roles with responsibility for dealing with health-related crises. In addition, the degree will also contain study options that provide a pathway for entry into higher degrees by research (e.g. PhD), allowing students to pursue a career in research and/or academia.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
Postgraduate University Course -VAS Educational Project ( www.vas-int.net). :University of Milan and VAS-Vascular-Independent Research and Education-European Organisation. Read more

European Advanced Postgraduate Course on Angiology-Vascular Medicine

Postgraduate University Course -VAS Educational Project ( http://www.vas-int.net)

Official agreement between

:University of Milan and VAS-Vascular-Independent Research and Education-European Organisation

Lecturers

: VAS-European Teaching Panel,

Formula

: Certified E-Learning, Theoretical Course, Option to continue with the European Master in Angiology Vascular Medicine (University Diploma, Tutorial, 2016),

Final Exam

: MCQ’s on line

Official Language ]]: English
[[Duration

: One year - for a total of 130 hours

Course Begins

: 27 November, 2015, during 12th Edition European Angiology Days (presence encouraged but not mandatory.

Course Closes

: September 2016 to allow the candidates concerned to continue in the European Master in Angiology/Vascular Medicine Diploma and UEMS European Diploma in Angiology/Vascular Medicine.

Certificate Ceremony

Certificates awarded during 13 edition of EADays in November 2016

Course Material

: Videos, Slides, Selected Papers, Chat on selected Ultrasound images, MCQ’s (Interim and Final Evaluation)

Additional Offers

: Enrolled Candidates are entitled to Vas Membership; For students interested to continue for the European Master in Angiology/Vascular Medicine , these hours of theoretical lessons and the cost will be subtracted from the European Master scheduled.

Certificate

: Certificate issued by University of Milan

Topics

:
The Process to the “European Citizen” in Medicine; Biomedical Ethics;
- The concept of Equity and the WHO prospective in Vascular and Cardiovascular Diseases;
- Changing Vascular Mortality in middle age;
- Multimoribility and Health Care; Global Burden of lower extremity artery disease : Update;
- PAD Clinical aspects and prognosis;
- Peripheral Arterial Occlusive Disease Diagnosis and Therapy; Physical Rehabilitation; Buerger's Disease;
- Amputation in PAD, other Vascular Amputations;
- Diabetes and Vascular Diseases; Cerebro Vascular Disease;
- Epidemiology of Stroke;
- Interventional Therapy in Arterial Diseases;
- Diagnostic Procedures in Microcirculation; Chronic Venous Insufficiency; Thermal ablation of varicose veins; US Guided foam sclerotherapy; Venous Ulcers;
- VTE Clinic, Diagnosis and Therapy;
- Polmonary embolism;
- New anticoagulants;
- Gastrointestinal side effects of anticoagulant treatment;
- Lung and Vasculitis; Vascular disorders of the gastrointestinal tract;
- Periodontitisand vascular diseases;
- Aging and older person’s management and care in Vascular Medicine;
- Arterial and Venous Thrombosis; Atherosclerosis: a systemic disease;
- Statistics and Clinical Trials, Therapeutic Market Arena.

Read less
Our MSc Entrepreneurship degree is designed for ambitious future entrepreneurs from a whole range of first degree backgrounds, including engineering and science. Read more

Course Description

Our MSc Entrepreneurship degree is designed for ambitious future entrepreneurs from a whole range of first degree backgrounds, including engineering and science. It aims to foster innovation and value creation, giving you the knowledge, skills and capabilities to create and lead successful start-ups.

You will develop a strong foundation in building and managing the key functions of a new venture, and be given the opportunity to actually do so during the course. We will expose you to the networks and investment opportunities you will need to get your ideas off the ground, and there’s even the chance to access seed funding directly from the Business School.

You will learn how to control risk and uncertainty, implement solutions and maximise opportunities. Through hands-on learning and a major practical project we will also challenge your preconceptions, develop your management skills and help you turn your ideas into powerful propositions.

See the website https://www.ntu.ac.uk/study-and-courses/courses/find-your-course/business/pg/2017-18/entrepreneurship

Work placement

On the Msc Entrepreneurship course you will undertake an Entrepreneurial Experience Project in your final semester. You will be equipped with the skills and understanding you will need to set up and lead your own start-up enterprise.

This project gets to the heart of the MSc Entrepreneurship degree, enabling you to begin setting up a new venture and attracting finance. You will take part in a real pitching event, compete for seed capital, make valuable links and produce a robust business plan and profit formula.

Study and support

Teaching and learning methods are centred around interactive workshops which are highly participative in nature and will employ case studies, discussions, business simulations and group activities.

Interactivity is key to our teaching and we are committed to providing courses that adopt teaching methods that are appropriate to the student cohort and the specific modules.

We ensure that support and guidance is in place, especially during the early stages of the course and assessment periods, to help you become comfortable with operating in a student-centred learning environment.

Assessment methods

A range of assessment methods are used across the course, the choice of which reflects the needs and demands of the different types of module. Some modules will assess the ability to work collaboratively in a team and others will assess individual capability. Types of assessment will range from examinations to group presentations including essays, reports, financial analyses, literature reviews and research based projects.

The interactive nature of the taught sessions offers opportunities to gain feedback on your performance before being formally assessed and increasing use is made of eLearning to further support the feedback process.

Induction

All our courses begin with a comprehensive development programme that will help you prepare for your studies and develop key academic and transferable skills. A key feature is a short residential team-building course, normally in the Peak District.

You will also have opportunities to meet members of the teaching team and other postgraduate students, receive detailed programme information, and gain valuable support and guidance from the library, careers service, international office and Student Support Services.

Visit the MSc Entrepreneurship page on the Nottingham Trent University web site for more details! https://www.ntu.ac.uk/study-and-courses/courses/find-your-course/business/pg/2017-18/entrepreneurship

Scholarships

Nottingham Business School is delighted to offer a number of generous scholarships for our full-time master's courses. To find out more visit the Nottingham Business School website. (http://www.ntu.ac.uk/nbs/courses/fees_and_funding/postgraduate_fees/index.html?utm_campaign=FAM-BLSS-Nov-15&utm_medium=Profile&utm_source=Findamasters&utm_term=BLSS )

Read less
Starting in 2016, and currently under development, Royal Holloway will offer a new Masters in 'The Internet of Things' (IOT). The Internet of Things is a new and fast expanding area in Computer Science, technology and engineering. Read more
Starting in 2016, and currently under development, Royal Holloway will offer a new Masters in 'The Internet of Things' (IOT).

The Internet of Things is a new and fast expanding area in Computer Science, technology and engineering: it concerns the systems of networked devices that are now sensing, transmitting and acting on data. A series of reports place the IoT as a new and transformative technology domain that will require millions of developers by 2020.

The course will educate and train you in the key areas required for operating the generation of networks of connected devices that are starting to proliferate (smart homes, smart cities, smart cars, and so on): data analysis, storage and processing; distrbuted and networked systems; and information security.

Facilities include a laboratory where you can experiment with physical devices that can be interconnected in a network, and a cluster facility for processing and analysing real data sets.

Please note this programme is subject to validation.

See the website https://www.royalholloway.ac.uk/computerscience/coursefinder/msctheinternetofthings.aspx

Why choose this course?

The Masters in The Internet of Things at Royal Holloway will provide you with advanced knowledge and skills in three essential and critical areas:

- Data analytics is essential for getting value from the IOT. For example, in Formula One racing there are hundreds of sensors providing thousands of data points for analysis such as tyre pressure and fuel burn efficiency, which have to be collected in real-time for very quick analysis by race engineers onsite.

- Distributed computing and systems concern technical aspects such as algorithms for distributed coordination, time-synchronisation, scalable storage, virtualisation and cloud computing technologies, as well as methodological aspects such agent-based modelling and simulation.

- Cybersecurity is another essential aspect of the IOT. Recent news such as the safety recall issued by Fiat Chrysler of 1.4m vehicles in the US after tech magazine Wired reported that hackers had taken control of a Jeep Cherokee via its internet-connected entertainment system, are examples of how privacy, safety and security are major concerns for the IOT.

During your studies you will have 24/7-access to labs equipped with a state-of-the-art cloud computing testbed and a new generation of large-scale data processing platforms (such as Hadoop and MongoDB), which will give you the opportunity to gain hands-on experience working on real-life problems in areas as diverse as social network analytics, web data mining, and botnet detection.

Department research and industry highlights

Royal Holloway is recognised for its research excellence in Machine Learning, Information Security, and Global Ubiquitous Computing.

We work closely with companies such as Centrica (British Gas, Hive), Cognizant, Orange Labs (UK), the UK Cards Association, Transport for London and ITSO.

We host a Smart Card Centre and we are a GCHQ Academic Centre of Excellence in Cyber Security Research (ACE-CSR).

During your studies you will have 24/7-access to labs equipped with a state-of-the-art cloud computing testbed and a new generation of large-scale data processing platforms (such as Hadoop and MongoDB), which will give you the opportunity to gain hands-on experience working on real-life problems in areas as diverse as social network analytics, web data mining, and botnet detection.

Assessment

Assessment is carried out by a variety of methods including coursework, practical projects and a dissertation.

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different Computer Science-related areas, including This taught masters course equips postgraduate students with the subject knowledge and expertise required to pursue a successful career, or provides a solid foundation for continued PhD studies.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Starting in 2016, and currently under development, Royal Holloway will offer a new Masters in 'The Internet of Things' (IOT) with a Year in Industry. Read more
Starting in 2016, and currently under development, Royal Holloway will offer a new Masters in 'The Internet of Things' (IOT) with a Year in Industry.

The Internet of Things is a new and fast expanding area in Computer Science, technology and engineering: it concerns the systems of networked devices that are now sensing, transmitting and acting on data. A series of reports place the IoT as a new and transformative technology domain that will require millions of developers by 2020.

The course will educate and train you in the key areas required for operating the generation of networks of connected devices that are starting to proliferate (smart homes, smart cities, smart cars, and so on): data analysis, storage and processing; distrbuted and networked systems; and information security.

Facilities include a laboratory where you can experiment with physical devices that can be interconnected in a network, and a cluster facility for processing and analysing real data sets.

Please note this programme is subject to validation.

See the website https://www.royalholloway.ac.uk/computerscience/coursefinder/msctheinternetofthingsyearinindustry.aspx

Why choose this course?

The Masters in The Internet of Things at Royal Holloway will provide you with advanced knowledge and skills in three essential and critical areas:

- Data analytics is essential for getting value from the IOT. For example, in Formula One racing there are hundreds of sensors providing thousands of data points for analysis such as tyre pressure and fuel burn efficiency, which have to be collected in real-time for very quick analysis by race engineers onsite.

- Distributed computing and systems concern technical aspects such as algorithms for distributed coordination, time-synchronisation, scalable storage, virtualisation and cloud computing technologies, as well as methodological aspects such agent-based modelling and simulation.

- Cybersecurity is another essential aspect of the IOT. Recent news such as the safety recall issued by Fiat Chrysler of 1.4m vehicles in the US after tech magazine Wired reported that hackers had taken control of a Jeep Cherokee via its internet-connected entertainment system, are examples of how privacy, safety and security are major concerns for the IOT.

During your studies you will have 24/7-access to labs equipped with a state-of-the-art cloud computing testbed and a new generation of large-scale data processing platforms (such as Hadoop and MongoDB), which will give you the opportunity to gain hands-on experience working on real-life problems in areas as diverse as social network analytics, web data mining, and botnet detection.

Department research and industry highlights

Royal Holloway is recognised for its research excellence in Machine Learning, Information Security, and Global Ubiquitous Computing.

We work closely with companies such as Centrica (British Gas, Hive), Cognizant, Orange Labs (UK), the UK Cards Association, Transport for London and ITSO.

We host a Smart Card Centre and we are a GCHQ Academic Centre of Excellence in Cyber Security Research (ACE-CSR).

Assessment

Assessment is carried out by a variety of methods including coursework, practical projects and a dissertation. The placement is assessed as part of the Year-in-Industry degree.

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different Computer Science-related areas, including This taught masters course equips postgraduate students with the subject knowledge and expertise required to pursue a successful career, or provides a solid foundation for continued PhD studies.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less

Show 10 15 30 per page



Cookie Policy    X